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Abstract. We establish the Level-1 and Level-3 Large Deviation Principle (LDP) for invariant measures on
shift spaces over finite alphabets under very general decoupling conditions for which the thermodynamic
formalism does not apply. Such decoupling conditions arise naturally in multifractal analysis, in Gibbs states
with hard-core interactions, and in the statistics of repeated quantum measurement processes. We also prove
the LDP for the entropy production of pairs of such measures and derive the related Fluctuation Relation.
The proofs are based on Ruelle–Lanford functions, and the exposition is essentially self-contained.
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1 Introduction

This work concerns the Large Deviation Principle (LDP) for a class of invariant probability measures
on shift spaces over finite alphabets. We prove:

1. The LDP for averages of continuous random variables (Level-1 LDP).

2. The LDP for empirical measures (Level-3 LDP).

3. The LDP for the entropy production of pairs of probability measures (Fluctuation Theorem)
together with the corresponding symmetry (Fluctuation Relation).

The class of invariant probability measures we shall consider are characterized by certain decoupling
properties that are described in Section 2.2. The nature and generality of these decoupling assump-
tions exclude the application of the thermodynamic formalism as in, for example, [16, 33, 22, 11, 8].
The technical route that proved effective is based on Ruelle–Lanford functions.

In this paper, we mean by Fluctuation Theorem (FT) the LDP for the entropy production observable,
and Fluctuation Relation (FR) refers to the Gallavotti–Cohen symmetry (1.2) satisfied by the rate
function governing the FT. The FT will be established for general pairs of measures (subject to
decoupling assumptions), whereas the FR further requires the two measures to be related by some
form of involution (including, but not limited to, time reversal; see Definition 2.5).

We now discuss how our results fit in the existing literature, with special emphasis on Part 3 above,
which is the original motivation for this work and its most novel part. No knowledge of the works
cited in this introduction is required to understand our results and their proofs, as our exposition is
essentially self-contained starting from Section 2.

Part 3 extends and complements the results of [3] in the spirit of the recent work [8], and the reader
may benefit from reading introductions of [3, 8] in parallel with this one. Both works [3, 8] concern
the FT and FR in the context of dynamical systems (M,ϕ), where M is a compact metric space
and ϕ : M → M a continuous map. However, the scope, details of the setting, the assumptions,
and the technical aspects of the two works are quite different, and we start by describing them
separately.

In [3] the metric space M was taken to be AN, where A is a finite alphabet and ϕ is the left
shift map. A ϕ-invariant probability measure P of interest arises through a repeated quantum
measurement process generated by a quantum instrument on a finite-dimensional Hilbert space (we
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recall the precise setup in Example 2.26). The time-reversed instrument and measurement process
yield another probability measure P̂, and the object of study is the entropic distinguishability of
the pair (P, P̂) that quantifies the emergence of the arrow of time in the repeated measurement
process. Denoting by Pt and P̂t the marginals of these measures on the first t coordinates of AN,
the entropic distinguishability is quantified by the sequence of entropy production observables

σt = log
dPt
dP̂t

, t ∈ N.

The statement of the FT is the LDP for the sequence of random variables (t−1σt)t≥1 with respect
to the measure P. The main application of the FT concerns hypothesis testing of the pairs (Pt, P̂t)
as t→∞. The corresponding error exponents (Stein, Chernoff, Hoeffding) quantify the emergence
of the arrow of time. The proofs in [3] follow a strategy that goes back to [25] and are centered
around the so-called entropic pressure defined by

e(α) = lim
t→∞

1

t
log

[∫
e−ασtdPt

]
, α ∈ R. (1.1)

If the limit exists, and is finite and differentiable for all α ∈ R, then the FT follows from the
Gärtner–Ellis theorem, with a rate function I that satisfies the FR

I(−s) = I(s) + s, s ∈ R. (1.2)

The difficulty with this strategy is that the measures P and P̂ that arise through repeated quantum
measurement processes often do not satisfy the usual Gibbsian-type conditions that allow the
application of the thermodynamic formalism and ensure the existence and regularity of the entropic
pressure defined in (1.1). In this case the Gibbsian-type conditions are naturally replaced by a
decoupling condition motivated by [15, Proposition 2.8], which is generalized in Section 2.2 below
under the name selective lower decoupling. Under those decoupling conditions the measures P and
P̂ can exhibit a very singular behavior from the thermodynamic formalism point of view. In [3] a
restricted form of selective symmetric decoupling (see Section 2.2) has been employed to develop a
subadditive thermodynamic formalism that leads to the proof of the existence and finiteness of the
limit (1.1) for α ∈ [0, 1] and the differentiability of e on (0, 1). That sufficed for the proof of the
local LDP on the interval J = (e′(0+), e′(1−)) (via the local Gärtner–Ellis theorem), the validity
of (1.2) for s ∈ J, and the development of hypothesis testing. It was however clear that this route
cannot be used for the proof of the global LDP and FT since the assumptions of [3] allowed, for
example, for situations where e(α) = +∞ for α 6∈ [0, 1] and |e′(0+)| = |e′(1−)| < ∞; see the
rotational instruments in [2].

The work [8] concerned the FT and FR for general dynamical systems (M,ϕ) with a compact
metric space M and a continuous map ϕ, under minimal chaoticity assumptions (expansiveness
and specification). The proof of the FT bypassed the use of the Gärtner–Ellis theorem, hence
lifting the regularity requirement on the entropic pressure e. Instead, a Level-3 LDP for empirical
measures is established following a strategy that goes back to [16, 33] and has been used in a similar
context in [11]. The key steps of the proof are based on application of the Shannon–McMillan–
Breiman/Katok–Brin theorem in the ergodic setting and an entropic approximation argument. After
that, a fluctuation relation for the rate function governing the Level-3 LDP is obtained,1 and a
contraction argument yields the Level-1 LDP and the familiar FR and FT. This route has proved to
be very robust and allowed for the proof of the FR and FT in circumstances that were previously
unreachable: in phase transition regime, for discontinuous entropy production observables, and in

1We also obtain this Level-3 fluctuation relation in (2.19), although in the present paper the usual FR (for the entropy
production observable) is not derived from it.
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the asymptotically additive thermodynamic formalism setting. However, in spite of their generality,
the assumptions of [8] did not cover the decoupling conditions of [3]. An obvious question is
whether the results of [8] could be extended to the setting of [3] with possibly an alternative
technical approach. One of the goals of this work is to achieve that.

We shall work with pairs of invariant probability measures (P, P̂) on M = AN which are more
general than those considered in [3], and not necessarily related to each other by time reversal. We
shall establish LDPs and FRs that in particular extend those of [8] to the setting of [3].

The derivation of the LDPs in this work is very different from the one in [8]. Here we use the
method of Ruelle–Lanford (RL) functions that goes back to [38, 24].2 The method was then used
in [1], and further developed in [27, 28, 26, 34]; see also [30]. The main ideas of the method
are also exposed in [9, Section 4.1.2], although the terminology Ruelle–Lanford does not appear
there. The method of RL functions provides a unified approach to the Level-1, Level-3, and entropy
production LDPs, and no application of the contraction principle is needed (in other words, the
different levels are independent, although their respective proofs have common threads).3 We are
not aware of any previous use of RL functions in the study of entropy production. After that, the
FR is proved under the assumption that P and P̂ are related by a suitable involution. It should be
added that our application of the RL function method is specific to M = AN (with straightforward
extensions to M = ANd and M = AZd), and at the moment the method does not extend to the
general setting of [8].

The paper is organized as follows. In Section 2 we describe our general setting, state our assumptions
and our main results, and discuss several examples. For reasons of space, the detailed discussion of
examples related to quantum measurement processes is postponed to [2], which is a continuation of
[3] and this work. The general construction leading to the proof of our main results together with a
presentation of the method of RL functions is given in Section 3. The proofs of the main results are
presented in Sections 4, 5, and 6. In the appendix we describe further applications (in particular to
weak Gibbs measures, which do not fit directly into our assumptions) and develop a prototypical
example of hidden Markov chain where the present method applies but not those of [8] and [3].

We finish with the following general remark. The RL functions method turned out to be surprisingly
effective for our purposes. Although this method is both very powerful and natural, it appears to
be a lesser used route to LDPs. Even in the cases where the respective LDPs are well known, this
approach gives a new perspective on the results and their proofs. The assumptions under which
the method is used here are different from the ones existing in the literature, and we hope that the
essentially self-contained presentation given in this paper will facilitate its future applications.
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2 Preliminaries and main results

2.1 Setup and notation

Let A be a finite set and let4 Ω = AN be the set of sequences ω = (ωj)j∈N whose elements belong
to A. We denote by ϕ : Ω→ Ω the left shift defined by ϕ(ω)j = ωj+1 for j ∈ N. We write also
Ωt = AJ1,tK, with J1, tK = [1, t] ∩ N, and call w = (w1, . . . , wt) ∈ Ωt a word of length |w| = t.
Given a sequence ω ∈ Ω and two integers m ≤ n, we set ω[m,n] = (ωm, . . . , ωn), and similarly for
w ∈ Ωt if m ≤ n ≤ t. The set of words of finite length is denoted by Ωfin =

⋃
t∈N0

Ωt, with the
convention that Ω0 = {κ}, where κ is the “empty word” (|κ| = 0). Given u, v ∈ Ωfin, uv ∈ Ωfin

denotes the natural concatenation of u and v, which satisfies |uv| = |u|+ |v|. For the empty word
κ and any w ∈ Ωfin, wκ = κw = w.

The set Ω is endowed with the product topology and the corresponding Borel σ-algebra F . We
denote by C(Ω) the usual Banach space of real-valued continuous functions on Ω. The set P(Ω) of
Borel probability measures on Ω is endowed with the weak topology.5 We shall write Q for generic
elements of P(Ω) and use the symbol P for the probability measure that will be fixed throughout.
Q ∈ P(Ω) is ϕ-invariant, or invariant for short, whenever Q ◦ ϕ−1 = Q. We denote by Pϕ(Ω) the
set of invariant elements of P(Ω). For Q ∈ P(Ω) and f ∈ L1(Q) we write

〈f,Q〉 =

∫
fdQ.

Given a word w ∈ Ωt with t ∈ N, we introduce the cylinder set Cw = {ω ∈ Ω : ω[1,t] = w}. We
adopt the convention that Cκ = Ω for the empty word κ, and we denote by (Ft)t∈N0 the filtration
generated by the cylinder sets.6

For any Q ∈ P(Ω) and any t ∈ N, Qt denotes the restriction of Q to Ft, which we identify with a
function on Ωt in the natural way:

Qt(w) = Q(Cw) =: Q(w), w ∈ Ωt,

where the expression Q(w) is used by a slight abuse of notation. Consistently with the convention
that Cκ = Ω, we have Q(κ) = Q0(κ) = 1.

