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A PROXIMAL APPROACH FOR A CLASS OF MATRIX
OPTIMIZATION PROBLEMS*

ALESSANDRO BENFENATI", EMILIE CHOUZENOUX#, AND JEAN-CHRISTOPHE
PESQUET?

Abstract. In recent years, there has been a growing interest in mathematical models leading
to the minimization, in a symmetric matrix space, of a Bregman divergence coupled with a regular-
ization term. We address problems of this type within a general framework where the regularization
term is split in two parts, one being a spectral function while the other is arbitrary. A Douglas—
Rachford approach is proposed to address such problems and a list of proximity operators is provided
allowing us to consider various choices for the fit—-to—data functional and for the regularization term.
Numerical experiments show the validity of this approach for solving convex optimization problems
encountered in the context of sparse covariance matrix estimation. Based on our theoretical re-
sults, an algorithm is also proposed for noisy graphical lasso where a precision matrix has to be
estimated in the presence of noise. The nonconvexity of the resulting objective function is dealt with
a majorization—minimization approach, i.e. by building a sequence of convex surrogates and solv-
ing the inner optimization subproblems via the aforementioned Douglas—Rachford procedure. We
establish conditions for the convergence of this iterative scheme and we illustrate its good numerical
performance with respect to state—of—the—art approaches.

Key words. Covariance estimation, Graphical Lasso, matrix optimization, Douglas-Rachford
method, majorization-minimization, Bregman divergence

AMS subject classifications. 15A18, 15B48, 62J10, 65K10, 90C06, 90C25, 90C26, 90C35

1. Introduction. In recent years, various applications such as shape classifica-
tion models [30], gene expression [44], model selection [3, 18], computer vision [33],
inverse covariance estimation [31, 29, 68, 28, 62], graph estimation [48, 53, 67], social
network and corporate inter-relationships analysis [2], or brain network analysis [65]
have led to matrix variational formulations of the form:

(1) minimize f(C) — trace (TC) 4 ¢g(C),

CeS,

where §,, is the set of real symmetric matrices of dimension n x n, T is a given
n X n real matrix (without loss of generality, it will be assumed to be symmetric), and
f:8n =] —o00,+00] and g: : S, =] — 00, +00| are lower-semicontinuous functions
which are proper, in the sense that they are finite at least in one point.

It is worth noticing that the notion of Bregman divergence [13] gives a particular
insight into Problem (1). Indeed, suppose that f is a convex function differentiable
on the interior of its domain int(dom f) # @. Let us recall that, in S,, endowed with
the Frobenius norm, the f-Bregman divergence between C € S,, and Y € int(dom f)
is

(2) DY(C,Y) = f(C) - f(Y) — trace (T(C - Y)),

*Submitted to the editors DATE.

Funding: This work was funded by the Agence Nationale de la Recherche under grant ANR-
14-CE27-0001 GRAPHSIP.

fLaboratoire d’Informatique Gaspard Monge, ESIEE Paris, University Paris-Est, FR (alessan-
dro.benfenati@esiee.fr).

fCenter for Visual Computing, INRIA Saclay and CentraleSupélec, University Paris-Saclay, FR
(emilie.chouzenoux@centralesupelec.fr, jean-christophe@pesquet.eu).

1

This manuscript is for review purposes only.


mailto:alessandro.benfenati@esiee.fr
mailto:alessandro.benfenati@esiee.fr
mailto:emilie.chouzenoux@centralesupelec.fr, jean-christophe@pesquet.eu

(2 BG SL B G

A o o~

ot
ot

[ I o) NG, B BN NG
= O © 0

3

63
64
65
66

67

(o2 3]

= W N

0 00 0 N N 7 3 3 9 9 339
N = O © 00 1 O Ot

83

2 A. BENFENATI, E. CHOUZENOUX, AND J.-C. PESQUET

where T = Vf(Y) is the gradient of f at Y. Hence, the original problem (1) is
equivalently expressed as

. . f
(3) minimize g9(C)+ D’ (C,Y).
Solving Problem (3) amounts to computing the proximity operator of g at Y with
respect to the divergence DY [5, 7] in the space S,. In the vector case, such kind
of proximity operator has been found to be useful in a number of recent works re-
garding, for example, image restoration [14, 8, 9, 70], image reconstruction [71], and
compressive sensing problems [66, 32].
In this paper, it will be assumed that f belongs to the class of spectral functions [11,
Chapter 5, Section 2], i.e., for every permutation matrix 3 € R™*",

(4) (VC e Sn) [f(C) = p(Xd),

where p: R™ =] — 0o, +00] is a proper lower semi-continuous convex function and d
is a vector of eigenvalues of C.

Due to the nature of the problems, in many of the aforementioned applications, g is a
regularization function promoting the sparsity of C. We consider here a more generic
class of regularization functions obtained by decomposing g as gg + g1, where gg is a
spectral function, i.e., for every permutation matrix 3 € R"*",

(5) (VC €Sn) 90(C) = ¥(Xd),

with ¢: R™ —] — 0o, +00] a proper lower semi—continuous function, d still denoting
a vector of the eigenvalues of C, while g;: S,, —] — 00, +00] is a proper lower semi—
continuous function which cannot be expressed under a spectral form.

A very popular and useful example encompassed by our framework is the graph-
ical lasso (GLASSO) problem, where f is the minus log-determinant function, g,
is a component-wise ¢; norm (of the matrix elements), and go = 0. Various algo-
rithms have been proposed to solve Problem (1) in this context, including the popular
GLASSO algorithm [31] and some of its recent variants [47]. We can also mention the
dual block coordinate ascent method from [3], the SPICE algorithm [57], the gradi-
ent projection method in [30], the Refitted CLIME algorithm [17], various algorithms
[28, 42, 43] based on Nesterov’s smooth gradient approach [50], ADMM approaches
[68, 58], an inexact Newton method [62], and interior point methods [67, 40]. A re-
lated model is addressed in [44, 18], with the additional assumption that the sought
solution can be split as C; + Co, where C; is sparse and C, is low—rank. Finally, let
us mention the ADMM algorithm from [72], and the incremental proximal gradient
approach from [54], both addressing Problem (1) when f is the squared Frobenius
norm, gg is a nuclear norm, and ¢; is an element—wise #; norm.

The main goal of this paper is to propose numerical approaches for solving Prob-
lem (1). Two settings will be investigated, namely (i) g1 = 0, i.e. the whole cost
function is a spectral one, (i) g1 # 0. In the former case, some general results
concerning the D/-proximity operator of gy are established. In the latter case, a
Douglas—Rachford optimization method is proposed, which leads us to calculate the
proximity operators of several spectral functions of interest. We then consider ap-
plications of our results to the estimation of (possibly low-rank) covariance matrices
from noisy observations of multivalued random variables. Two variational approaches
are proposed for estimating the unknown covariance matrix, depending on the prior
assumptions made on it. We show that the cost function arising from the first for-
mulation can be minimized through our proposed Douglas-Rachford procedure under
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A PROXIMAL APPROACH FOR A CLASS OF MATRIX OPTIMIZATION PROBLEMS 3

mild assumptions on the involved regularization functions. The second formulation of
the problem aims at preserving desirable sparsity properties of the inverse covariance
(i.e., precision) matrix. We establish that the proposed objective function is a dif-
ference of convex terms, and we introduce a novel majorization-minimization (MM)
algorithm to optimize it.

The paper is organized as follows. Section 2 is devoted to the solution of the
particular instance of Problem (1) corresponding to g1 = 0. Section 3 describes a a
proximal to address the problem when ¢g; # 0. Its implementation is discussed for
a bunch of useful choices for the involved functionals. Section 4 presents two new
approaches for estimating covariance matrices from noisy data. Finally, in Section 5,
numerical experiments illustrate the applicability of the proposed methods, and its
good performance with respect to the state-of-the-art, in two distinct scenarios.

