N. Hamzé, I. Peterlík, S. Cotin, and C. Essert, Preoperative trajectory planning for percutaneous procedures in deformable environments, Computerized Medical Imaging and Graphics, vol.47, pp.16-28, 2016.
DOI : 10.1016/j.compmedimag.2015.10.002

I. Elgezua, Y. Kobayashi, and M. Fujie, Survey on Current State-of-the-Art in Needle Insertion Robots: Open Challenges for Application in Real Surgery, Procedia CIRP, vol.5, 2013.
DOI : 10.1016/j.procir.2013.01.019

S. Breit, J. Schulz, and A. Benabid, Deep brain stimulation, Cell and Tissue Research, vol.64, issue.1, pp.275-288, 2004.
DOI : 10.1212/WNL.56.4.548

E. Calabrese, Diffusion Tractography in Deep Brain Stimulation Surgery: A Review, Frontiers in Neuroanatomy, vol.97, p.45, 2016.
DOI : 10.3171/jns.2002.97.3.0568

A. Bilger, J. Dequidt, C. Duriez, and S. Cotin, Biomechanical Simulation of Electrode Migration for Deep Brain Stimulation, pp.339-346, 2011.
DOI : 10.1109/TBME.2010.2099733

URL : https://hal.archives-ouvertes.fr/hal-00685737

N. Hamz, A. Bilger, C. Duriez, S. Cotin, and C. Essert, Anticipation of brain shift in Deep Brain Stimulation automatic planning, 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.3635-3638, 2015.
DOI : 10.1109/EMBC.2015.7319180

S. Piasecki and J. Jefferson, Psychiatric Complications of Deep Brain Stimulation for Parkinson???s Disease, The Journal of Clinical Psychiatry, vol.65, issue.6, pp.845-849, 2004.
DOI : 10.4088/JCP.v65n0617

A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson, Physically Based Deformable Models in Computer Graphics, Computer Graphics Forum, vol.25, issue.1, pp.809-836, 2006.
DOI : 10.1145/1015706.1015733

Y. Wang, A. Jacobson, J. Barbi?, and L. Kavan, Linear subspace design for real-time shape deformation, ACM Transactions on Graphics, vol.34, issue.4, p.57, 2015.
DOI : 10.1145/545261.545283

H. Courtecuisse, J. Allard, P. Kerfriden, S. Bordas, S. Cotin et al., Real-time simulation of contact and cutting of heterogeneous soft-tissues, Medical Image Analysis, vol.18, issue.2, pp.394-410, 2014.
DOI : 10.1016/j.media.2013.11.001

URL : https://hal.archives-ouvertes.fr/hal-01097108

T. Rabczuk and T. Belytschko, Adaptivity for structured meshfree particle methods in 2D and 3D, International Journal for Numerical Methods in Engineering, vol.116, issue.11, pp.1559-1582, 2005.
DOI : 10.1007/BF02995904

N. Nguyen-thanh, J. Muthu, X. Zhuang, and T. Rabczuk, An adaptive three-dimensional RHT-splines formulation in linear elasto-statics and elasto-dynamics, Computational Mechanics, vol.91, issue.5, pp.369-38510, 2014.
DOI : 10.1002/nme.4282

N. Nguyen-thanh, K. Zhou, X. Zhuang, P. Areias, H. Nguyen-xuan et al., Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling, Computer Methods in Applied Mechanics and Engineering, vol.316, pp.1157-1178, 2017.
DOI : 10.1016/j.cma.2016.12.002

C. Anitescu, M. Hossain, and T. Rabczuk, Recovery-based error estimation and adaptivity using high-order splines over hierarchical T-meshes, Computer Methods in Applied Mechanics and Engineering, vol.328, pp.638-662, 2018.
DOI : 10.1016/j.cma.2017.08.032

X. Wu, M. Downes, T. Goktekin, and F. Tendick, Adaptive Nonlinear Finite Elements for Deformable Body Simulation Using Dynamic Progressive Meshes, Computer Graphics Forum, vol.20, issue.3, pp.349-358, 2001.
DOI : 10.1111/1467-8659.00527

L. Mihai, L. Chin, P. Janmey, and A. Goriely, A comparison of hyperelastic constitutive models applicable to brain and fat tissues, Journal of The Royal Society Interface, vol.55, issue.110, 2015.
DOI : 10.1007/s001610050055

N. Abolhassani, R. Patel, and M. Moallem, Needle insertion into soft tissue: A survey, Medical Engineering & Physics, vol.29, issue.4, pp.413-431, 2007.
DOI : 10.1016/j.medengphy.2006.07.003

M. Mahvash and P. Dupont, Fast needle insertion to minimize tissue deformation and damage, 2009 IEEE International Conference on Robotics and Automation, pp.2761-2766, 2009.
DOI : 10.1109/ROBOT.2009.5152617