Throughout the paper, we fix an invariant probability measure P ∈ Pϕ(Ω), which will be subject to
some assumptions below. We write

Ω+ = suppP = {ω ∈ Ω : P(ω[1,t]) > 0 for all t ∈ N} (2.1)

and notice that Ω+ is a subshift, i.e., a closed subset of Ω satisfying ϕ(Ω+) = Ω+. For t ∈ N, let
Ω+
t = {w ∈ Ωt : Pt(w) > 0} and set Ω+

fin =
⋃
t∈N0

Ω+
t = {w ∈ Ωfin : P(w) > 0}. The set Ω+

fin

is a language7 in the sense that for each w ∈ Ω+
fin the following holds: (1) each subword of w is

also in Ω+
fin and (2) there exist non-empty words u, v such that uwv ∈ Ω+

fin.

Finally, we use throughout the conventions that log 0 = −∞, and 0 log 0 = 0.
4We adopt the convention that N = {1, 2, 3, . . .} and N0 = N ∪ {0}.
5This topology is metrizable and P(Ω) is a compact metric space.
6Notice that Ft is the finite algebra generated by the elements of {Cw : w ∈ Ωt}.
7See for example [29]. The notions of subshift and language are not crucial in our study; they will only be used to

discuss how (weak) Gibbs measures on subshifts fit into our assumptions (see Example 2.21 and Appendix A.3).
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2.2 Assumptions

We now introduce a set of decoupling assumptions on P (which are not in force throughout). Without
further saying, we shall always assume that the sequences (τt)t∈N ⊂ N0 and (ct)t∈N ⊂ [0,∞)
which appear in these assumptions satisfy

lim
t→∞

ct
t

= lim
t→∞

τt
t

= 0,

which we write as of now ct = o(t) and τt = o(t).

The assumption that will play the central role in our work is

Selective Lower Decoupling (SLD). For all t ∈ N, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1, there
exists ξ ∈ Ωfin, |ξ| ≤ τt, such that

P(uξv) ≥ e−ctP(u)P(v). (2.2)

(Note that we take |ξ| ≤ τt and not |ξ| = τt; this is crucial).

In order to refine some of the results (see Theorem 2.13), we will sometimes also assume

Upper Decoupling (UD). For all t ∈ N, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1,

sup
ξ∈Ωτt

P(uξv) ≤ ectP(u
)
P(v
)
.

Some of our results involve a pair of measures (P, P̂), where P is as above, and P̂ ∈ Pϕ(Ω) is
another invariant probability measure. When we consider a pair (P, P̂), we always assume the
following absolute continuity condition:

Pt � P̂t for all t ∈ N. (2.3)

Interesting cases include when P̂ is the uniform measure8 on Ω, and when P̂ is obtained from some
transformation of P (see Definition 2.5). This leads to our final assumption that concerns the pair
(P, P̂):

Selective Symmetric Decoupling (SSD). For all t ∈ N, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1,
there exists ξ ∈ Ωfin, |ξ| ≤ τt, such that for both P] = P and P] = P̂ we have

e−ctP](u)P](v) ≤ P](uξv) ≤ ectP](u)P](v). (2.4)

(Note that this is the same ξ for both P and P̂).

Remark 2.1. The same sequences (ct)t∈N and (τt)t∈N are used in the different conditions above.
This results in no loss of generality. This is obvious for ct, while for τt the argument is slightly
more involved. It is immediate that for (SLD) and (SSD), τt can always be replaced by some
τ ′t ≥ τt. The same is true of (UD), since we have for all ξ ∈ Ωτ ′t

that ξ = ξ′b for some ξ′ ∈ Ωτt

and b ∈ Ωfin, and then

P(uξv) = P(uξ′bv) ≤ ectP(u)P(bv) ≤ ectP(u)P(v).

Remark 2.2. (SLD) is implied by the seemingly weaker condition that∑
ξ∈Ωfin : |ξ|≤τt

P(uξv) ≥ e−c
′
tP(u)P(v)

8That is, P̂t(w) = |Ωt|−1 for w ∈ Ωt.
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for some c′t = o(t). In this case (2.2) is easily shown to hold9 with ct = c′t+log(
∑τt

i=0 |A|i) = o(t).
Similarly, (UD) implies the seemingly stronger assumption that∑

ξ∈Ωτt

P(uξv) ≤ ec
′
tP(u)P(v)

if we choose c′t = ct + log(|A|τt) = o(t).

Remark 2.3. Unless τt ≡ 0, (SSD) does not imply (UD), since the upper bound in (2.4) has to be
satisfied only for the “selected” ξ. (SSD) does, however, imply (SLD) for both P and P̂, with the
additional information that we can choose the same ξ for both P and P̂. On the other hand, in order
to have (SSD), it is enough to have (UD) for both P and P̂ as well as (SLD) for both P and P̂ with
the same ξ (in general ct and τt have to be increased, see Lemma A.1).

Remark 2.4. The measure P is not assumed to be ergodic. One can show, however, that it is
ergodic if, for example, (SLD) holds with supt τt <∞ and supt ct <∞ (see Lemma A.2).

One special case of interest is when P̂ is related to P by a transformation defined as follows.

Definition 2.5. For each t ∈ N, let θt : Ωt → Ωt be an involution. Assume that the sequence
Θ = (θt)t∈N is such that one of the following holds for some involution u : A → A:

1. θt(w1, w2, . . . , wt) = (u(w1), u(w2), . . . , u(wt)) for each t ∈ N, w ∈ Ωt;

2. θt(w1, w2, . . . , wt) = (u(wt), u(wt−1), . . . , u(w1)) for each t ∈ N, w ∈ Ωt.

For each Q ∈ Pϕ(Ω), we denote by ΘQ the invariant measure on Ω obtained by extending the
family10 of marginals ((ΘQ)t)t∈N, where (ΘQ)t = Qt ◦ θt.

We shall see below that when P̂ = ΘP for some Θ as above, the FT rate function satisfies the
celebrated Fluctuation Relation [13, 14, 19, 18, 17].

Remark 2.6. By the absolute continuity assumption (2.3), in order for the choice P̂ = ΘP to be
allowed, Θ and P must be so that Pt � (ΘP)t for all t ∈ N. Since θt is an involution (and hence
a bijection), the support of Pt and that of (ΘP)t (as subsets of Ωt) have the same cardinality, and
hence P̂ = ΘP implies that Pt and P̂t are equivalent for all t.

We finish with several comments on the relation between the decoupling assumptions described in
this section and those to be found in the literature.

• Our decoupling assumptions are related to those in [34, Definition 3.2] (restricted to one-
sided shift spaces). In view of Remark 2.1, the upper decoupling assumption is the same. Our
(SLD) condition is weaker than the lower decoupling condition in [34], as we allow |ξ| ≤ τt
instead of |ξ| = τt. This weaker condition covers some important classes of measures (see
the examples below), which are not covered by any result in the literature, as far as we are
aware. The Ruelle–Lanford estimates, which are done in the spirit of [34], are noticeably
complicated by the fact that we allow |ξ| ≤ τt in the (SLD) condition.

• The main feature of our (SLD) assumption, i.e., allowing |ξ| ≤ τt, is reminiscent of some
variants of the specification property for subshifts of Ω, which allow for similar “flexibility”
(see for example [36, 37, 40, 35]). Specification properties are conditions on the structure
of the subshift (viewed as a metric space in itself), not on measures defined on it. We shall
discuss Gibbs states and (weak) Gibbs measures whose supports satisfy such “flexible” forms
of specification property in Examples 2.21, 2.23 and in Appendix A.3.

9We use that for any finite set A,
∑
x∈A f(x) ≤ |A|maxx∈A f(x).

10One easily shows that both conditions imply that
∑
a∈AQt+1◦θt+1(wa) =

∑
a∈AQt+1◦θt+1(aw) = Qt◦θt(w),

which, by Kolmogorov’s extension theorem, guarantees that such an invariant extension exists.
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• A property similar to (SLD) (with τt and ct independent of t) was observed to hold for some
products of matrices in [15, Proposition 2.8], and some parts of our construction are similar
to [15]. See Example 2.25 below.

• To the best of our knowledge, the only assumptions similar to (SSD) to be found in the
literature are in [3], with ct and τt not allowed to depend on t (see Assumptions (C) and (D)
therein, and Example 2.26 below).

2.3 Main results

We endow Rd with the Euclidian structure and denote by |·| and (·, ·) the corresponding norm and
inner product. Given a function f : Ω→ Rd, we write ‖f‖ = supω∈Ω |f(ω)| and introduce

Stf(ω) =
t−1∑
s=0

f(ϕs(ω)), t ∈ N.

Let us recall that in the standard LDP terminology, a rate function is always assumed to be lower
semicontinuous, while a good rate function has, in addition, compact level sets. The next result
follows from Propositions 4.2 and 4.3 below.

Theorem 2.7 (Level-1 LDP). Assume (SLD) and let f ∈ C(Ω,Rd).

1. For all α ∈ Rd, the limit

qf (α) := lim
t→∞

1

t
log
〈

e(α,Stf),P
〉

exists, is finite, and the mapping α 7→ qf (α) is convex and ‖f‖-Lipschitz.

2. The sequence of random variables (1
tStf)t∈N satisfies the LDP with a good convex rate

function If , in the sense that for every open set O ⊂ Rd and every closed set Γ ⊂ Rd,

lim inf
t→∞

1

t
logP

(
1

t
Stf ∈ O

)
≥ − inf

x∈O
If (x), (2.5)

lim sup
t→∞

1

t
logP

(
1

t
Stf ∈ Γ

)
≤ − inf

x∈Γ
If (x). (2.6)

Moreover, If is the Fenchel–Legendre transform q∗f of qf , i.e.,

If (x) = q∗f (x) = sup
α∈Rd

((α, x)− qf (α)), x ∈ Rd.

We define the entropy production observable over the time interval J1, tK by

σt = log
dPt
dP̂t

, (2.7)

which is Ft-measurable and well defined Pt-almost surely since Pt � P̂t. The next result follows
from Propositions 5.1 and 5.2.

Theorem 2.8 (LDP for entropy production). Assume (SSD).
1. For all α ∈ R, the limit11

q(α) := lim
t→∞

1

t
log 〈eασt ,P〉 (2.8)

11Note that the sign of α in (2.8) is different from that in (1.1). See Remark 2.9.
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exists and defines a closed proper convex function12 on R taking its values in (−∞,∞]. In
particular q(0) = 0 and q(−1) ≤ 0, so that q is non-positive (and hence finite) on [−1, 0].

2. The sequence of random variables (1
tσt)t∈N satisfies the LDP with a convex rate function I

in the sense that for every open set O ⊂ R and every closed set Γ ⊂ R,

lim inf
t→∞

1

t
logP

(
1

t
σt ∈ O

)
≥ − inf

s∈O
I(s), (2.9)

lim sup
t→∞

1

t
logP

(
1

t
σt ∈ Γ

)
≤ − inf

s∈Γ
I(s). (2.10)

Moreover, I is the Fenchel–Legendre transform q∗ of q, i.e.,

I(s) = q∗(s) = sup
α∈R

(αs− q(α)), s ∈ R. (2.11)

3. If q is finite in a neighborhood of 0, then I is a good rate function.

4. If P̂ = ΘP for some Θ as in Definition 2.5,13 then q satisfies the symmetry

q(−α) = q(α− 1), α ∈ R, (2.12)

and I satisfies the Fluctuation Relation (also known as the Gallavotti–Cohen symmetry)

I(−s) = I(s) + s, s ∈ R. (2.13)

Remark 2.9. In the physics literature, it is more common to work with e(α) = q(−α) as in (1.1).
Then (2.11) and (2.12) read respectively

I(s) = − inf
α∈R

(αs+ e(α)), s ∈ R,

e(α) = e(1− α), α ∈ R.