Notation: Greek letters usually designate real numbers, bold letters designate
vectors in a Euclidean space, capital bold letters indicate matrices. The i—th element
of the vector d is denoted by d;. Diag(d) denotes the diagonal matrix whose diagonal
elements are the components of d. D,, is the cone of vectors d € R™ whose components
are ordered by decreasing values. The symbol vect(C) denotes the vector resulting
from a column—wise ordering of the elements of matrix C. The product A ®B denotes
the classical Kronecker product of matrices A and B. Let H be a real Hilbert space
endowed with an inner product (-, ) and a norm ||-||, the domain of a function f: H —
] =00, +oo]isdom f = {x € H | f(x) < +oc}. fis coercive if lim|,| 100 f(2) = +00
and supercoercive if lim, |40 f(z)/|lz| = +00. The Moreau subdifferential of f at
reHisOf(x)={teHH|VyeH)f(y) > flx)+(t,y—x)}. To(H) denotes the class of
lower-semicontinuous convex functions from H to | — oo, +00] with a nonempty domain
(proper). If f € Ty(H) is (Gateaux) differentiable at x € H, then 0f(z) = {Vf(z)}
where V f(z) is the gradient of f at x. If a function f: H —] — 0o, +00] possesses a
unique minimizer on a set E C H, it will be denoted by argmin f(z). If there are

zeE

possibly several minimizers, their set will be denoted by Argmin f(x). Given a set F,
reE
int(E) designates the interior of E and ¢y denotes the indicator function of the set,

which is equal to 0 over this set and +oo otherwise. In the remainder of the paper, the
underlying Hilbert space will be S,,, the set of real symmetric matrices equipped with
the Frobenius norm, denoted by || - ||r. The matrix spectral norm is denoted by | - ||s,
the £, norm of a matrix A = (A;;);; is [|[Af1 = X2, ; [4i |- For every p € [1,+o00],
R, (-) denotes the Schatten p—norm, the nuclear norm being obtained when p = 1.
O,, denotes the set of orthogonal matrices of dimension n with real elements; S, and
S;7F denote the set of real symmetric positive semidefinite, and symmetric positive
definite matrices, respectively, of dimension n. Iy denotes the identity matrix whose
dimension will be clear from the context. The soft thresholding operator soft,, and
the hard thresholding operator hard,, of parameter p € [0, +oo[ are given by

Sop e £ itlel >
(6) (V€ eR) soft,(§) =q&+p f&E<—p, hard,, (§) = {O )
. otherwise.
0 otherwise

2. Spectral Approach. In this section, we show that, in the particular case
when g1 = 0, Problem (1) reduces to the optimization of a function defined on R™.
Indeed, the problem then reads:

(7) mi(rjlérgjze f(C) — trace (TC) + ¢go(C),
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4 A. BENFENATI, E. CHOUZENOUX, AND J.—C. PESQUET

where the spectral forms of f and gy allow us to take advantage of the eigendecom-
positions of C and T in order to simplify the optimization problem, as stated below.

THEOREM 2.1. Let t € R™ be a vector of eigenvalues of T and let Ur € O,
be such that T = Ur Diag(t)U, . Let f and go be functions satisfying (4) and (5),
respectively, where ¢ and 1 are lower-semicontinuous functions. Assume that dom pN
dom v # @ and that the function d — ¢(d) —d "t +(d) is coercive. Then a solution
to Problem (7) exists, which is given by

(8) C = Uy Diag(d)Ur,
where d is any solution to the following problem.:

(9) minimize o(d) —d "t + ¥(d).
deR™

For the sake of clarity, before establishing this result, we recall two useful lemmas
from linear algebra.

LEMMA 2.2. [46, Chapter 9, Sec. H, p. 340] Let C € S,, and let d € D,, be a
vector of ordered eigenvalues of this matriz. Let T € S, and let t € D,, be a vector of
ordered eigenvalues of this matriz. The following inequality holds:

10 trace (CT Sd—rt.
(10) (CT)

In addition, the upper bound is reached if and only if T and C share the same eigen-
basis, i.e. there exists U € O, such that C = U Diag(d)U" and T = U Diag(t)UT.
The subsequent lemma is also known as the rearrangement inequality:

LEMMA 2.3. [34, Section 10.2, Theorem 368] Let a € D,, and b € D,,. Then, for
every permutation matriz P of dimension n X n,

(11) a'Pb<a'b.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Due to the assumptions made on f and gg, Problem (7)
can be reformulated as

. _ . T
qSunimize ¢(d) — trace (Uc Diag(d)UET) + 9(d).

According to the first claim in Lemma 2.2,

. _ . T . _qTT
dEDnl,%chOn ¢(d) — trace (Uc Diag(d)UET) + 9(d) > dleann o(d) —d ' t+(d),

where t € D,, is the vector of ordered eigenvalues of T = Ur Diag(f)ﬁ} with Up €
O,. In addition, the last claim in Lemma 2.2 allows us to conclude that the lower
bound is attained when Uc = Ur. This proves that

(12) duf f(C) — trace (TC) + 90(C) = Jnf p(d) - d't +y(d).

Let us now show that ordering the eigenvalues is unnecessary for our purposes. Let t €
R™ be a vector of non necessarily ordered eigenvalues of T. Then, T = Ur Diag(t)U.
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with Ur € O,, and there exists a permutation matrix Q such that t = Qt. For every
vector d € D,, and for every permutation matrix P of dimension n x n, we have then

(13) ¢(Pd) — (Pd) "t +¢(Pd) =p(Pd) — (Pd)" Qt + ¢(Pd)

p(d) — (Q'Pd) "t +¥(d)
>p(d) —d "t +9(d),

where the last inequality is a direct consequence of Lemma 2.3. In addition, the
equality is obviously reached if P = Q. Since every vector in R™ can be expressed as
permutation of a vector in D,,, we deduce that

(14) Jnf p(d) — d't +(d) = Jnf o(d) —d "t +(d).

Altogether, (12) and (14) lead to

inf o(d)—d"t+y(d).

(15) dnf f(C) —trace (TC) + go(C) = inf,

Since the function d — ¢(d) — d't + ¥(d) is proper, lower-semicontinuous, and
coercive, it follows from [56, Theorem 1.9] that there exists d € R"™ such that

(16) o(d) —d Tt +(d) = Jof o(d) - d"t +1(d).
In addition, it is easy to check that if C is given by (8) then
(17) J(€) = trace (TC) + o(€) = (d) — d Tt + ¥(d),

which yields the desired result. O

Before deriving a main consequence of this result, we need to recall some definitions
from convex analysis [55, Chapter 26] [5, Section 3.4]:

DEFINITION 2.4. Let H be a finite dimensional real Hilbert space with norm || - ||
and scalar product (-,-). Let h: H —] — 0o, +00] be a proper convex function.

o h is essentially smooth if h is differentiable on int(domh) # @ and
lim, 100 ||VA(z,)|| = +o00 for every sequence (xn)nen of int(domh) con-
verging to a point on the boundary of dom h.

e h is essentially strictly convex if h is strictly convex on every convexr subset
of the domain of its subdifferential.

e h is a Legendre function if it is both essentially smooth and essentially strictly
CONVEL.

o If h is differentiable on int(domh) # &, the h-Bregman divergence is the
function D" defined on H? as

(18)  (V(z,y) € H?)