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051196/pdf

E. Dehghan, X. Wen, R. Zahiri-azar, M. Marchal, and S. Salcudean, Needle-tissue interaction modeling using ultrasound-based motion estimation: Phantom study, Computer Aided Surgery, vol.29, issue.5, pp.265-280, 2008.
DOI : 10.1007/978-3-540-25968-8_3

URL : http://www.tandfonline.com/doi/pdf/10.3109/10929080802383173?needAccess=true

M. Heverly, P. Dupont, and J. Triedman, Trajectory Optimization for Dynamic Needle Insertion, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.1646-1651, 2005.
DOI : 10.1109/ROBOT.2005.1570349

R. Alterovitz, K. Goldberg, and A. Okamura, Planning for Steerable Bevel-tip Needle Insertion Through 2D Soft Tissue with Obstacles, Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp.1652-1657, 2005.
DOI : 10.1109/ROBOT.2005.1570348

R. Webster, J. Kim, N. Cowan, G. Chirikjian, and A. Okamura, Nonholonomic modeling of needle steering, International Journal of Robotics Research, vol.5, issue.6, pp.509-525, 2006.

S. Misra, K. Reed, B. Schafer, R. K. Okamura, and A. , Mechanics of Flexible Needles Robotically Steered through Soft Tissue, The International Journal of Robotics Research, vol.1, issue.13, pp.1640-1660, 2010.
DOI : 10.1109/TBME.2008.2005959

L. Tang, Y. Chen, and X. He, Compliant Needle Modeling and Steerable Insertion Simulation, Computer-Aided Design and Applications, vol.2, issue.3, pp.39-46, 2008.
DOI : 10.1243/0954411971534467

C. Duriez, C. Guébert, M. Marchal, S. Cotin, and L. Grisoni, Interactive Simulation of Flexible Needle Insertions Based on Constraint Models, Lecture Notes in Computer Science, vol.5762, pp.291-299, 2009.
DOI : 10.1007/978-3-642-04271-3_36

URL : https://hal.archives-ouvertes.fr/inria-00540334

S. Dimaio and S. Salcudean, Needle insertion modeling and simulation, IEEE Transactions on Robotics and Automation, vol.19, issue.5, pp.864-875, 2003.
DOI : 10.1109/TRA.2003.817044

J. Hing, A. Brooks, and J. Desai, Reality-based needle insertion simulation for haptic feedback in prostate brachytherapy, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., pp.619-62410, 2006.
DOI : 10.1109/ROBOT.2006.1641779

S. Jiang, N. Hata, and R. Kikinis, Needle Insertion Simulation for Image-Guided Brachytherapy of Prostate Cancer, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering, pp.1682-1685, 2008.
DOI : 10.1109/ICBBE.2008.749

D. Watkins, Fundamentals of Matrix Computations, 2005.
DOI : 10.1002/0471249718

O. Zienkiewicz and J. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement, Computer Methods in Applied Mechanics and Engineering, vol.101, issue.1-3, pp.207-224, 1992.
DOI : 10.1016/0045-7825(92)90023-D

C. Carstensen and S. Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM, Mathematics of Computation, vol.71, issue.239, pp.945-969, 2002.
DOI : 10.1090/S0025-5718-02-01402-3

S. Bartels and C. Carstensen, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM, Mathematics of Computation, vol.71, issue.239, pp.971-994, 2002.
DOI : 10.1090/S0025-5718-02-01412-6

S. Bordas, M. Duflot, and P. Le, A simple error estimator for extended finite elements, Communications in Numerical Methods in Engineering, vol.67, issue.9-12, pp.961-971, 2008.
DOI : 10.1090/S0025-5718-1981-0616367-1

O. Zienkiewicz and R. Taylor, The Finite Element Method: Solid mechanics. Referex collection.Mecánica y materiales, 2000.

G. Liu and S. Quek, Chapter 3 -Fundamentals for Finite Element Method. The Finite Element Method, pp.43-79

H. Bui, S. Tomar, H. Courtecuisse, S. Cotin, and S. Bordas, Real-time Error Control for Surgical Simulation, IEEE Transactions on Biomedical Engineering, issue.99, pp.1-1, 2017.
DOI : 10.1109/TBME.2017.2695587

URL : https://hal.archives-ouvertes.fr/hal-01571194

D. Baraff and A. Witkin, Large steps in cloth simulation, Proceedings of the 25th annual conference on Computer graphics and interactive techniques , SIGGRAPH '98, pp.43-54, 1998.
DOI : 10.1145/280814.280821

C. Felippa and B. Haugen, A unified formulation of small-strain corotational finite elements: I. Theory, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.21-24, pp.2285-2335, 2005.
DOI : 10.1016/j.cma.2004.07.035