This is relevant for the applications to hypothesis testing that are discussed in Section 2.4.

The following remark gives a sufficient condition for q(α) to be finite for all α ∈ R.

Remark 2.10. Assume that, in addition to (SSD), we have for all t ∈ N, all u ∈ Ωt and all v ∈ Ωfin,
|v| ≥ 1, that both P] = P and P] = P̂ satisfy

P](uv) ≥ e−ctP](u)P](v). (2.14)

Let moreover c be the minimum of all the non-zero values achieved by P(a) and P̂(a) for a ∈
A. Then, for all w ∈ Ω+

t , we find P](w) ≥ e−(t−1)c1P](w1) · · ·P](wt) ≥ e−t(c1−log c). As a
consequence, we obtain that supt∈N supw∈Ω+

t
|t−1σt| <∞, which implies in particular that q(α)

is finite for all α ∈ R.

Remark 2.11. If P̂ is the uniform measure, then 1
tσt = 1

t logPt + log |A|. Assuming (SSD) (note
that (2.4) trivially holds for P̂), Parts 1-2 of the theorem above apply. We then have

r(α) := lim
t→∞

1

t
log
〈

eα log Pt ,P
〉

= q(α)− α log |A|, α ∈ R,

12i.e., it is convex, lower semicontinuous and not everywhere infinite.
13The (SSD) assumption of the theorem is still in force.
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and r inherits the properties of existence, convexity and lower semicontinuity of q. Moreover,
1
t logPt satisfies the LDP with convex rate function J(s) = I(s+ log |A|), which can be identified
with the Fenchel–Legendre transform of r. Part 3 extends in an obvious way to J and r. In order
to apply the discussion of Remark 2.10, it suffices to verify (2.14) for P, since (2.14) is trivially
satisfied for the uniform measure P̂. Note also that r is related to the Rényi entropy of P, since

r(α) = lim
t→∞

1

t
log

∑
w∈Ω+

t

(P(w))1+α.

Remark 2.12. By the Shannon–McMillan–Breiman (SMB) theorem,14 the limit

H(ω) := − lim
t→∞

1

t
logPt(ω[1,t])

exists P-almost surely and in L1(P), H ◦ ϕ = H , and
∫

ΩHdP = h(P), where h(P) is the
Kolmogorov–Sinai entropy of P. Thus, in the case when P̂ is the uniform measure, Theorem 2.8
provides the LDP counterpart to the SMB theorem, and establishes the result that was originally
intended for the fourth installment in the series of papers initiated by [3].

We now turn to the Level-3 LDP. The sequence of empirical measures (µt)t∈N is defined by

µt(ω) =
1

t

t−1∑
s=0

δϕs(ω) ∈ P(Ω), ω ∈ Ω, t ∈ N.

We also recall that the relative entropy of two probability measures Q and Q′ on a measurable
space (X,F) is given by

Ent(Q′ |Q) =


∫
X

log
(dQ′

dQ

)
dQ′ if Q′ � Q,

+∞ otherwise.

(2.15)

In what follows, we always assume that P(Ω) is endowed with the weak topology and the corre-
sponding Borel σ-algebra. The next result follows from Propositions 4.2, 6.1, 6.3, and 6.4.

Theorem 2.13 (Level-3 LDP). Assume (SLD).
1. For all f ∈ C(Ω,R), the limit

Q(f) := lim
t→∞

1

t
log
〈

eStf ,P
〉

(2.16)

exists and defines a convex, 1-Lipschitz function on C(Ω,R).

2. The sequence of random variables (µt)t∈N satisfies the LDP on the space P(Ω) with some
good15 convex rate function I, i.e., for every open set O ⊂ P(Ω), and every closed set
Γ ⊂ P(Ω),

lim inf
t→∞

1

t
logP (µt ∈ O) ≥ − inf

Q∈O
I(Q),

lim sup
t→∞

1

t
logP (µt ∈ Γ) ≤ − inf

Q∈Γ
I(Q).

14For this result no assumptions are needed; the SMB theorem holds for any P ∈ Pϕ(Ω).
15Notice that goodness follows from lower semicontinuity since P(Ω) is compact.
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Moreover, I is the restriction of the Fenchel–Legendre transform Q∗ of Q to P(Ω), i.e.,

I(Q) = sup
f∈C(Ω,R)

(
〈f,Q〉 −Q(f)

)
, Q ∈ P(Ω), (2.17)

and satisfies I(Q) = +∞ for Q ∈ P(Ω) \ Pϕ(Ω).

3. Assuming (UD) (in addition to (SLD)), we have for any Q ∈ Pϕ(Ω) that

I(Q) = lim
t→∞

1

t
Ent(Qt|Pt), (2.18)

and I is an affine function of Q ∈ Pϕ(Ω).

4. Assume again (UD) and (SLD). Assume moreover that P̂ = ΘP for some Θ as in Defi-
nition 2.5. Then, for any Q ∈ Pϕ(Ω) such that (ΘQ)t and Qt are equivalent for all t,
I(Q) < +∞, and I(ΘQ) < +∞, the following Level-3 fluctuation relation holds:

I(ΘQ)− I(Q) = lim
t→∞

1

t
〈σt,Q〉. (2.19)

Remark 2.14. Note that in general, the identification (2.18) is not possible for Q ∈ P(Ω)\Pϕ(Ω);
for such measures the left-hand side is infinite, but the right-hand side need not be.

Remark 2.15. The right-hand side of (2.19) is interpreted as the mean entropy production of the
pair (P, P̂) w.r.t. Q. For a discussion of the Level-3 fluctuation relation (2.19), we refer the reader
to [8, 7].

Remark 2.16. As mentioned, the Level-1 LDP of Theorem 2.7 can of course be retrieved from
the Level-3 LDP by using the contraction principle. In our proofs, however, the Level-1 LDP
is established first, and then the Level-3 LDP is proved independently (although the two proofs
have many common points). A natural question is whether, as in [8], the LDP for the entropy
production can be retrieved by “approximate” contraction from the Level 3, and if then (2.13)
follows from (2.19). We are not aware of a way of doing so at the level of generality of (SSD), as
σt may be highly “non-additive” (see Example 2.24). A contraction argument along the lines of [8]
is, however, possible if (SSD) holds with τt ≡ 0, since in this case, in the terminology of [8], σt is
asymptotically additive.

Remark 2.17. Assuming (SLD), the following Level-2 LDP holds: the sequence(
1

t

t−1∑
s=0

δωs

)
t∈N

⊂ P(A)

satisfies the LDP with respect to a good convex rate function I2, which can be expressed as

I2(ν) = sup
f∈C(A)

(∑
a∈A

f(a)ν(a)−Q(f)

)
, ν ∈ P(A),

where Q(f) is as in (2.16) (viewing f ∈ C(A) as a function on Ω depending only on ω1). This
result can be obtained in three different ways: (1) by applying the Level-1 LDP to some well-chosen
RA-valued function, (2) from the Level-3 LDP by the contraction principle, or (3) independently of
the others LDPs by applying the Ruelle-Lanford functions method directly. We shall not discuss
the Level-2 LDP any further.
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Remark 2.18. Although the work [3] was focused on the LDP for entropy production for pairs of
probability measures P and ΘP obtained from repeated quantum measurement processes, with Θ
as in Case 2 of Definition 2.5, the method of proof extends to the general setting of this paper and
yields the following: (a) Theorems 2.7 and 2.13 hold16 assuming (UD) and (SLD) with τt and ct
that do not depend on t; (b) a local version of Theorem 2.8 holds assuming (SSD) and (UD) (for
both P and P̂) with ct and τt that do not depend on t; (c) Theorem 2.8 holds assuming (SSD) with
τt ≡ 0 and with ct that does not depend on t. In this context, see Example 2.24.

2.4 Hypothesis testing

An important application of Theorem 2.8 concerns asymptotic hypothesis testing of the pairs of
measures (Pt, P̂t) as t→∞. The discussion of this point is nearly identical to the one presented in
Section 2.9 of [3] (see also [8, 7, 6]), and we shall only briefly comment on a few changes that are
needed due to the generality of our setting.

Unless P̂ = ΘP, the function α 7→ e(α) = q(−α) that controls the Chernoff and Hoeffding error
exponents does not need to satisfy the symmetry e(α) = e(1− α). In this case the upper and lower
Chernoff exponents c and c satisfy17

c = c = min
α∈[0,1]

e(α).

The formula for the Hoeffding error exponents (Theorem 2.13 in [3]) remains unchanged. We also
remark that although the analysis of the Chernoff and Hoeffding error exponents presented in [20]
(and used in [3]) required the function e to be differentiable on the interval (0, 1), this assumption
was used only through the application of the induced local LDP for the entropy production.18

In case e exists but is not necessarily differentiable, and if the required LDP with a convex rate
function is established by other means, as is the case in Theorem 2.8, then the analysis of [20]
carries through without changes; see [6] for details.

The interpretation of all three types of exponents (Stein, Chernoff, Hoeffding) in terms of hypothesis
testing and support separation of the pairs (Pt, P̂t) as t→∞ as presented in [3] remains unchanged.
Obviously, the support separation is linked to the emergence of the arrow of time only in Case 2 of
Definition 2.5.

2.5 Examples

We start with five examples where our results apply, but for which the conclusions are well known
and have been reached in the literature by other means. We believe however that in all these cases
the Ruelle–Lanford functions method presented here offers a different perspective on the resulting
LDPs.

Example 2.19. Bernoulli measures. Let P be a probability measure on A, and define19 the
measure P by Pt(w) =

∏t
i=1 P (wi), w ∈ Ωt. Then obviously (UD) and (SLD) are satisfied with

τt ≡ 0 and ct ≡ 0. If P̂ is defined similarly for some probability measure P̂ on A, then (SSD) also
holds with the same sequences (τt)t∈N and (ct)t∈N, and all our results apply provided that P � P̂ .

16By adapting the proof of [3, Theorem 2.5] to the case where σn is replaced by Snf for any function f depending on
finitely many variables, one verifies the assumptions of [22, Theorem 2.1], which yield the Level-3 LDP.

17If the symmetry holds, as in [3], then obviously c = c = e(1/2).
18The local LDP followed by an application of the Gärtner–Ellis theorem.
19See [24, Section A.4] for a pedagogical exposition of this case.
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Example 2.20. Irreducible Markov processes. Let P ∈ Pϕ(Ω) be a Markov process. Then (UD)
holds. Assume furthermore that it is irreducible (i.e., that for all a, b ∈ A, there exists ξ(a,b) ∈ Ωfin

such that P(aξ(a,b)b) > 0). Then (SLD) holds. If, in addition, P̂ ∈ Pϕ(Ω) is another Markov
process such that P2 � P̂2 (hence P̂ is also irreducible), then (SSD) holds. See Lemma A.3 for the
proof of these claims. Note that no aperiodicity condition is required; if the Markov process P is
irreducible and aperiodic, then (2.2) also holds with the condition |ξ| ≤ τt strengthened to |ξ| = τt.