Dh(x7y) _ {h(.’L‘) - h(y> - (Vh(y), xr — y> ify € il.flt(dom f)
oo otherwise.

o Assume that h is a lower-semicontinuous Legendre function and that ¢ is
a lower-semicontinuous convez function such that int(domh) N dom ¢ # &

This manuscript is for review purposes only.
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6 A. BENFENATI, E. CHOUZENOUX, AND J.-C. PESQUET

and either £ is bounded from below or h + (¢ is supercoercive. Then, the D"-
proximity operator of £ is

(19) prox?: int(dom h) — int(dom k) N dom £
y — argmin £(z) + D" (z,v).
T€EH

In this definition, when h = ||-||2/2, we recover the classical definition of the proximity
operator in [49], which is defined over H, for every function ¢ € I'y(H), and that will
be simply denoted by prox,.

We will also need the following result:

LEMMA 2.5. Let f be a function satisfying (4) where ¢: R™ —] — 0o, +00|. Let
C e S, and let d € R™ be a vector of eigenvalues of this matriz. The following hold:

(i) C € dom f if and only if d € dom p;

(ii) C € int(dom f) if and only if d € int(dom ).

Proof. (i) obviously holds since f is a spectral function.
Let us now prove (ii). If C € int(dom f), then d € dom . In addition, there exists
p €]0, 400 such that, for every C' € S,, if ||C' — C||r < p, then C’ € dom f. Let
Uc € O, be such that C = U Diag(d)Uf and let us choose C' = U Diag(d’)U{
with d’ € R™. Since C and C’ share the same eigenbasis,

(20) IC" = Cllp = [|d" - d||.

Hence, for any d’ € R™ such that ||d" — d|| < p, C’ € dom f, hence d’ € dom ¢. This
shows that d € int(dom ¢).

Conversely, let us assume that d = (d;)1<ign € int(dom ¢). Without loss of generality,
it can be assumed that d € D,,. There thus exists p €]0, +oo[ such that for every
d = (d;)lgign € D,, if

then d’ € dom ¢. Furthermore, let C’ be any matrix in S,, such that
(22) IC"=Clr<p

and let d' = (d})1<i<n € Dy be a vector of eigenvalues of C. It follows from Weyl’s
inequality [46] that

(23 (vie{l...n}) -l <|C-Cls<|C - Clr <p,

We deduce that d’ € dom¢ and, consequently C’ € dom f. This shows that C €

int(dom f). |
As an offspring of Theorem 2.1, we then get:

COROLLARY 2.6. Let f and go be functions satisfying (4) and (5), respectively,
where p € To(R™) is a Legendre function, 1 € T'o(R™), int(dom ¢) Ndom ) # &, and
either 1) is bounded from below or ¢ + 1 is supercoercive. Then, the DT -prozimity
operator of go is defined at every Y € S,, such that Y = Uy Diag(y)Uy with Uy €
O, andy € int(dom ¢), and it is expressed as

(24) proxgo (Y) = Uy Diag(prox;, (y))Uy.

This manuscript is for review purposes only.
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A PROXIMAL APPROACH FOR A CLASS OF MATRIX OPTIMIZATION PROBLEMS 7

Proof. According to the properties of spectral functions [38, Corollary 2.7],
(25) ¢ € Tg(R™) (resp. ¥ € To(R")) = f €To(Sn) (resp. go € I'o(Sn)).

In addition, according to [38, Corollaries 3.3&3.5], since ¢ is a Legendre function,
f is a Legendre function. It is also straightforward to check that, when 1 is lower
bounded, then gq is lower bounded and, when ¢ + 1 is supercoercive, then f + go
is supercoercive. It also follows from Lemma 2.5 that int(dom ) Ndomy # @ <
int(dom f) Ndom gy # .

The above results show that the D7-proximity operator of go is properly defined
as follows:

(26) proxgO . int(dom f) — int(dom f) N dom go

Y — argmin go(C) + D/(C,Y).
CcesS,

This implies that computing the D/-proximity operator of gy at Y € int(dom f)
amounts to finding the unique solution to Problem (7) where T = Vf(Y). Let Y =
Uy Diag(y)Uy with Uy € O, and y € R". By Lemma 2.5(ii), Y € int(dom f) <
y € int(dom(y)) and, according to [38, Corollary 3.3], T = Uy Diag(t)Uy, with
t = Vop(y).

Furthermore, as ¢ is essentially strictly convex, it follows from [4, Theorem 5.9(ii)]
that t = Vo(y) € int(dom f*), which according to [6, Theorem 14.17] is equivalent
to the fact that d — ¢(d) — d "t is coercive. So, if 1 is lower-bounded, d + ¢(d) —
dTt+1(d) is coercive. The same conclusion obviously holds if ¢ +1) is supercoercive.
This shows that the assumptions of Theorem 2.1 are met. Consequently, applying
this theorem yields

(27) prox! (Y) = Uy Diag(d)Uy,
where d minimizes

(28) d— o(d)—d "t +y(d)
or, equivalently,

(29) d— ¢(d) + D?(d,y).

This shows that d = prox; (y)- O

Remark 2.7. Corollary 2.6 extends known results concerning the case when f =
I - [[7/2 [16]. A rigorous derivation of the proximity operator of spectral functions
in T'y(S,) for the standard Frobenius metric can be found in [6, Corollary 24.65].
Our proof allows us to recover a similar result by adopting a more general approach.
In particular, it is worth noticing that Theorem 2.1 does not require any convexity
assumption.

3. Proximal Iterative Approach. Let us now turn to the more general case
of the resolution of Problem (1) when f € I'¢(S,) and ¢1 # 0. Proximal splitting
approaches for finding a minimizer of a sum of non-necessarily smooth functions have
attracted a large interest in the last years [24, 51, 37, 15]. In these methods, the
functions can be dealt with either via their gradient or their proximity operator de-
pending on their differentiability properties. In this section, we first list a number of

This manuscript is for review purposes only.
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8 A. BENFENATI, E. CHOUZENOUX, AND J.-C. PESQUET

proximity operators of scaled versions of f — trace (T -) 4 go, where f and g, satisfy-
ing (4) and (5), are chosen among several options that can be useful in a wide range
of practical scenarios. Based on these results, we then propose a proximal splitting
Douglas-Rachford algorithm to solve Problem (1).

3.1. Proximity Operators. By definition, computing the proximity operator
of v (f — trace (T -) + go) with v €]0,+o0[ at C € S,, amounts to find a minimizer of
the function

(30) Cr— f(C) —trace (TC) + go(C) + %HC - CJ|3

over §,. The (possibly empty) set of such minimizers is denoted by
ProxX.(f—trace(T )+g0)(C). As pointed out in Section 2, if f + gy € I'o(S,) then this
set is a singleton {prox.s_ace(t -)+go)(6)}' We have the following characterization
of this proximity operator:

PROPOSITION 3.1. Let vy €]0,+00[ and C € S,,. Let f and go be functions sat-
isfying (4) and (5), respectively, where ¢ € To(R™) and ¢ is a lower-semicontinuous
function such that domy Ndomvy # @. Let A € R” and U € O, be such that
C + 4T = UDiag(A)UT.

(i) If 1 is lower bounded by an affine function then Prox,(,4y) (A) # @ and, for

every X € Prox, (p44) (A),

(31) UDiag(X)UT € Proxv(f_tmce(rr.)+go)(6).

(ii) If v is converz, then

(32) PTOX.,(f— trace(T -)+40) (C) = U Diag (proxy(ip_w) (A))UT.