H. Nguyen-xuan, T. Rabczuk, N. Nguyen-thanh, T. Nguyen-thoi, and S. Bordas, A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner???Mindlin plates, Computational Mechanics, vol.48, issue.9, pp.679-70110, 2010.
DOI : 10.1016/j.cma.2008.05.029

C. Lee, L. Mihai, J. Hale, P. Kerfriden, and S. Bordas, Strain smoothing for compressible and nearly-incompressible finite elasticity, Computers & Structures, vol.182, pp.540-555, 2017.
DOI : 10.1016/j.compstruc.2016.05.004

URL : https://doi.org/10.1016/j.compstruc.2016.05.004

A. Mendizabal, B. Duparc, R. Bui, H. Paulus, C. Peterlik et al., Face-based smoothed finite element method for real-time simulation of soft tissue, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01444595

A. Pinelli, I. Naqavi, U. Piomelli, and J. Favier, Immersed Boundary Method for Generalised Finite Volume and Finite Difference Navier-Stokes Solvers, ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 1, Symposia ??? Parts A, B, and C, pp.9073-9091, 2010.
DOI : 10.1115/FEDSM-ICNMM2010-30529

T. Belytschko, C. Parimi, N. Mos, N. Sukumar, and S. Usui, Structured extended finite element methods for solids defined by implicit surfaces, International Journal for Numerical Methods in Engineering, vol.78, issue.1-2, pp.609-635, 2003.
DOI : 10.1016/0045-7825(89)90130-8

URL : http://dilbert.engr.ucdavis.edu/~suku/xfem/papers/xfem_structured.pdf

E. Burman, C. S. Hansbo, P. Larson, M. Massing, and A. , CutFEM: Discretizing geometry and partial differential equations, International Journal for Numerical Methods in Engineering, vol.128, issue.1, pp.472-501, 2015.
DOI : 10.1007/978-3-642-28589-9_7

URL : http://onlinelibrary.wiley.com/doi/10.1002/nme.4823/pdf

O. Zienkiewicz, R. Taylor, and J. Zhu, The finite element method: Its basis and fundamentals, 2013.

V. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, Meshless methods: A review and computer implementation aspects, Mathematics and Computers in Simulation, vol.79, issue.3, pp.763-813, 2008.
DOI : 10.1016/j.matcom.2008.01.003

URL : http://orbilu.uni.lu/bitstream/10993/13726/1/phu-meshless.pdf

M. Griebel and M. Schweitzer, Meshfree Methods for Partial Differential Equations, 2003.

N. Grosland, R. Bafna, and V. Magnotta, Automated hexahedral meshing of anatomic structures using deformable registration, Computer Methods in Biomechanics and Biomedical Engineering, vol.26, issue.1, pp.35-43, 2009.
DOI : 10.1016/S0895-6111(02)00011-3

A. Wittek, K. Miller, R. Kikinis, and S. Warfield, Patient-specific model of brain deformation: Application to medical image registration, Journal of Biomechanics, vol.40, issue.4, 2007.
DOI : 10.1016/j.jbiomech.2006.02.021

A. Wittek, R. Kikinis, S. Warfield, and K. Miller, Brain Shift Computation Using a Fully Nonlinear Biomechanical Model, pp.583-59010, 2005.
DOI : 10.1007/11566489_72

G. Joldes, A. Wittek, and K. Miller, Computation of intra-operative brain shift using dynamic relaxation, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.41-44, pp.3313-3320, 2009.
DOI : 10.1016/j.cma.2009.06.012

J. Dequidt, E. Coevoet, L. Thins, and C. Duriez, Vascular Neurosurgery Simulation with Bimanual Haptic Feedback Workshop on Virtual Reality Interaction and Physical Simulation, The Eurographics Association, 2015.

K. Sase, A. Fukuhara, T. Tsujita, and A. Konno, GPU-accelerated surgery simulation for opening a brain fissure, ROBOMECH Journal, vol.4, issue.1, 2015.
DOI : 10.15676/ijeei.2012.4.1.2

F. Morin, H. Courtecuisse, I. Reinertsen, F. Lann, O. Palombi et al., Brain-shift compensation using intraoperative ultrasound and constraint-based biomechanical simulation, Medical Image Analysis, vol.40, pp.133-153, 2017.
DOI : 10.1016/j.media.2017.06.003

URL : https://hal.archives-ouvertes.fr/hal-01560157

P. Hauseux, J. Hale, and S. Bordas, Accelerating Monte Carlo estimation with derivatives of high-level finite element models, Computer Methods in Applied Mechanics and Engineering, vol.318, 2017.
DOI : 10.1016/j.cma.2017.01.041