The next example consists of (weak) Gibbs measures, which have been studied extensively, and for
which the LDPs and FR have been obtained via the thermodynamic formalism (see for example
[44, 42, 43, 35, 7, 8]).

Example 2.21. Gibbs and weak Gibbs measures on subshifts. Assume that the subshift Ω+

satisfies the following weak specification property:20 for all u, v ∈ Ω+
fin, there exists ξ ∈ Ω+

fin,
|ξ| ≤ τ|u| such that uξv ∈ Ω+

fin. Assume moreover that P is a Gibbs measure for some potential
f ∈ C(Ω+), i.e., that for some p ∈ R, d ≥ 0 and all ω ∈ Ω+,

e−d+Stf(ω)−tp ≤ Pt(ω1, . . . , ωt) ≤ ed+Stf(ω)−tp. (2.20)

Then it is easy to realize that (UD) and (SLD) are satisfied with τt as in the above specification
property and ct = 3d+ τt‖f − p‖. Moreover, (SSD) is satisfied if one of the following conditions
holds: (a) P̂ = ΘP with Θ as in Definition 2.5 and θt(Ω+

t ) = Ω+
t ; (b) P̂ is also a Gibbs measure

(i.e., satisfies (2.20) for some f̂ and p̂, and all ω in the support Ω+ of P). More generally, we say
that P is a weak Gibbs measure if (2.20) holds with d replaced by dt = o(t). In this case, the
decoupling assumptions above do not hold in general.21 However, we show in Appendix A.3 that
our results can easily be adapted to this case.

An interesting special case of Example 2.21 is:

Example 2.22. β-shifts. Consider the β-shift for some β > 1 (see [37] and references therein).
The weak specification property described in Example 2.21 is satisfied for Lebesgue-almost all
β > 1 (see the discussion after Corollary 5.1 in [37]; the quantity defined in equation (5.9) therein
plays the role of τt), and hence for such β’s our results apply to any (weak) Gibbs measure.

We next turn to Gibbs states. Such measures satisfy at the same time our decoupling assumptions
and the weak Gibbs condition.

Example 2.23. Gibbs states in 1D. Let P∗ be an invariant Gibbs state (in the Dobrushin–Lanford–
Ruelle sense, see for example [39, 41, 11, 28]) for some absolutely summable interaction on the
full two-sided shift AZ. Then the marginal P of P∗ on the one-sided shift AN satisfies (UD) and
(SLD) with τt ≡ 0 [28, Lemma 2.9]. If one considers also hard-core interactions, i.e., if P∗ is an
invariant Gibbs state on a subshift M ofAZ, then the proof can be adapted provided M satisfies the
following condition:22 for all η, ω ∈M , and all t ∈ N, there exists η′ ∈M such that ω[1,t] appears
in η′[1,t+τt], and such that ηi = η′i for all i ∈ Z \ J1, t+ τtK. The discussion of (SSD) in this setup is
similar to the (weak) Gibbs case discussed in Appendix A.3.

20A typical example would be a subshift of {0, 1, 2}N where the only restriction is that for each t ∈ N, every
occurrence of the word 01t0 must be followed by the word 2b

√
t+2c. Then the weak specification property is satisfied

with τt = b
√
tc.

21As discussed in Appendix A.3, our decoupling assumptions are not comparable with the weak Gibbs property.
22This condition is slightly more “flexible” than Condition D in [39, Section 4.1] in the sense that the position

where ω[1,t] appears in η′[1,t+τt] may depend on ω (for fixed t).
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The LDPs and FR for Gibbs states have also been obtained using the thermodynamic formalism
[11, 16, 33, 8, 7], and the proofs therein do not require P to be ϕ-invariant. The condition on M
spelled out in Example 2.23 seems to be slightly more general than those found in the literature on
Gibbs states.

We now turn to examples which genuinely require the full generality of our assumptions.

Example 2.24. A class of hidden Markov chains. In Appendix A.2 we describe a prototypical
pair of hidden Markov chains, which satisfies (SSD) with τt ≡ 1 and supt ct <∞, and for which
the function q defined in (2.8) displays different types of singularities. Depending on the parameters
of the model, one can have that:

• q is finite but not differentiable everywhere on R;

• there exists α∗ ≥ 0 such that q is finite (and even analytic) on (−∞, α∗) and infinite on
(α∗,∞), with either

· limα↑α∗ q(α) = q(α∗) = +∞;

· q(α∗) <∞ and q′(α−∗ ) = +∞;23 or

· q(α∗) <∞ and q′(α−∗ ) <∞.

This leads to situations where either or both [8] and [3] fail to apply, or to give the global LDP in
Theorem 2.8. This example illustrates how “non-additive” (or “non-extensive” in physical terms) σt
can be under our assumptions, in the sense that the sequence (t−1σt(ω))t∈N may be unbounded for
some ω ∈ Ω. A closely related, and physically relevant, example of rotational quantum instrument
will be discussed in [2].

The following example arises naturally in multifractal analysis, see [31, 32].

Example 2.25. Matrix product probability measures. Let M : A → MN (R) be a map taking
values in the algebra of real N ×N matrices that satisfies the following assumptions:

(A1) The entries of M(a) are non-negative for all a ∈ A.

(A2) The matrix S =
∑

a∈AM(a) and its transpose ST satisfy

Sv = λv, STw = λw

for some λ > 0 and vectors v, w ∈ RN with strictly positive entries.

For each t ∈ N we define a probability measure Pt on Ωt by

Pt(ω1, . . . , ωt) =
1

λt
(w,M(ω1) · · ·M(ωt)v) .

One easily verifies that there exists a unique P ∈ Pϕ(Ω) whose family of marginals is given by
(Pt)t∈N. We shall call such P the matrix product measure associated with the triple (M,v,w). We
have:

• (UD) holds for P with τt ≡ 0, and supt ct <∞.

• If the entries of M(a) are strictly positive for all a ∈ A, then (SLD) holds with τt ≡ 0 and
supt ct <∞.

• If for some a ∈ A all the entries of M(a) are strictly positive, then (SLD) holds with τt ≡ 1
and supt ct <∞ (by taking ξ = a in (2.2)).

23Here and below q′(α−∗ ) denotes the left-derivative of q at α∗.
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• Suppose that for all a ∈ A some entries of M(a) are vanishing. If the matrix S is irreducible,
i.e., for some r ∈ N the matrix (I + S)r has strictly positive entries (here I denotes the
identity matrix), then (SLD) holds with τt ≡ r and supt ct <∞. Note that if S is irreducible,
then (A2) automatically holds and P is ergodic. It is easy to construct examples of M for
which (A1) and (A2) hold, S is not irreducible, and (SLD) fails.

• Let M̂ : A → MN (R) be another map satisfying (A1) and (A2), and let P̂ be the induced
probability measure. If the matrix

∑
a∈AM(a)⊗ M̂(a) acting on RN ⊗ RN is irreducible,

then (SSD) holds for the pair (P, P̂) with τt and ct that do not depend on t (by an adaptation
of the proof of Proposition 2.6 in [3]; see also [2]).

• If Θ is as in Definition 2.5 and P̂ = ΘP, then in Case 1 (of Definition 2.5), the measure
P̂ is the matrix product measure associated with (M̂, v, w), where M̂(a) = M(u(a)), and
in Case 2 the measure P̂ corresponds to (M̂, w, v) (note the order of w and v), where
M̂(a) = MT (u(a)).

• The quantity q(α) in (2.8) is finite for all α. Indeed, since all the non-zero entries of the
matrices at hand are bounded below by some constant c > 0, the integrand in (2.8) increases
at most exponentially in t on the support of P.

For reasons of space we postpone the detailed discussion of various concrete examples of matrix
product probability measures to [2].

As a final example, we recall here the setup of the quantum instruments studied [3], as these
were our initial motivation. We note that any matrix product measure can also be obtained by a
well-chosen positive instrument (see [2]).

Example 2.26. Positive instruments. Let H be a finite-dimensional complex Hilbert space and
denote by C = B(H) the ∗-algebra of all linear maps A : H → H equipped with the inner product
(A,B) = tr(A∗B). Let Φ : A → B(C) be a map satisfying the following assumptions:

(B1) The map Φ(a) is positive24 for all a ∈ A.

(B2) The map S =
∑

a∈AΦ(a) and its adjoint S∗ satisfy

S[ν] = λν, S∗[ρ] = λρ

for some λ > 0 and strictly positive ν, ρ ∈ C.

For each t ∈ N we define a probability measure Pt on Ωt by

Pt(ω1, . . . , ωt) =
1

λttr(ρν)
tr(ρ(Φ(ω1) ◦ · · · ◦ Φ(ωt))[ν]).

One easily verifies that there exists a unique P ∈ Pϕ(Ω) whose family of marginals is given by
(Pt)t∈N. We shall call such P the positive instrument process associated with the positive instrument
(Φ, ν, ρ). If Φ(a) is completely positive25 for all a ∈ A, ν is the identity map, and λ = 1, then (Φ, ρ)
is called a quantum instrument and P describes the statistics of the repeated quantum measurement
process generated by (Φ, ρ); see [3] for additional information and references regarding quantum
instruments and induced processes.

We have:

• (UD) holds for P with supt ct <∞, [3, Lemma 3.4].
24Ψ ∈ B(C) is positive if Ψ[X] ≥ 0 for any X ≥ 0.
25Ψ ∈ B(C) is completely positive if for all k ∈ N the map idk ⊗Ψ ∈ B(B(Ck)⊗ C) is positive, where idk is the

identity map on B(Ck).
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• If Φ(a) is positivity improving26 for all a ∈ A, then (SLD) holds with τt ≡ 0, supt ct <∞.

• If Φ(a) is positivity improving for some a ∈ A, then (SLD) holds with τt ≡ 1, (by taking
ξ = a in (2.2)), and supt ct <∞.

• Suppose that none of the Φ(a)’s is positivity improving. If the map S is irreducible, i.e., for
some r ∈ N the map (ı+ S)r is positivity improving27 (ı denotes the identity map on B(C)),
then (SLD) holds with τt ≡ r and supt ct <∞. We remark that if S is irreducible, then (B2)
automatically holds and P is ergodic.

• Let Φ̂ : A → B(C) be another map satisfying (B1) and (B2), and let P̂ be the induced positive
instrument process. If the map

∑
a∈AΦ(a)⊗ Φ̂(a) acting on C⊗C is irreducible, then (SSD)

holds for the pair (P, P̂) with τt and ct that do not depend on t; see [3, Proposition 2.6].28

• If Θ is as in Definition 2.5 and P̂ = ΘP, then in Case 1 the measure P̂ is the positive
instrument process associated with (Φ̂, ν, ρ), where Φ̂(a) = Φ(u(a)). In Case 2, P̂ is the
positive instrument process associated with (Φ̂, ρ, ν), where Φ̂(a) = Φ∗(u(a)).