Proof. (i): Since it has been assumed that f and go are spectral functions, we
have

(33) (VC € 8n) f(C)+90(C) = p(d) +¢(d),

where d € R" is a vector of the eigenvalues of C. It can be noticed that minimizing
(30) is obviously equivalent to minimize f —~y~!trace ((C + 'yT) -) + go where f =
f+1-1%/(2y). Then

(34) F(C) = ¢(d),

where @ = p+||-||?/(27). Since we have assumed that ¢ € T'o(R"), @ is proper, lower-
semicontinuous, and strongly convex. As 1 is lower bounded by an affine function, it
follows that

(35) d— 3(d) =y IATd + ¥(d)

is lower bounded by a strongly convex function and it is thus coercive. In addition,
dom ¢ = dom ¢, hence dom ¢ Ndom ¢ # . Let us now apply Theorem 2.1. Let A be
a minimizer of (35). It can be claimed that C = U Diag(A\)U is a minimizer of (30).
On the other hand, minimizing (35) is equivalent to minimize v(¢ + ¥) + 5| - =A||?,

which shows that X € Prox(oq4) (A)-

This manuscript is for review purposes only.
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(ii): If ¢p € To(R™), then it is lower bounded by an affine function [6, Theo-
rem 9.20]. Furthermore, ¢ 4+ 1 € I'o(R™) and the proximity operator of v (¢ + ) is
thus single valued. On the other hand, we also have « (f — trace (T ) + go) € T'o(Sy)
[38, Corollary 2.7], and the proximity operator of this function is single valued too.
The result directly follows from (i). 0

We will next focus on the use of Proposition 3.1 for three choices for f, namely the
classical squared Frobenius norm, the minus log det functional, and the Von Neumann
entropy, each choice being coupled with various possible choices for gg.

3.1.1. Squared Frobenius Norm. A suitable choice in Problem (1) is f =
|- I2/2 [72, 54, 19]. The squared Froebenius norm is the spectral function associated
with the function ¢ = || - ||?/2. It is worth mentioning that this choice for f allows us
to rewrite the original Problem (1) under the form (3), where

(36) (M(C.Y)esl) DI(CY)=|c-YI;

We have thus re-expressed Problem (1) as the determination of a proximal point of
function g at T in the Frobenius metric.

Table 1 presents several examples of spectral functions gy and the expression of the
proximity operator of (¢ + ¢) with v €]0, +oco[. These expressions were established
by using the properties of proximity operators of functions defined on R™ (see [20,
Example 4.4] and [24, Tables 10.1 and 10.2]).

Remark 3.2. Another option for gg is to choose it equal to | - ||s where p €
10, +o0[. For every v €]0, +o00[, we have then

n A
(37) (VA e R") PIOX.,(ppy) (A) = PIOX e 1, ., (M) ,
where || - ||+00 is the infinity norm of R™. By noticing that || - ||+~ is the conjugate

function of the indicator function of By, the unit ¢! ball centered at 0 of R”, and
using Moreau’s decomposition formula, [6, Proposition 24.8(ix)] yields

n 1 . A
(38)  (VAERY)  proxy ey () = 77 <>\ — wyprojp,, <m)> :

The required projection onto By can be computed through efficient algorithms [61,
25].

3.1.2. Logdet Function. Another popular choice for f is the negative logarith-
mic determinant function [30, 58, 44, 48, 3, 31, 67, 18], which is defined as follows

—logdet(C) ifCeSHt
+00 otherwise.

(39) (VCeS,) f(C)= {

The above function satisfies property (5) with

oA =14 ilog()\i) if A €]0, +o0[™

+00 otherwise.

(40) (VA = ()\i)lgign S Rn)

This manuscript is for review purposes only.
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TABLE 1
Prozimity operators of ’y(% |- 12+ go) with v > 0 evaluated at symmetric matriz with vector of
eigenvalues A = (X\;j)1<ign. For the inverse Schatten penalty, the function is set to +oco when the
argument C is not positive definite. 1 denotes the set of matrices in Sy with Frobenius norm less
than or equal to a and E the set of matrices in Sy, with eigenvalues between o and B. In the last
line, the i-th component of the proximity operator is obtained by searching among the nonnegative
roots of a third order polynomial those minimizing X — %(A; —|\i])? +'y(%()\;)2 +plog((X)2+e)).

90(C), p >0 ‘ proxw,(ww)()\)

Nuclear norm . (e )
UR1(C) (bOft#% ("YH >1g7:gn

Frobenius norm
ullClle (1 - ﬁ) 155 if [|Al > yu and 0 otherwise
Squared Frobenius norm A
1| CIE T+~ (1+2p)
Schatten 3-penalty 1 ( iom (A 3 )
S i 1 12 )\l L —y—1

JRI(C) (Gy)™" (sign (N) v (v + 12 +12ibyp =y = 1)

Schatten 4-penalty
R / s / N CRE b
URA(C) (Byu) =/ <\/)‘z AN \/)\i — A+ C) with ¢ = (;77/4,

1<i<n

Schatten 4/3-penalty
L </\1+ o (VAT n- \/\/)\27+)\))

)3 1<i<n
uR4/3(C) with ¢ = ?;g((;ii)
Schatten 3/2-penalty . 16(1+ ;
a2 (N + slgn()\)(l— 1+ 7|/\ |)>
NRgg(C) 1+ ( (1+’) 1<ig<n
Schatten p—penalty (sign()\i)di) L<i<n
WRE(C),p=1 with (Vi € {1,...,n}) d; > 0 and pypd®™ " + (v + 1)d; = \;
Inverse Schatten p—penalty (d,) I<i<n
pRE(C™Y), p>0 with (Vi € {1,...,n}) d; > 0 and (v + 1)d?*> — \,d?t' = pyp
Bound on the Frobenius norm A A .
a———if ||| > a(l + ) and otherwise, a € [0, +00
15,(C) p A ety ed Ol
Bounds on eigenvalues (min(max(A; /(v + 1), @), 8)) 1 <icn» [ 8] C [—00, +00]
¢, (C) SIS
Rank <h‘1rd ( Ai >>
prank(C) ) 2 \1+7 1<i<n
Cauchy € {(sign(Xi)di)1<i<n | (Vi € {1,...,n}) d; >0 and
plogdet(C? +¢ly), e >0 (v+ Dd? — |N|d? + (2yp +e(y + 1)d; = [Nile}

Actually, for a given positive definite matrix, the value of function (39) simply reduces
to the Burg entropy of its eigenvalues. Hereagain, if Y € S and T = - Y~

can rewrite Problem (1) under the form (3), so that it becomes equivalent to the
computation of the proximity operator of g with respect to the Bregman divergence

given by
et(Y)

d
1 [ S
(41) (vCeS,) DI(C,Y)= Og(det(C)
400 otherwise.

) +trace (Y™'C) —n ifCeSi

In Table 2, we list some particular choices for go, and provide the associated
closed form expression of the proximity operator prox, . for v €]0, +-00[, where ¢
is defined in (40). These expressions were derived from [24, Table 10.2].
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A PROXIMAL APPROACH FOR A CLASS OF MATRIX OPTIMIZATION PROBLEMS 11

Remark 3.3. Let gy be any of the convex spectral functions listed in Table 2. Let
W be an invertible matrix in R"*", and let C € S,, From the above results, one can
deduce the minimizer of C +— v(f(C) + go(WCWT)) + L|[WCWT — C|% where
v €]0, +00[. Indeed, by making a change of variable and by using basic properties of
the log det function, this minimizer is equal to W1 proxv(ergD)(é) (W-HT,

TABLE 2
Prozimity operators of v(f + go) with v > 0 and f given by (39), evaluated at a symmetric
matric with vector of eigenvalues A = (A\;)1<ign- For the inverse Schatten penalty, the function
is set to +0o0 when the argument C is not positive definite. Eo denotes the set of matrices in Sy
with eigenvalues between o and 3. In the last line, the i-th component of the proximity operator
is obtained by searching among the positive roots of a fourth order polynomial those minimizing
L 2 = X0)2 +y(plog((M])? +e) —log \)).

90(0)7 > 0 ‘ proxy((p«‘»d;) (A)
Nuclear norm 1
s (A — Ai —yp)? +4
JR,(C) 3 ( =Y (i —yp)? + v)lggn
Squared Frobenius norm 1 9
— (N AZ +4y(2 1
ulC D) VA e D)
Schatten p—penalty (di>1 <i<n
pRE(C), p =1 with (Vi € {1,...,n}) d; > 0 and pypd? + d? — Nid; =~
Inverse Schatten p—penalty (d )1 <i<n
HRE(C™1), p>0 with (¥i € {1,...,n}) di >0 and d*% — A, — 7d? = pyp
Bounds on eigenvalues . 1(y. )
15 (C) <m1n<max (2 (N + VA2 +4y), a>76)>1gign’ (e, B] C [0, +o0)
Cauchy € { Jici<n | (Vi€ {1,...,n})d; >0 and
plogdet(C? +¢ely), e > 0 )\d3 (5 + 'y(2u — 1))d12 —ehid; = ’76}

3.1.3. Von Neumann Entropy. Our third example is the negative Von Neu-
mann entropy, which appears to be useful in some quantum mechanics problems [10].
It is defined as

(42) (VCeS,) f(C)=

trace (Clog(C)) if Ce S,

400 otherwise.
In the above expression, if C = UDiag(A)UT with A = (\;)1<i<n €]0,+00[" and
U € O,, then log(C) = UDiag ((log )\i)lgign)UT. The logarithm of a symmetric
definite positive matrix is uniquely defined and the function C — Clog(C) can be
extended by continuity on S, similarly to the case when n = 1. Thus, f is the spectral
function associated with

Ailog(A;) if X € [0, +o0[™

(43) (V)\ = (/\i)1<i§n € Rn) Z

+00 otherwise.

Note that the Von Neumann entropy defined for symmetric matrices is simply equal
to the well-known Shannon entropy [27] of the input eigenvalues. With this choice

for function f, by setting T = log(Y) + Iq where Y € S ", Problem (1) can be
recast under the form (3), so that it becomes equivalent to the computation of the

This manuscript is for review purposes only.



12 A. BENFENATI, E. CHOUZENOUX, AND J.-C. PESQUET

proximity operator of g with respect to the Bregman divergence associated with the
Von Neumann entropy:

(vCeS,) D/(CY)=

trace (Clog(C) — Ylog(Y) — (log(Y) +14) (C-Y)) ifCeS,
400 otherwise.

We provide in Table 3 a list of closed form expressions of the proximity operator
of v(f 4 go) for several choices of the spectral function go.

TABLE 3
Prozimity operators of v(f+go) withy > 0 and f given by (42), evaluated at a symmetric matriz
with vector of eigenvalues A = (X\;)i<i<n- F2 denotes the set of matrices in Sp with eigenvalues
between a and B. W(-) denotes the W-Lambert function [26].

90(C), >0 | DProx. (1) (A)
Nuclear norm ( 1 A
Wy --1)
uR1(C) 7 P P T 1<i<n
Squared Frobenius norm v ( (2W+1 (/\, )))
s (W (2 e (A 1
ulCI3 21 P 1<icn
Schatten p-penalty (di), <i<n
pPRE(C), p =1 with (Vi € {1,...,n}) d; > 0 and ppuyd® ™" +d; + ylogd; +~v = \;
pounds LCZ (%?)envalues (min (max (’YW(% P <A7 B 1)),a> ’ﬁ))lgz‘gn’ [ 8] € 0, o]
Rank (di)lgign with
Pi if pPi > X _
x=vVr(r+2n) =,
prank(C) (Vie{l,...,n}) di=q0orp; if p;=yx and ( | ) N
. pi =W (*eXp (7’—1»
0 otherwise v v

3.2. Douglas-Rachford Algorithm. We now propose a Douglas-Rachford
(DR) approach ([41, 24, 23]) for numerically solving Problem (1). The DR method
minimizes the sum of f — trace (T-) + go and g; by alternately computing proxim-
ity operators of each of these functions. Proposition 3.1 allows us to calculate the
proximity operator of v(f — trace (T-) 4+ go) with v €]0, +00[, by possibly using the
expressions listed in Tables 1, 2, and 3. Since g1 is not a spectral function, prox.,,
has to be derived from other expressions of proximity operators. For instance, if g1 is
a separable sum of functions of its elements, e.g. g = || - ||1, standard expressions for
the proximity operator of vector functions can be employed [20, 24].

The computations to be performed are summarized in Algorithm 1. We state a
convergence theorem in the matrix framework, which is an offspring of existing results
in arbitrary Hilbert spaces (see, for example, [24] and [52, Proposition 3.5]).

THEOREM 3.4. Let [ and go be functions satisfying (4) and (5), respectively,
where ¢ € To(R™) andp € To(R™). Let g1 € T'o(Sy,) be such that f—trace (T-)+go+9g1
is coercive. Assume that the intersection of the relative interiors of the domains of f+
go and g1 is non empty. Let (a®));5q be a sequence in [0,2] such that 3,20 a®) (2 —
o)) = 00, Then, the sequences (C*+2))50 and (prox.,, (2Ck+z) — C(k)))k>o
generated by Algorithm 1 converge to a solution to Problem (1) where g = go + ¢1-

1See also http://proximity-operator.net.
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Algorithm 1 Douglas-Rachford Algorithm for solving Problem (1)
1: Let T be a given matrix in S,,, set v > 0 and C(? € S,,.
2: for k=0,1,... do
3. Diagonalize C*) 4 4T, ie. find U® € 0, and A*) € R" such that

C® 44T = UF Diag(AF)(U®)T

dk+2) e Proxy(p4y) (A(k))

C+32) = UF Diag(d*k+2))(Uk)T

Choose a(®) € [0,2]

CHD € C®) 4 al®) ((Prox,, (2CH+H - c®) — D),
end for

We have restricted the above convergence analysis to the convex case. Note however
that recent convergence results for the DR algorithm in a non-convex setting are
available in [1, 39] for specific choices of the involved functionals.

3.3. Positive Semi-Definite Constraint. Instead of solving Problem (1), one
may be interested in:

(44) minimize f(C) — trace (CT) + ¢g(C),
Ces;t

when dom f N'domg ¢ S;. This problem can be recast as minimizing over S,
f —trace (‘T) 4 go + g1 where go = go + Ls+- We are thus coming back to the original
formulation where gy has been substituted for gg. In order to solve this problem with
the proposed proximal approach, a useful result is stated below.

PROPOSITION 3.5. Let v €]0,+o00[ and C € S,,. Let f and go be functions satis-
fying (4) and (5), respectively, where ¢ € To(R™) and ¢ € To(R™). Assume that

(45) (VA" = (XDi<i<n €R™) (X)) +9(X) = Zpi(/\;)

where, for everyi € {1,...,n}, pi: R =] —00,+00] is such that dom p; N[0, +oo[# @.
Let A= (\)i<i<n € R™ and U € O,, be such that C + T = UDiag(A)U". Then

(46) PTOX, (£ trace(T ) +50) (C) = U Diag (( max(0, proxm()‘i)))1<i<n) U’

Proof. Expression (46) readily follows from Proposition 3.1(ii) and [21, Proposi-
tion 2.2]. O

4. Application to Covariance Matrix Estimation. Estimating the covari-
ance matrix of a random vector is a key problem in statistics, signal processing over
graphs, and machine learning. Nonetheless, in existing optimization techniques, little
attention is usually paid to the presence of noise corrupting the available observations.
We show in this section how the results obtained in the previous sections can be used
to tackle this problem in various contexts.