• Unlike for matrix product measures, we do not have in general that q(α) <∞ for all α ∈ R.
See the rotational instruments in [2].

Again, for details and discussion of concrete examples we refer the reader to [2].

3 General constructions and abstract LDP

We start with some further notation and conventions that will be used throughout the paper. A
function f on Ω is Ft-measurable if and only if f(ω) depends only on ω1, . . . , ωt. We identify the
space of Ft-measurable functions and the space29 C(Ωt) in the obvious way, and for such functions
we write f(ω) and f(ω1, . . . , ωt) interchangeably. The space Cfin(Ω) consisting of all functions
which are Ft-measurable for some t is dense in C(Ω).

By this identification, any function f ∈ C(Ωt) is associated with a Ft-measurable random variable
on (Ω,F ,P). Conversely, any Ft-measurable real-valued random variable f on (Ω,F ,P) is
associated with a function f ∈ C(Ω+

t ), and can be extended to a function in C(Ωt) by defining
f(w) arbitrarily for w ∈ Ωt \ Ω+

t . We note that with this convention, 〈f,P〉 =
∑

w∈Ω+
t
f(w)P(w).

These considerations extend to Rd-valued functions, and the corresponding spaces are denoted by
C(Ω,Rd) and Cfin(Ω,Rd).

Following these conventions, the quantity σt defined in (2.7) can be expressed as

σt(w) = log
Pt(w)

P̂t(w)
, w ∈ Ω+

t , (3.1)

which is well defined since Pt � P̂t.

26Ψ ∈ B(C) is positivity improving if Ψ[X] > 0 for any non-zero X ≥ 0.
27See [12, Section 2.1].
28It is easy to realize that Assumption (C) in [2] together with (UD) imply (SSD), see also [2].
29Since Ωt is endowed with the discrete topology, all functions on Ωt are continuous.
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3.1 Construction of ψn,t

For any pair (t, n) ∈ N2 with t ≥ n, we define30

N = N(t, n) = 2

⌊
t

2(n+ τn)

⌋
and t′ = t′(t, n) = Nn, (3.2)

where (τn)n∈N is the integer sequence introduced in Section 2.2. Observe that N is even. An
important inequality following from the above definition is

t

1 + τn/n
− 2n ≤ t′(t, n) ≤ t,

which implies that

lim
n→∞

lim sup
t→∞

∣∣∣∣ t′(t, n)

t
− 1

∣∣∣∣ ≤ lim
n→∞

lim sup
t→∞

(
2n

t
+
τn
n

1

1 + τn/n

)
= 0. (3.3)

For each n ∈ N, we define the decoupled measure P(n) = (Pn)×N (which is ϕn-invariant, but not
ϕ-invariant). For t = mn+ j with 0 ≤ j < n, the marginal P(n)

t is given by

P(n)
t (w) =

(
m−1∏
k=0

Pn(w[kn+1,(k+1)n])

)
Pj(w[mn+1,mn+j]),

where the last term is 1 if j = 0. We also define

Λt′ = (Ω+
n )N = {w ∈ Ωt′ : Pn(w[kn+1,(k+1)n]) > 0, k = 0, 1, . . . , N − 1}, (3.4)

which is the support of P(n)
t′ . Note that obviously Ω+

t′ ⊂ Λt′ .

The main result of this subsection is the following proposition that provides a way to compare the
two discrete probability spaces (Ωt′ ,P

(n)
t′ ) and (Ωt,Pt).

Proposition 3.1. Assume (SLD). For any pair (t, n) ∈ N2 with t ≥ n, and with N and t′ defined
by (3.2), there exists a map ψn,t : Ωt′ → Ωt such that the following holds.

1. There exists g(n, t) ≥ 0 such that

P(n)
t′ ◦ ψ

−1
n,t ≤ eg(n,t) Pt, (3.5)

lim
n→∞

lim sup
t→∞

1

t
g(n, t) = 0. (3.6)

2. Assume furthermore (SSD). Then ψn,t can be chosen so that, in addition to the above,

lim
n→∞

lim sup
t→∞

1

t
sup
w∈Λt′

∣∣∣∣∣σt(ψn,t(w))−
N−1∑
k=0

σn(w[kn+1,(k+1)n])

∣∣∣∣∣ = 0. (3.7)

Remark 3.2. For further reference, we make the immediate observation that (3.5) is equivalent to
the fact that for all A ⊂ Ωt′ ,

P(n)
t′ (A) ≤ eg(n,t)Pt(ψn,t(A)), (3.8)

and to the fact that for each function h : Ωt → [0,∞) we have∑
w∈Ωt′

h(ψn,t(w))P(n)
t′ (w) ≤ eg(n,t)

∑
w∈Ωt

h(w)Pt(w). (3.9)

30bxc = max{n ∈ Z : n ≤ x} denotes the floor function.
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Remark 3.3. It follows from (3.8) that ψn,t(Λt′) ⊂ Ω+
t . In particular, all the quantities in (3.7) are

well defined (see (3.1)). Note that the map ψn,t is in general neither injective nor surjective. There
will be two contributions in g(n, t): one coming from the ratio Pt(ψn,t(w))/P(n)

t′ (w), and one
coming from the maximal number of points w ∈ Ωt′ which share the same image ψn,t(w) ∈ Ωt.

Remark 3.4. The structure of ψn,t here is very similar to a construction used in Section 2 of [15]
in the context of products of matrices.

We start with two technical lemmas.

Lemma 3.5. There exists a constant C such that the following holds. For all t, k ∈ N and all
v ∈ Ωt, there exists b ∈ Ωk such that

P(bv) ≥ P(v)e−Ck. (3.10)

Assuming (SSD), b can be chosen so that, in addition to the above,

P̂(bv) ≥ P̂(v)e−Ck. (3.11)

Proof. The first statement holds with C = log |A|, since for all v ∈ Ωt we have

P(v) =
∑
b∈Ωk

P(bv) ≤ |A|k max
b∈Ωk

P(bv).

The second statement is less trivial because (3.10) and (3.11) have to hold for the same b. Fix a
symbol a ∈ A such that P1(a)P̂1(a) > 0 (which is possible by the absolute continuity condition
(2.3)). We claim that the result holds with C = c1 − log(P1(a) ∧ P̂1(a)). Assume first that k = 1.
Then for all v ∈ Ωt, there exists ξ ∈ Ωfin such that |ξ| ≤ τ1 and

P](aξv) ≥ e−c1P](a)P](v) ≥ e−CP](v)

for both P] = P and P] = P̂. Now, let b = a if |ξ| = 0, and b = ξ1 otherwise. We then have

P](bv) ≥ P](aξv) ≥ e−CP](v),

which shows that both (3.10) and (3.11) hold in the case k = 1. The general statement follows by
induction on k. 2

The following lemma is immediate.

Lemma 3.6. Let (X1, P1) and (X2, P2) be two discrete probability spaces (each with its discrete
σ-algebra). Let ψ : X1 → X2 be a mapping which is at most r-to-one, and assume that P1(ω) ≤
cP2(ψ(ω)) for some c > 0 and all ω ∈ X1. Then

P1 ◦ ψ−1 ≤ crP2.

We can now prove the main result of this subsection.

Proof of Proposition 3.1. The map ψn,t : Ωt′ → Ωt is constructed as follows. For w ∈ Ωt′ , we
write w = w1w2 . . . wN with wi ∈ Ωn, and define

ψn,t(w) = bw1ξ1w2ξ2 . . . wN−1ξN−1wN (3.12)
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for some ξi, b ∈ Ωfin to be chosen below that will satisfy |ξi| ≤ τn and

|b| = δ := t− t′ −
N−1∑
i=1

|ξi|

(which may be zero), so that |ψn,t(w)| = t. Observe that

t− t′ ≥ δ ≥ t−N(n+ τn) ≥ 0. (3.13)

Using (SLD), we first choose ξN−1 such that |ξN−1| ≤ τn and

P
(
wN−1ξN−1wN

)
≥ e−cnP

(
wN−1

)
P
(
wN
)
.

Next, we choose ξN−2 such that |ξN−2| ≤ τn and

P
(
wN−2ξN−2wN−1ξN−1wN

)
≥ e−cnP

(
wN−2

)
P
(
wN−1ξN−1wN

)
≥ e−2cnP

(
wN−2

)
P
(
wN−1

)
P
(
wN
)
.

Continuing this process, we choose ξN−3, . . . , ξ1 such that |ξi| ≤ τn and

P
(
w1ξ1w2ξ2 . . . wN−1ξN−1wN

)
≥ e−(N−1)cnP

(
w1
)
P
(
w2
)
· · ·P

(
wN
)

= e−(N−1)cnP(n)(w).

Finally, if δ ≥ 1, we choose b ∈ Ωδ so that (3.10) holds with v = w1ξ1w2ξ2 . . . wN−1ξN−1wN

and k = δ, so that
P(ψn,t(w)) ≥ e−(N−1)cn−CδP(n)(w).

If δ = 0, we choose b as the empty word, and the above also holds. Next, (3.13) implies that

(N − 1)cn + Cδ ≤ (N − 1)cn + (t− t′)C =: g1(n, t),

and so
P(ψn,t(w)) ≥ e−g1(n,t)P(n)(w). (3.14)

The mapping ψn,t is not injective. In order to retrieve w ∈ Ωt′ from ψn,t(w), it suffices to know
the length of ξ1, . . . , ξN−1, and there are at most (τn + 1)N−1 possibilities. Thus, ψn,t is at most
(τn + 1)N−1-to-one. By Lemma 3.6, we obtain (3.5) with

g(n, t) = g1(n, t) + (N − 1) log(τn + 1) ≤ g1(n, t) +Nτn.

To finish the proof of Part 1, observe that since t ≥ t′ = nN , we have

g(n, t)

t
≤ cn

n
+ C

(
1− t′(t, n)

t

)
+
τn
n
,

which by (3.3), shows that (3.6) also holds.

To prove Part 2 of the proposition, assume (SSD) and let w ∈ Λt′ . We then proceed exactly as
above. By (SSD) one can choose ξ1, . . . , ξN−1 such that

e−(N−1)cnP]
(
w1
)
P]
(
w2
)
· · ·P]

(
wN
)
≤ P]

(
w1ξ1w2ξ2 . . . wN−1ξN−1wN

)
≤ e(N−1)cnP]

(
w1
)
P]
(
w2
)
· · ·P]

(
wN
)

for both P] = P and P] = P̂. Note that all quantities here are positive, since w ∈ Λt′ implies, by
definition, that all the wi are in the support of Pn, and hence in that of P̂n by (2.3).
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Defining δ as above and choosing b ∈ Ωδ as in Lemma 3.5 (with b = κ if δ = 0), we obtain
that ψn,t(w) defined by (3.12) satisfies

e−(N−1)cn−CδP]
(
w1
)
· · ·P]

(
wN
)
≤ P](ψn,t(w)) ≤ e(N−1)cnP]

(
w1
)
· · ·P]

(
wN
)
.