This manuscript is for review purposes only.
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4.1. Model and Proposed Approaches. Let S € S, be a sample estimate of
a covariance matrix 3 which is assumed to be decomposed as

(47) S=Y"+0%y

where o € [0,400[ and Y* € S;7 may have a low-rank structure. Our objective in
this section will be to propose variational methods to provide an estimate of Y* from
S by assuming that ¢ is known. Such a problem arises when considering the following
observation model [59]:

(48) (Vie{l,...,N}) xO = As® 4 e

where A € R™*™ with m < n and, for every i € {1,...,N}, s() € R™ and e(¥ € R"
are realizations of mutually independent identically distributed Gaussian multivalued
random variables with zero mean and covariance matrices P € S;* and o214, re-
spectively. This model has been employed for instance in [60, 63] in the context of
the “Relevant Vector Machine problem”. The covariance matrix 3 of the noisy input

data (x(i))1<i<N takes the form (47) with Y* = APAT. On the other hand, a simple

estimate of X from the observed data (X(i))1<i<N is
1 N . AN T
(49) S = v Zx(z) (x®) "
i=1

Covariance-based model. A first estimate Y of Y* is given by

~ 1
(50) Y = argmin Z||Y = S+ o’la[[ + go(Y) + 01(Y),
YestH

where S is the empirical covariance matrix, go satisfies (5) with ¢ € T'o(R"), ¢1 €
T'o(Sy), and the intersection of the relative interiors of the domains of gy and g; is
assumed to be non empty. A particular instance of this model with ¢ = 0, g9 =
woR1, g1 = pll - |1, and (po, p1) € [0, +00[? was investigated in [72] and [54] for
estimating sparse low-rank covariance matrices. In the latter reference, an application
to real data processing arising from protein interaction and social network analysis
is presented. Ome can observe that Problem (50) takes the form (44) by setting
f=12]-]# and T = S —0?1q. This allows us to solve (50) with Algorithm 1. Since it
is assumed that go satisfies (5), the proximity step on f 4+ go + ¢ si can be performed
by employing Proposition 3.5 and formulas from Table 1. The resulting Douglas—
Rachford procedure can thus be viewed as an alternative to the methods developed
in [54] and [72]. Let us emphasize that these two algorithms were devised to solve an
instance of (50) corresponding to the aforementioned specific choices for gy and ¢,
while our approach leaves more freedom in the choice of the regularization functions.

Precision-based model. An alternative strategy consists of focusing on the esti-
mation of the inverse of the covariance matrix, i.e. the precision matrix C* = (Y*)~!
by assuming that Y* € S/ but may have very small eigenvalues in order to model
a possible low-rank structure. Tackling the problem from this viewpoint leads us to
propose the following penalized negative log-likelihood cost function:

(51) (VCeSn)  F(C) = f(C) +Ts(C) + 90(C) + 9:1(C)
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where

(52) (VC € S,)

logdet (C™ +0%1q) if Ce St
f(C) = .
400 otherwise,

trace ( (I + 02C)~ ' CS) ifCeSF
(( ;

400 otherwise,

(3)  (Ces) 7g<c>:{

go € To(S,) satisfies (5) with ¢ € To(R™), and g1 € T'o(S,). Typical choices of
interest for the latter two functions are

/1,0721(071) if C e S,J{+
400 otherwise,

(54) (VCeSn)  9(C) = {

and g1 = i - |1 with (uo,p1) € [0,4+0c[2. The first function serves to promote

a desired low-rank property by penalizing small eigenvalues of the precision matrix,
whereas the second one enforces the sparsity of this matrix as it is usual in graph
inference problems. This constitutes a main difference with respect to the covariance-
based model which is more suitable to estimate sparse covariance matrices. Note that
the standard Graphical Lasso framework [31] is then recovered by setting o = 0 and
1o = 0. The advantage of our formulation is that it allows us to consider more flexible
variational models while accounting for the presence of noise corrupting the observed
data. The main difficulty however is that Algorithm 1 cannot be directly applied to
minimize F. In Subsection 4.2, we will study in more details the properties of the
cost function. This will allow us to derive a novel optimization algorithm making use
of our previously developed Douglas-Rachford scheme for its inner steps

4.2. Study of Objective Function F. The following lemma will reveal useful
in our subsequent analysis.

LEMMA 4.1. Let o €]0,+o00|. Let h: 0,07 %[— R be a twice differentiable function
and let

A
The composition h o u is convex on |0, +oo[ if and only if
(56) (Vv €]0,672[) h(v)(1 —o%v) — 202h(v) > 0,

where h (resp. h) denotes the first (resp. second) derivative of h.

Proof. The result directly follows from the calculation of the second-order deriva-
tive of h o u. 0

Let us now note that f is a spectral function fulfilling (4) with

eR")  p(A) = _;bg (u(As)) it A €]0,+oo

400 otherwise,

(57) (VA = (M)1<in

where v is defined by (55). According to Lemma 4.1 (with h = —log), f € T'o(Sy).
Thus, the assumptions made on gy and g1, allow us to deduce that f + gy + g1 is
convex and lower-semicontinuous on S,,.

Let us now focus on the properties of the second term in (51).

This manuscript is for review purposes only.
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LEMMA 4.2. Let S € S;F. The function Ts in (53) is concave on S, .

Proof. By using differential calculus rules in [45], we will show that the Hessian
of =75 evaluated at any matrix in S+ is a positive semidefinite operator. In order
to lighten our notation, for every invertible matrix C, let us define M = C~! + ¢214.
Then, the first-order differential of 7g at every C € S+ is

dtrace (Ts(C)) = trace ((dM™') S)
= trace (—M~'(dM)M'S)
— trace ((C7' +0%10) 'S (C71 +0%1) €@ C)CT)
(58) = trace ((Ila +0%C) ™' 8 (I + 0°C) ' (dC)).

We have used the expression of the differential of the inverse [45, Chapter 8, Theo-
rem 3] and the invariance of the trace with respect to cyclic permutations. It follows
from (58) that the gradient of Tg reads

(59) (VC e SHt) VTs(C) = (Is+0C) ' S (I +0°C) .

In order to calculate the Hessian ) of Tg, we calculate the differential of V7g. Again,
in order to simplify our notation, for every matrix C, we define

(60) N=I4+0°C = dN=s%dC.
The differential of V7g at every C € S;F" then reads

dvect (VTs(C)) = vect (A(N"'SN™1))
= vect (AN"")SN~' + N~'(dSN™1))
= —vect(N"'(dN)N"'SN™) — vect (N"'SN~'(dN)N)

=~ (N'sNT) T @ N veet(dN) = (N71) T @ NTISNT!) vect (dN)

=—((NT'SN"H@N"'+N '@ (N'SN"))dvect(N)
= H(C) dvect(C)

with

61)  H(C)=—0 (VTs (C)® (la+0°C) " + (la+0°C) ' @ VTs (C)) .

To derive the above expression, we have used the facts that, for every A € R"*™ X €
R™*P and B € RP*?, vect (AXB) = (B—r ® A) vect X [45, Chapter 2,Theorem 2]
and that matrices N and S are symmetric.

Let us now check that, for every C € S+, H(C) is negative semidefinite. It
follows from expression (59), the symmetry of C, and the positive semidefiniteness of
S that V7s(C) belongs to S;F. Since

(VTs(C)@ (Ila+02C) ) = (VTs(C) @ ((la+0%C) )"
—VTs (C)® (Ig +0C) ",

V7s(C) ® (La —|—02C)_1 is symmetric. Let us denote by (vi)i<i<n € [0,+o00["
the eigenvalues of V7g (C) and by ((;)i<ic<n € [0,+00[" those of of C. Accord-
ing to [45, Chapter 2, Theorem 1], the eigenvalues of V7s (C) @ (Iq + 020)71 are
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(vi/ A+ %)), o, i<n and they are therefore nonnegative. This allows us to claim

that V7s (C) ® (Ia + 020)_1 belongs to S,. For similar reasons, (Iq + 02(3)_1 ®
VTs(C) € 8327 which allows us to conclude that —$(C) € SIQ. Hence, we have
proved that 7s is concave on S;F*. By continuity of Tg relative to S, the concavity
property extends on S 0

As a last worth mentioning property, Tg is bounded on S . So, if dom f N dom gg N
dom gy # @ and f + go + g1 is coercive, then there exists a minimizer of F. Because
of the form of f, the coercivity condition is satisfied if gy + g7 is lower bounded and

1imC€S+ IC]|—=+00 gO(C) + gl(C) = +o00.

n

4.3. Minimization Algorithm for F. In order to find a minimizer of F, we
propose a Majorize-Minimize (MM) approach, following the ideas in [22, 59, 35, 36].
At each iteration of an MM algorithm, one constructs a tangent function that ma-
jorizes the given cost function and is equal to it at the current iterate. The next iterate
is obtained by minimizing this tangent majorant function, resulting in a sequence of
iterates that reduces the cost function value monotonically. According to the results
stated in the previous section, our objective function reads as a difference of convex
terms. We propose to build a majorizing approximation of function 7g at C’' € S;+
by exploiting Lemma 4.2 and the classical concavity inequality on 7Tg :

(62) (VC € S) Ts(C) < Ts (C) + trace (VTs(C') (C — C")).

As f is finite only on ST, a tangent majorant of the cost function (51) at C’ reads:
(VC €S, G(C|C)=f(C)+Ts(C)+trace(VTs(C') (C - C')) +90(C) +g1(C).
This leads to the general MM scheme:

(63) (V£ eN) CU e Argmin f(C) + trace (V7s(C)C) + go(C) + ¢1(C)
CES7L

with C(©) € SF+. At each iteration of the MM algorithm, we have then to solve
a convex optimization problem of the form (1). In the case when g; = 0, we can
employ the procedure described in Section 2 to perform this task in a direct manner.
The presence of a regularization term g; # 0 usually prevents us to have an explicit
solution to the inner minimization problem involved in the MM procedure. We then
propose in Algorithm 2 to resort to the Douglas—Rachford approach in Section 3 to
solve it iteratively.
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Algorithm 2 MM algorithm with DR inner steps

1: Let S € S, be the data matrix. Let ¢ be as in (57), let ¢ € T'o(R™) be associated
with go. Let (v¢)een be a sequence in |0, +o00[. Set c0.0) — ¢ ¢ St

2: for /=0,1,... do

3: fork=0,1,... do

4: Compute UK € O, and A% € R™ such that

.
ClR _ v Ts(COY) = UEH Diag(AER) (U(M)>

Lk+3) i

5o A0 = prox ) ()

6. Clbh+E) — gk Diag (d(“”%)) (U’

7 if Convergence of MM sub-iteration is reached then
8: cl+) — gk+3)

9: C(lJrl,O) _ C(@,k)

10: exit inner loop

11: end if

12: Choose ag i €]0, 2]

13: Clr+D) = CR) 1y, (plroxwg1 (20(‘3»’”%) - C“v’”) - C(M+%)>
14:  end for

15: end for

A convergence result is next stated, which is inspired from [64] (itself relying on
[69, p. 6]), but does not require the differentiability of go + g1.

THEOREM 4.3. Let (C¥))y50 be a sequence generated by (63). Assume that
dom f Ndom gy Ndom gy # &, f + go + g1 is coercive, and E = {C € S,, | F(C) <
F(CONY is a subset of the relative interior of dom go N dom g1. Then, the following
properties hold: R

(i) (]—'(C(Z)))DO is a decaying sequence converging to F € R.

(ii) (C¥)ys0 has a cluster point.

(iii) Every cluster point C of (C*))ys¢ is such that F(C) = F and it is a critical

point of F, i.e. =V f(C)—VTs(C) € d(go + g1)(C).

Proof. First note that (C“))@O is properly defined by (63) since, for every C €
St G(- | C) is a coercive lower-semicontinuous function. It indeed majorizes F
which is coercive, since f + go + g1 has been assumed coercive.

(i): As a known property of MM strategies, (F(C(f)))bo is a decaying sequence [36].
Under our assumptions, we have already seen that F “has a minimizer. We deduce
that (F(C®)) 40 is lower bounded, hence convergent.

(ii): Since (F(C")),.,
lower-semicontinuous, and coercive, E is a nonempty compact set and (C®) ¢>0 ad-

mits a cluster point in E.
(iii): If C is a cluster point of (C*));>0, then there exists a subsequence (C*));>q

is a decaying sequence, (V¢ > 0) C¥) € E. Since F is proper,

converging to C. Since E is a nonempty subset of the relative interior of dom gg N
dom gy and go+g1 € T0(Sn), go+ g1 is continuous relative to E [6, Corollary 8.41]. As
f+7Ts is continuous on dom f Ndom Tg = ST, F is continuous relative to E. Hence,
F= limy,_s 4 o0 F(CER)) = }"(6) On the other hand, by similar arguments applied to
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sequence (CUs+1)), 5o there exists a subsequence (C*a*1)) <4 converging to some

~

C’ € E such that F = F(C'). In addition, thanks to (63), we have

(64) (VC € S,)(Yg e N) G(ClatD) | ClPra)) < G(C | CUra)).

By continuity of f and V7g on S/ and by continuity of go + g1 relative to E,
(65) (VCeS,) G(C'|C)<g(C]|O).

Let us now suppose that C is not a critical point of F. Since the subdifferential of
G(- | C)at Cis Vf(C)+ VTs(C) + 9(g0 + g1)(C) [6, Corollary 16.48(ii)], the null
matrix does not belong to this subdifferential, which means that C is not a minimizer
of G(- | C) [6, Theorem 16.3]. It follows from (65) and standard MM properties that
F(C') < G(C'| C) < G(C | C) = F(C). The resulting strict inequality contradicts
the already established fact that F(C') = F(C). O

5. Numerical Experiments. This section presents some numerical tests illus-
trating the validity of the proposed algorithms. More specifically, in Subsection 5.1 the
Douglas—Rachford (DR) approach of Section 3 is compared with other state—of-the—
art algorithms previously mentioned, namely Incremental Proximal Descent (IPD)
[54] and ADMM [72], on a problem of covariance matrix estimation. In Subsec-
tion 5.2, we present an application of the MM approach from Section 4 to a graphical
lasso problem in the presence of noisy data. All the experiments were conducted on
a MacBook Pro equipped with an Intel Core i7 at 2.2 GHz, 16 Gb of RAM (DDR3
1600 MHz), and Matlab R2015b.

5.1. Application to Sparse Covariance Matrix Estimation. We first con-
sider the application of the DR algorithm from Section 3 to the sparse covariance
matrix estimation problem introduced in [54]. The objective is to retrieve an estimate
of a low rank covariance matrix Y* € ;7 from N noisy realizations (X(i))lgig yofa
Gaussian multivalued random vector with zero mean and covariance matrix Y* 4021y,
with o > 0. As we have shown in Subsection 4.1, a solution to this problem can be
obtained by solving the penalized least-squares problem (50), where S is the empirical
covariance matrix defined in (49), and the regularization terms are go = poR; and
g1 = p|l-]|1. We propose to compare the performance of the DR approach from Sub-
section 3.2, with the IPD algorithm [54] and the ADMM procedure [72], for solving
this convex optimization problem.