Recalling definition of σt and σn and using the inequality

(N − 1)cn ≤ (N − 1)cn + Cδ ≤ g1(n, t) ≤ g(n, t),

we finally obtain ∣∣∣∣∣σt(ψn,t(w))−
N∑
k=1

σn(wk)

∣∣∣∣∣ ≤ 2g(n, t),

which implies (3.7). This completes the proof of Proposition 3.1. 2

3.2 Ruelle–Lanford functions

Let X be a locally convex Hausdorff topological vector space endowed with its Borel σ-algebra.
LetN0 be a neighborhood basis of 0 ∈ X , so thatNx = N0 + x is a neighborhood basis of x ∈ X .

Given a sequence (zt)t∈N of X-valued random variables on (Ω,F ,P), we define the following two
non-decreasing set functions on the Borel sets of X:

s(A) = lim inf
t→∞

1

t
logP

(
1

t
zt ∈ A

)
,

s(A) = lim sup
t→∞

1

t
logP

(
1

t
zt ∈ A

)
.

(3.15)

Definition 3.7. Assume that for all x ∈ X , we have

inf
G∈Nx

s(G) = inf
G∈Nx

s(G). (3.16)

Then, the function s : X → [−∞, 0], whose value s(x) is defined by the two expressions in (3.16)
for each x ∈ X , is called the Ruelle–Lanford function of the sequence (zt)t∈N.31

When defined, the function s is upper semicontinuous. Indeed, for all x ∈ X and ε > 0, there
exists G ∈ Nx such that s(G) ≤ s(x) + ε, and for each x′ ∈ G there exists G′ ∈ Nx′ such that
G′ ⊂ G. It follows that s(x′) ≤ s(G′) ≤ s(G) ≤ s(x) + ε.

We now give sufficient conditions for the Ruelle–Lanford function to exist.

Definition 3.8. We say that the sequence (zt)t∈N is admissible if for all x1, x2 ∈ X and for every
neighborhood G of x := 1

2x1 + 1
2x2, there exist G1 ∈ Nx1 and G2 ∈ Nx2 such that

s(G) ≥ 1

2
s(G1) +

1

2
s(G2). (3.17)

Proposition 3.9. Let the sequence (zt)t∈N be admissible. Then (3.16) holds for all x ∈ X , so that
the Ruelle–Lanford function s is well defined. Moreover, (1

t zt)t∈N satisfies the weak LDP with
convex rate function −s, in the sense that for every open set O ⊂ X ,

s(O) ≥ sup
x∈O

s(x) (3.18)

31The two infima in (3.16) are independent of the choice of the neighborhood basisNx of x, and hence so is s(x).



21 Large deviations and fluctuation theorem

and that for every compact set Γ ⊂ X ,

s(Γ) ≤ sup
x∈Γ

s(x). (3.19)

If, in addition, the laws of (1
t zt)t∈N form an exponentially tight family32, then −s is a good rate

function, and (1
t zt)t∈N satisfies the LDP, i.e., (3.19) holds for any closed set Γ ⊂ X .

Proof. For the reader’s convenience, we include a complete proof, although this is a classical result
(see [34, Proposition 3.5] or [9, Lemmas 4.1.11 and 4.1.21]). First, the special case x = x1 = x2 in
(3.17) immediately implies that the two infima in (3.16) are equal, so that s is well defined. Next,
if x = 1

2x1 + 1
2x2, then (3.17) yields s(x) ≥ 1

2(s(x1) + s(x2)). Since s is upper semicontinuous,
this inequality implies that s is concave (by a bisection method).

We now turn to the LDP. The lower bound (3.18) is immediate. Indeed, for any open set O ⊂ X
and every x ∈ O we have x ∈ G ⊂ O for some G ∈ Nx, so that s(O) ≥ s(G) ≥ s(x). Since this
holds for all x ∈ O, we obtain (3.18).

The upper bound (3.19) is more involved. Let Γ ⊂ X be closed, and let ε > 0. It suffices to
prove (3.19) in the following two cases.

• Case 1: the laws of (1
t zt)t∈N are exponentially tight. Then, there exists a compact set K

such that s(Kc) ≤ −1/ε. We let then G0 = Γ ∩ Kc. Thus, for each x ∈ G0, we have
s(x) ≤ −1/ε.

• Case 2: Γ is compact. Then we let G0 = ∅.
Observe that in both cases Γ \G0 is compact. For each x ∈ Γ \G0, there exists G(x) ∈ Nx such
that s(G(x)) ≤ s(x)+ε ≤ supy∈Γ s(y)+ε. Now, {G(x) : x ∈ Γ\G0} is an open cover of Γ\G0,
and by compactness one can extract a finite subcover {Gi : i = 1, . . . , n}. Since Γ ⊂

⋃n
i=0Gi,

one has

s(Γ) ≤ lim sup
t→∞

1

t
log

(
n∑
i=0

P
(zt
t
∈ Gi

))
≤ max

i=0,...,n
s(Gi) ≤ max(−1/ε, sup

x∈Γ
s(x) + ε).

Sending ε→ 0 completes the proof of (3.19).

Finally, we show that exponential tightness implies the goodness of the rate function I := −s
(see for example [9, Lemma 1.2.18]). Let a ∈ R, and let La = {x ∈ X : I(x) ≤ a} be the
corresponding level set (which is closed by lower semicontinuity of I). Assuming exponential
tightness, there is a compact set K such that s(Kc) < −a, and applying (3.18) to O = Kc yields
infx∈Kc I(x) > a. Thus, La ⊂ K, and hence La is compact. 2

3.3 Compatible observables

In this subsection we assume (SLD), so that the mapψn,t is well defined and Part 1 of Proposition 3.1
holds. Moreover, N = N(t, n) and t′ = t′(t, n) are as in (3.2) and Λt′ is as in (3.4). Finally, for
x ∈ X = Rd, we choose the neighborhood basis Nx = {B(x, ε)}ε>0, where B(x, ε) denotes the
open ball of radius ε in X , centered at x.

Definition 3.10. Let X = Rd and let (zt)t∈N be a sequence of X-valued random variables on
(Ω,F ,P). We say that (zt)t∈N is ψ-compatible if zt is Ft-measurable for each t, and the quantity

h(n, t) :=
1

t
sup
w∈Λt′

∣∣∣∣∣zt(ψn,t(w))−
N−1∑
k=0

zn(w[kn+1,(k+1)n])

∣∣∣∣∣
32This means that for any ε > 0 there exists a compact set Kε such that s(Kc

ε ) ≤ −1/ε.
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satisfies
lim
n→∞

lim sup
t→∞

h(n, t) = 0. (3.20)

Proposition 3.11. Let (zt)t∈N be a sequence of ψ-compatible Rd-valued random variables on
(Ω,F ,P). Then the following holds.

1. For all x = 1
2x1 + 1

2x2 ∈ Rd and 0 < ε < ε′, we have

s(B(x, ε′)) ≥ 1

2
s(B(x1, ε)) +

1

2
s(B(x2, ε)).

In particular, (zt)t∈N is admissible and the conclusions of Proposition 3.9 hold.

2. There exists a sequence (γt)t∈N with γt → 0 such that for all ε > 0, all t ∈ N and all
x ∈ Rd,33

1

t
logP

(zt
t
∈ B(x, ε)

)
≤ γt + sup

y∈B(x,ε+(1+|x|)γt)
s(y), (3.21)

where s is as in Definition 3.7 and Proposition 3.9.

Proof. We shall prove that there exists a sequence (γt)t∈N with γt → 0 such that for all ε > 0, all
t ∈ N and all x = 1

2x1 + 1
2x2 ∈ Rd, we have

1

2t
logP

(zt
t
∈ B(x1, ε)

)
+

1

2t
logP

(zt
t
∈ B(x2, ε)

)
≤ s(B(x, ε+ (1 + |x|)γt)) + γt. (3.22)

This relation yields both Part 1 and Part 2 of the proposition. Part 1 follows by taking the limit
t→∞ and using that, for fixed x, we have

(1 + |x|)γt ≤ ε′ − ε

for t large enough. For Part 2, we take x1 = x2 = x in (3.22), and by (3.19) we obtain (3.21) with
the ball B(x, ε + (1 + |x|)γt) replaced by its closure in the right-hand side. Replacing γt with
γt + t−1, we then obtain (3.21).

To prove (3.22), let x = 1
2x1 + 1

2x2 ∈ Rd and ε > 0. In the following, j(k) = 1 if k is odd,
j(k) = 2 if k is even, and we write Ik = [kn+ 1, (k + 1)n]. By assumption, for any w ∈ Λt′ ,∣∣∣∣1t zt(ψn,t(w))− x

∣∣∣∣ ≤
∣∣∣∣∣1t

N−1∑
k=0

zn(wIk)− x

∣∣∣∣∣+ h(n, t)

≤

∣∣∣∣∣nt
N−1∑
k=0

(
zn(wIk)

n
− x
)∣∣∣∣∣+ h(n, t) + |x|

(
1− t′

t

)

=

∣∣∣∣∣nt
N−1∑
k=0

(
zn(wIk)

n
− xj(k)

)∣∣∣∣∣+ h(n, t) + |x|
(

1− t′

t

)
,

where the last equality holds because N is even and x = 1
2x1 + 1

2x2. Using further that nt ≤
1
N

leads to ∣∣∣∣1t zt(ψn,t(w))− x
∣∣∣∣ ≤ 1

N

N−1∑
k=0

∣∣∣∣zn(wIk)

n
− xj(k)

∣∣∣∣+ h(n, t) + |x|
(

1− t′

t

)
.

33Note that the bound is uniform in both t and x. This will be crucial in the proof of Proposition 5.2 below.
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Let un = n−1 + lim supt→∞max
(
h(n, t), 1− t′

t

)
. By (3.3) and (3.20) we have un → 0. In

addition, for each fixed n, there exists t0(n) such that for all t ≥ t0(n),∣∣∣∣1t zt(ψn,t(w))− x
∣∣∣∣ ≤ 1

N

N−1∑
k=0

∣∣∣∣zn(wIk)

n
− xj(k)

∣∣∣∣+ (1 + |x|)un,

and hence

ψn,t

(
N−1⋂
k=0

{
w ∈ Λt′ :

1

n
zn(wIk) ∈ B(xj(k), ε)

})
⊂
{
w ∈ Ω+

t :
1

t
zt(w) ∈ B′

}
,

where B′ = B(x, ε + (1 + |x|)un). Using (3.8) and translation invariance, for all t ≥ t0(n) we
derive

P
(zt
t
∈ B′

)
≥ Pt

(
ψn,t

(
N−1⋂
k=0

{
w ∈ Λt′ :

1

n
zn(wIk) ∈ B(xj(k), ε)

}))

≥ e−g(n,t)P(n)
t′

(
N−1⋂
k=0

{
w ∈ Λt′ :

1

n
zn(wIk) ∈ B(xj(k), ε)

})

= e−g(n,t)
(
Pn
(zn
n
∈ B(x1, ε)

))N
2
(
Pn
(zn
n
∈ B(x2, ε)

))N
2
.