The synthetic data are generated using a procedure similar to the one in [54].
A block-diagonal covariance matrix Y* is considered, composed with r blocks with
dimensions (r;j)i1gj<r, so that n = Z;Zl rj. The j-th diagonal block of Y* reads as
a product aja;r, where the components of a; € R™ are randomly drawn on [—1,1].
The number of observations N is equal to n and ¢ = 0.1. The three algorithms
are initialized with S 4 I4, and stopped as soon as a relative decrease criterion on
the objective function is met, i.e. when |Fjy1 — Fi|/|Fi| < €, € > 0 being a given
tolerance and Fj, denoting the objective function value at iteration k. The maximum
number of iterations is set to 2000. The penalty parameters p; and po are chosen
in order to get a reliable estimation of the original covariance matrix. The gradient
stepsize for IPD is set to k=%, In Algorithm 1, ay is set to 1.5. In ADMM, the initial
Lagrange multiplier is set to a matrix with all entries equal to one, and the parameter
of the proximal step is set to 1.

Figure 1 illustrates the quality of the recovered covariance matrices when setting
e = 10719, Three different indicators for estimation quality are provided, namely
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Fic. 1. Original matriz and reconstruction results for DR, ADMM and IPD algorithms, for
n =100 (top) and n = 300 (bottom).

the true positive rate (tpr), i.e. the correctly recognized non—zero entries, the false
positive rate (£pr), i.e. the entries erroneously added to the support of the matrix,
and the relative mean square error (rmse), computed as || Yyec — Y*||2/|Y*||%, with
Y ... the recovered matrix. Note that the two first measurements are employed when
the main interest lies in the recovery of the matrix support. A visual inspection shows
that the three methods provide similar results in terms of matrix support estimation.
Moreover, the reconstruction error as well as the values of fpr and tpr slightly differ.

TABLE 4
Comparison in terms of convergence speed between DR, ADMM and IPD procedures. The
enlighten times refers to the shortest ones.

n =100, pg = 0.2, g = 0.1,r = 5 H n = 300, ug = 0.01, uy = 0.12

{r;} = {14, 36, 18, 10, 22}

J r =10, {r;} = {39, 46,27,42,39,19, 14,4, 21,49}

| DR | ADMM | IPD || DR | ADMM | IPD
e | Time(iter) | Time(iter) | Time(iter) || Time(iter) | Time(iter) | Time(iter)
1075 | 0.03 (23) | 0.02 (17) | 0.18 (167) || 0.14 (17) | 0.11 (14) | 1.34 (170)
1077 | 0.03 (27) | 0.02 (21) | 0.58 (533) || 0.32 (38) | 0.34 (42) | 4.35 (548)
10°% | 0.03 (30) | 0.04 (34) | 1.83 (685) || 0.81 (95) | 0.91 (115) | 13.72(1748)
1079 | 0.06 (56) | 0.06 (54) | 2.16(2000) || 1.79 (211) | 2.06 (258) | 15.70 (2000)
107 | 0.07 (59) | 0.07 (58) | 2.16(2000) | 5.23 (620) | 5.45 (686) | 15.68 (2000)

Table 4 presents the comparative performance of the algorithms in terms of com-
putation time (in second) and iteration number (averaged on 20 noise realizations),
for two scenarios corresponding to distinct problem sizes and block distributions. It
can be observed that the behaviors of ADMM and DR are similar, while IPD requires
more iterations and time to reach the same precision. Furthermore, the latter fails
to reach a high precision in the allowed maximum number of iterations, for both
examples.

5.2. Application to Robust Graphical Lasso. Let us now illustrate the
applicability of the MM approach presented in Subsection 4.3 to the problem of
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precision matrix estimation introduced in (51). The test datasets have been gener-
ated by using the code available at http://stanford.edu/boyd/papers/admm/covsel/
covsel_example.html. A sparse precision matrix C* of dimension n X n is randomly
created, where the number of non—zero entries is chosen as a proportion p €0, 1[ of
the total number n?. Then, N realizations (x(i))lgig ~ of a Gaussian multivalued
random variable with zero mean and covariance Y* = (C*)~! are generated. Gaus-
sian noise with zero mean and covariance 024, o > 0, is finally added to the x()’s,
so that the covariance matrix 3 associated with the input data reads as in (47) with
A = 14. As explained in Subsection 4.1, the estimation of C* can be performed by
using the MM algorithm from Subsection 4.3 based on the minimization of the non-
convex cost (51) with regularization functions g; = 1| - |1, p1 > 0, and (VC € S,/ 1)
90(C) = poR1 (C™Y), po > 0. The computation of PIOX, (44 With v €]0, 4-00[ re-
lated to this particular choice for gy and function ¢ given by (57) and (55) leads to
the search of the only positive root of a polynomial of degree 4.

A synthetic dataset of size n = 100 is created, where matrix C* has 20 off-
diagonal non-zero entries (i.e., p = 1072) and the corresponding covariance matrix
has condition number 0.125. N = 1000 realizations are used to compute the empirical
covariance matrix S. In our MM algorithm, the inner stopping criterion (line 7 in
Algorithm 2) is based on the relative difference of majorant function values with a
tolerance of 107'0, while the outer cycle is stopped when the relative difference of
the objective function values falls below 1078, The DR algorithm is used to solve the
inner subproblems, by using parameters (V€) v, = 1, (Vk) agr = 1 (see Algorithm 2,
lines 4-13). The allowed maximum inner (resp. outer) iteration number is 2000 (resp.
20). The quality of the results is quantified in terms of £pr on the precision matrix and
rmse with respect to the true covariance matrix. The parameters p; and pg are set in
order to obtain the best reconstruction in terms of rmse. For eight values of the noise
standard deviation o, Figure 2 illustrates the reconstruction quality (averaged on 20
noise realizations) obtained with our method, as well as two other approaches that
do not take into account the noise in their formulation, namely the classical GLASSO
approach from [12], which amounts to solve (1) with f = —logdet, g = u1|l - |1,
and the DR approach described in Section 3, in the formulation given by (1) with
f = —logdet, (VC € §) g(C) = noR1 (C™') + p1||Cll1. For the DR approach,
PIOX, (44 With 7 €]0, +oo[ is given by the fourth line of Table 2 (when p = 1).

L L L L L L L L L L L L L L
0.1 0.2 03 0.4 05 06 07 0.8 0.1 02 03 0.4 05 06 0.7 0.8
Noise level & Noise level o

(a) Behaviour of rmse wrt o. (b) Behaviour of fpr wrt o.

Fia. 2. Estimation results for different noise levels in terms of rmse (left) and fpr (right) for
MM, GLASSO and DR approaches.
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As expected, as the noise variance increases the reconstruction quality deterio-
rates. The GLASSO procedure is strongly impacted by the presence of noise, whereas
the MM approach achieves better results, also when compared with DR algorithm.
Moreover, the MM algorithm significantly outperforms both other methods in terms
of support reconstruction, revealing itself very robust with respect to an increasing
level of noise.

6. Conclusions. In this work, various proximal tools have been introduced to
deal with optimization problems involving real symmetric matrices. We have focused
on the variational framework (1) which is closely related to the computation of a
proximity operator with respect to a Bregman divergence. It has been assumed that
fin (3) is a convex spectral function, and g reads as go + g1, where g is a spectral
function. We have given a fully spectral solution in Section 2 when g; = 0, and,
in particular, Corollary 2.6 could be useful for developing algorithms involving prox-
imity operators in other metrics than the Frobenius one. When g; # 0, a proximal
iterative approach has been presented, which is grounded on the use of the Douglas—
Rachford procedure. As illustrated by the tables of proximity operators provided
for a wide range of choices for f and gg, the main advantage of the proposed algo-
rithm is its great flexibility. The proposed framework also has allowed us to propose
a nonconvex formulation of the precision matrix estimation problem arising in the
context of noisy graphical lasso. The nonconvexity of the obtained objective function
has been cirmcumvented through a Majorization—-Minimization approach, each step
of which consists of solving a convex problem by a Douglas-Rachford sub-iteration.
Comparisons with state—of-the—art solutions have demonstrated the robustness of the
proposed method. It is worth mentioning that all the results presented in this paper
can be easily extended to complex Hermitian matrices.
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