Using also that Nt ≤
1
n , and sending t→∞, we obtain

s(B(x, ε+ (1 + |x|)un)) ≥ 1

2n
logP

(zn
n
∈ B(x1, ε)

)
+

1

2n
logP

(zn
n
∈ B(x2, ε)

)
− u′n,

where u′n = lim supt→∞
g(n,t)
t . By (3.6) we have u′n → 0. Defining γn = max(un, u

′
n) completes

the proof of (3.22). 2

Lemma 3.12. Let (zt)t∈N be a sequence ofψ-compatible Rd-valued random variables on (Ω,F ,P).
Then, for all α ∈ Rd, the limit

q(α) := lim
t→∞

1

t
log
〈

e(α,zt),P
〉

exists and takes value in (−∞,∞]. Moreover, the function Rd 3 α 7→ q(α) is convex and lower
semicontinuous.

Proof. Let h(n, t) be as in Definition 3.10, and consider

At(α) =
〈

e(α,zt),P
〉
.

For each finite t, the map α 7→ At(α) is continuous. Recall that by definition of ψ-compatibility,
zn is Fn-measurable. Thus, by invariance and (3.9),

(An(α))N =
∑
w∈Λt′

exp

{N−1∑
k=0

(
α, zn(w[kn+1,(k+1)n])

)}
P(n)
t′ (w)

≤ e|α|th(n,t)
∑
w∈Λt′

e(α,zt(ψn,t(w)))P(n)
t′ (w)

≤ e|α|th(n,t)+g(n,t)
∑
w∈Ω+

t

e(α,zt(w))Pt(w)

= e|α|th(n,t)+g(n,t)At(α).
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It follows that

1

t
logAt(α) ≥ N

t
logAn(α)− |α|h(n, t)− g(n, t)

t
=

1

n

t′

t
logAn(α)− |α|h(n, t)− g(n, t)

t
.

By (3.3), (3.6) and (3.20), there exists δn → 0 such that

lim inf
t→∞

1

t
logAt(α) ≥ 1

n
(1 + δn) logAn(α)− (1 + |α|)δn . (3.23)

Taking now the lim sup as n→∞ yields

lim inf
t→∞

1

t
logAt(α) ≥ lim sup

n→∞

1

n
logAn(α),

and so q(α) exists. Combining this with (3.23), we derive

q(α) = sup
n∈N

(
1

n
(1 + δn) logAn(α)− (1 + |α|)δn

)
.

It follows that q(α) > −∞ for all α ∈ R, and since the right-hand-side is a supremum over a
family of continuous functions (with respect to α), we also derive that q is lower semicontinuous.
Finally, it follows from Hölder’s inequality that the functions α 7→ 1

t logAt(α) are convex and,
hence, so is the limit q. 2

4 Level-1 LDP

In this section we assume again (SLD). Thus, Part 1 of Proposition 3.1 holds, and again N =
N(t, n) and t′ = t′(t, n) are as in (3.2).

Lemma 4.1. Let f ∈ C(Ωr,Rd) for some r ∈ N and set zt = St−r+1f . Then, (zt)t∈N is
ψ-compatible. (We take the convention that Sjf = 0 if j ≤ 0).

Proof. Clearly zt is Ft-measurable. Recall that by its definition (3.12), ψn,t is expressed as

ψn,t(w) = bw[1,n]ξ
1w[n+1,2n]ξ

2 . . . ξN−1w[(N−1)n+1,Nn], w ∈ Ωt′ .

For n ≥ r and t large enough, we have

h(n, t) =
1

t
sup
w∈Λt′

∣∣∣∣∣zt(ψn,t(w))−
N−1∑
k=0

zn(w[kn+1,(k+1)n])

∣∣∣∣∣
=

1

t
sup
w∈Λt′

∣∣∣∣∣
t−r∑
s=0

f
(
ϕs(ψn,t(w)

)
−
N−1∑
k=0

n−r∑
s=0

f
(
ϕs(w[kn+1,(k+1)n])

)∣∣∣∣∣
≤ ‖f‖

t
(t− r + 1−N(n− r + 1)) ≤ ‖f‖(t− t′ +Nr)

t
≤ ‖f‖

(
1− t′

t
+
r

n

)
,

where the first inequality follows from the observation that all the terms of the iterated sum are also
present in the first sum. By (3.3), it follows that (3.20) holds, and so (zt)t∈N is ψ-compatible. 2

Proposition 4.2. For all f ∈ C(Ω,Rd) and all α ∈ Rd, the limit

qf (α) := lim
t→∞

1

t
log
〈

e(α,Stf),P
〉

exists and is finite. Moreover, the map (f, α) 7→ qf (α) is convex in both arguments, |α|-Lipschitz
with respect to f , and ‖f‖-Lipschitz with respect to α.
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Proof. For each t, the function

(α, f) 7→ 1

t
log
〈

e(α,Stf),P
〉

has the convexity and Lipschitz properties stated in the proposition (convexity follows again from
Hölder’s inequality). By Lemmas 3.12 and 4.1, for every r ∈ N and f ∈ C(Ωr,Rd), the limit

lim
t→∞

1

t
log
〈

e(α,Stf),P
〉

= lim
t→∞

1

t
log
〈

e(α,St−r+1f),P
〉

exists and is finite for all α ∈ Rd. Thus, qf (α) exists for all f ∈ Cfin(Ω,Rd) and α ∈ Rd. Since
Cfin(Ω,Rd) is dense in C(Ω,Rd), the |α|-Lipschitz continuity in f implies that the limit also exists
for all f ∈ C(Ω,Rd). The convexity and Lipschitz properties are preserved in the limit. 2

Proposition 4.3. Let f ∈ C(Ω,Rd) and set zt = Stf . Then, (zt)t∈N is admissible and the laws of
(1
t zt)t∈N are exponentially tight. Thus (1

t zt)t∈N satisfies the LDP (see (2.5) and (2.6)) with good
convex rate function If , where If is the Fenchel–Legendre transform of qf .

Proof. We first prove the admissibility claim, with X = Rd. Let x = 1
2x1 + 1

2x2 ∈ Rd and let
ε > 0. Since f is continuous, for δ = ε/6 there exists an integer r ≥ 1 and an Fr-measurable
function f̃ such that ‖f − f̃‖ ≤ δ. Define now z̃t = St−r+1f̃ , which is Ft-measurable. We have∥∥∥∥1

t
zt −

1

t
z̃t

∥∥∥∥ =

∥∥∥∥1

t
Stf −

1

t
St−r+1f̃

∥∥∥∥ ≤ δ +
r − 1

t
‖f‖. (4.1)

By Lemma 4.1, (z̃t)t∈N is ψ-compatible. Denote by s and s the functions defined in (3.15), and let
s̃ and s̃ be the corresponding functions defined for z̃t. As a consequence of Proposition 3.11, we
have

s̃(B(x, ε− 2δ)) ≥ s̃(B(x1, ε− 3δ))

2
+
s̃(B(x2, ε− 3δ))

2
. (4.2)

Using (4.1), we obtain that for t large enough,

P
(

1

t
zt ∈ B(x, ε)

)
≥ P

(
1

t
z̃t ∈ B(x, ε− 2δ)

)
,

P
(

1

t
z̃t ∈ B(xi, ε− 3δ)

)
≥ P

(
1

t
zt ∈ B(xi, ε− 5δ)

)
.

By combining this with (4.2), we obtain that

s(B(x, ε)) ≥ s(B(x1, ε− 5δ))

2
+
s(B(x2, ε− 5δ))

2
.

Hence, (zt)t∈N is admissible. Since ‖1
t zt‖ ≤ ‖f‖ for all t, the laws of (1

t zt)t∈N are exponentially
tight. Thus, by Proposition 3.9, the LDP holds with good convex rate function If (which is equal to
−s in the notation of Definition 3.7). We now denote by I∗f the Fenchel–Legendre transform of If ,
and by q∗f the Fenchel–Legendre transform of qf .

In order to identify If and q∗f (see [9, Theorem 4.5.10] for a similar argument), we use Varadhan’s
integral theorem and the convexity of If . For α, u ∈ Rd, let φα(u) = (α, u) (which is continuous
as a function of u for fixed α), and let Pt be the distribution of 1

t zt. We have

qf (α) = lim
t→∞

1

t
log

∫
Rd

etφα(u)dPt(u).

Since for any γ > 1 we have qf (γα) <∞ by Proposition 4.2, the conditions of Varadhan’s theorem
(see [9, Theorem 4.3.1] or [10, Theorem 2.1.10]) are met, and we obtain qf (α) = I∗f (α). Since this
is true for all α ∈ Rd and since If is convex and continuous (in particular, lower semicontinuous),
we find If = q∗f , which completes the proof. 2
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5 LDP for entropy production

In this section we assume (SSD), so thatψn,t is well defined and Parts 1 and 2 of Proposition 3.1 hold.
In particular, (3.7) shows that (1

tσt)t∈N is ψ-compatible and hence admissible by Proposition 3.11.

Proposition 5.1. The limit

q(α) := lim
t→∞

1

t
log 〈eασt ,P〉

exists for all α ∈ R and takes value in (−∞,∞]. The function q is lower semicontinuous and
convex. We have q(0) = 0 and q(−1) ≤ 0, so that q is non-positive (and hence finite) on [−1, 0].

Proof. Since (1
tσt)t∈N is admissible, we find by Lemma 3.12 (with d = 1) that q exists, takes value

in (−∞,∞], and is lower semicontinuous and convex. We have obviously q(0) = 0. Moreover,

1

t
log
〈
e−σt ,P

〉
=

1

t
log

∑
w∈Ω+

t

P̂t(w)

Pt(w)
Pt(w) =

1

t
log P̂t(Ω+

t ) ≤ 0,

and so q(−1) ≤ 0. By convexity, q is non-positive (and hence finite) on [−1, 0]. This completes
the proof. 2

In the sequel, we denote by I∗ and q∗ the Fenchel–Legendre transforms of I and q.

Proposition 5.2. The sequence (1
tσt)t∈N satisfies the LDP (see (2.9) and (2.10)) with a convex rate

function I given by I(s) = q∗(s) for all s ∈ R. Moreover, if q(α) <∞ for all α in a neighborhood
of 0, then I is a good rate function.

Proof. Since (1
tσt)t∈N is admissible, it satisfies by Proposition 3.9 the weak LDP with convex rate

function I . To strengthen the result to the LDP (i.e., to show that (2.10) is true also for unbounded
Γ), we separate the following two cases (recall that q is finite and non-positive on [−1, 0], and that
q(−1) ≤ 0 = q(0)).

• If q(α) < ∞ in a neighborhood of the origin, a standard application of Chebychev’s
inequality shows that the laws of (1

tσt)t∈N are exponentially tight, so that the weak LDP is
in fact the LDP, and I is a good rate function.

• If q(α) = ∞ for all α > 0, then we have limx→+∞ q
∗(x) = 0. The identification I = q∗,

which we prove below, implies that limx→+∞ I(x) = 0 (in particular I is not a good rate
function). We now show that the LDP still holds. If Γ is a closed set such that sup Γ = +∞,
then infx∈Γ I(x) = 0, and hence (2.10) is trivial. Assume on the contrary that Γ is a
closed set such that sup Γ < ∞ (but possibly inf Γ = −∞). Then, since q(−1) < ∞,
Chebychev’s inequality provides the necessary exponential tightness on the negative half-line
in order to show (2.10) (by a minor and standard adaptation of the argument in the proof of
Proposition 3.9).

We now turn to the comparison of I and q∗. If q(α) <∞ for all α ∈ R, we can proceed exactly as
in Proposition 4.3, by using Varadhan’s theorem to obtain that q = I∗, and then the convexity of I
to obtain that I = q∗. However, in the general case, more specific estimates are required in order
to show that q = I∗. We split the proof of this identity into three steps. Steps 1 and 3 are almost
identical to the proof of Varadhan’s theorem (see [9, Theorem 4.3.1] or [10, Theorem 2.1.10]),
although our assumptions are slightly different. Step 2, however, is quite specific to our setup (see
Remark 5.3 below).
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Step 1: q ≥ I∗. We denote by Pt the law of t−1σt. For any x, α ∈ R and ε > 0, we have

q(α) ≥ lim inf
t→∞

1

t
log

∫
|x−y|<ε

etαyPt(dy)

≥ (αx− |α|ε) + lim inf
t→∞

1

t
logPt((x− ε, x+ ε))

≥ (αx− |α|ε)− inf
|x−y|<ε

I(y) ≥ αx− |α|ε− I(x).

Letting ε→ 0, we get q(α) ≥ αx− I(x). Since α and x are arbitrary, we obtain q ≥ I∗.
Step 2: Tail estimates. Let

α± = lim
x→±∞

I(x)

x
.

By convexity these limits exist, and since I is non-negative we have ±α± ∈ [0,∞]. Moreover,
since 0 ≥ q(−1) ≥ I∗(−1) = supx∈R(−x − I(x)), we actually have α− ∈ [−∞,−1], and in
particular α− < α+. Let α ∈ (α−, α+), and set δ = 1

2 min(1, |α − α−|, |α − α+|). Then there
exists c > 0 such that

I(x) ≥ αx+ δ|x| − c for all x ∈ R.

Using this and (3.21) we find

1

t
logPt

(
(k − 1, k + 1)

)
≤ γt − inf

y∈B(k,1+(1+|k|)γt)
I(y)

≤ −αk − δ|k|+ c′ + c′′|k|γt,

where γt → 0, and the constants c′, c′′ are independent of t and k. It follows that, for all t large
enough,

Pt
(
(k − 1, k + 1)

)
≤ exp

((
−αk − δ

2 |k|+ c′
)
t
)
,

whence there exists C > 0, depending only on α, such that for all K > 0,

RK := lim sup
t→∞

1

t
log

∫
|x|>K

eαtxPt(dx) ≤ −Kδ

2
+ C. (5.1)

Step 3: q ≤ I∗. If α /∈ [α−, α+], we clearly have I∗(α) = +∞ ≥ q(α). It therefore remains to
show that q(α) ≤ I∗(α) for all α ∈ [α−, α+]. Since both I∗ and q are convex, lower semicon-
tinuous functions, it is enough to consider α ∈ (α−, α+). We now fix α ∈ (α−, α+), ε > 0 and
K > 0. For all x ∈ [−K,K], there exists an open neighborhood Gx such that

inf
y∈Gx

I(y) ≥ (I(x)− ε) ∧ ε−1, sup
y∈Gx

αy ≤ αx+ ε.

We extract a finite subcover {Gx1 , . . . , Gxn} of [−K,K] and write

lim sup
t→∞

1

t
log

∫
Gxi

eαtyPt(dy) ≤ lim sup
t→∞

1

t
log
(
eαtxi+εtPt(Gxi)

)
≤ αxi + ε− (I(xi)− ε) ∧ ε−1

= max
(
αxi − I(xi) + 2ε, αxi + ε− ε−1

)
≤ max

(
I∗(α) + 2ε, |α|K + ε− ε−1

)
.
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It follows that

q(α) ≤ lim sup
t→∞

1

t
log

(∫
|x|>K

eαtxPt(dx) +
n∑
i=1

∫
Gxi

eαtxPt(dx)

)
≤ max

{
RK , I

∗(α) + 2ε, |α|K + ε− ε−1
}
.

Sending ε → 0 shows that q(α) ≤ max(RK , I
∗(α)). Finally, sending K → ∞ and using (5.1)

yields q(α) ≤ I∗(α), which completes the proof. 2

Remark 5.3. The tail estimates in Step 2 above are equivalent to the statement that q(α) <∞ for
all α ∈ (α−, α+), which is obviously a necessary condition in order to have q = I∗ . The uniform
bound (3.21) is crucial in Step 2. An instructive example of what can go wrong without it is given
by the family of distributions

dPt
dx

= (1− e−t
2
)
√
t/πe−tx

2
+

1

2
e−t

2
(δt(x) + δ−t(x)), t ∈ N,

which satisfies the LDP with rate function I(x) = x2. Here α± = ±∞, while34

q(α) = lim
t→∞

1

t
log

∫
etαxPt(dx) = α2/4 +∞1l|α|>1.

One now easily checks that q and I∗ coincide only on [−1, 1], and that I and q∗ coincide only on
[−1/2, 1/2].

Lemma 5.4. If P̂ = ΘP with Θ as in Definition 2.5, then q satisfies

q(−α) = q(α− 1), α ∈ R, (5.2)

and I satisfies the Gallavotti–Cohen symmetry

I(−s) = I(s) + s, s ∈ R. (5.3)

Proof. Recalling that θt = θ−1
t and that θt leaves Ω+

t invariant (see Remark 2.6), we find〈
e−ασt ,P

〉
=
∑
w∈Ω+

t

P1−α
t (w)P̂αt (w) =

∑
w∈Ω+

t

P1−α
t (θt(w))P̂αt (θt(w))

=
∑
w∈Ω+

t

P̂1−α
t (w)Pαt (w) =

〈
e(α−1)σt ,P

〉
,

which yields (5.2). Although one can derive (5.3) from (5.2) and the identity I = q∗, we provide
here a direct derivation based on the LDP and the following transient fluctuation relation (see [8]
and references therein): using that σt ◦ θt = −σt, we find

Pt
(

1

t
σt = s

)
=

∑
w∈Ω+

t :σt(w)=ts

Pt(w) =
∑

w∈Ω+
t :σt(w)=ts

etsP̂t(w)

=
∑

w∈Ω+
t :σt(θt(w))=ts

etsP̂t(θt(w)) =
∑

w∈Ω+
t :σt(w)=−ts

etsPt(w)

= etsPt
(

1

t
σt = −s

)
.

34The quantity 1l|α|>1 is equal to 1 if |α| > 1 and to 0 otherwise.
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From this we obtain that, for all ε > 0 and s ∈ R,∣∣∣∣lim inf
t→∞

1

t
logPt

(
1

t
σt ∈ B(s, ε)

)
− lim inf

t→∞

1

t
logPt

(
1

t
σt ∈ B(−s, ε)

)
− s
∣∣∣∣ ≤ ε.

By the construction of the rate function I , sending ε→ 0 gives |−I(s) + I(−s)− s| = 0, which
is (5.3). 2

6 Level-3 LDP

6.1 Main result

In this section, we assume (SLD) and prove Theorem 2.13. For technical reasons (in fact, in order to
invert a Fenchel–Legendre transform in the proof of Proposition 6.1 below), we consider a slightly
more general situation, viewing µt(ω) := 1

t

∑t−1
s=0 δϕs(ω) as an element of the space X =M(Ω)

of signed Borel measures on Ω. We endowM(Ω) with the weak-? topology with respect to the
natural pairing35

〈f, ν〉 =

∫
fdν, ν ∈M(Ω), f ∈ C(Ω).

Recall that C(Ω) is endowed with the topology of uniform convergence. With these topologies, the
spacesM(Ω) and C(Ω) are the continuous dual of each other (with the natural identification). The
induced topology on P(Ω) is the weak topology that we have considered so far.

We shall show that for every open set O ⊂M(Ω) and every closed set Γ ⊂M(Ω),

lim inf
t→∞

1

t
logP (µt ∈ O) ≥ − inf

ν∈O
I(ν), (6.1)

lim sup
t→∞

1

t
logP (µt ∈ Γ) ≤ − inf

ν∈Γ
I(ν), (6.2)

where I is given by (2.17) on P(Ω), and where I(ν) = +∞ onM(Ω)\P(Ω). Since µt(ω) ∈ P(Ω)
for all ω, this will immediately imply the LDP on P(Ω) in Theorem 2.13.

For f ∈ C(Ω), let

Q(f) = lim
t→∞

1

t
log
〈

eStf ,P
〉
. (6.3)

By Proposition 4.2 (in the special case d = 1, α = 1), the limit (6.3) exists and is finite, and the
function Q is convex and 1-Lipschitz .

Proposition 6.1. The sequence (µt)t∈N satisfies the LDP with respect to the weak-? topology
onM(Ω) for some good rate function I (see (6.1) and (6.2)). Moreover, I is the Fenchel–Legendre
transform of Q, i.e., for all ν ∈M(Ω),

I(ν) = sup
f∈C(Ω,R)

(
〈f, ν〉 −Q(f)

)
. (6.4)

Finally, I(ν) = +∞ for all ν ∈M(Ω) \ Pϕ(Ω).

Proof. We set zt = tµt, and we define s and s as in (3.15). We first show that the sequence (zt)t∈N
is admissible. A neighborhood basis of ν ∈M(Ω) is given by

Nν =
{
G(ν, f, ε) := {µ ∈M(Ω) : |〈f, µ− ν〉| < ε} : ε > 0, f ∈ C(Ω,Rd), d ≥ 1

}
.

35We shall reserve the symbols P,Q for the elements of P(Ω) and denote by µ, ν the elements ofM(Ω).
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We immediately have

1

t
zt(ω) = µt(ω) ∈ G(ν, f, ε) ⇐⇒ 1

t
Stf(ω) ∈ B(〈f, ν〉, ε).

Fix now ν = 1
2ν1+ 1

2ν2 ∈M(Ω), and consider a neighborhoodG(ν, f, ε) of ν. Let x = 1
2x1+ 1

2x2

with xi = 〈f, νi〉. Since (Stf)t∈N is admissible by Proposition 4.3, there exists ε′ > 0 such that

s(G(ν, f, ε)) = lim inf
t→∞

1

t
logP

(
1

t
Stf ∈ B(x, ε)

)
≥ lim sup

t→∞

1

2t
logP

(
1

t
Stf ∈ B(x1, ε

′)

)
+ lim sup

t→∞

1

2t
logP

(
1

t
Stf ∈ B(x2, ε

′)

)
=

1

2
s(G(ν1, f, ε

′)) +
1

2
s(G(ν2, f, ε

′)).

This implies that (zt)t∈N is admissible. Moreover, since µt belongs to the compact subset P(Ω) for
all t, the laws of (1

t zt)t∈N trivially form an exponentially tight family, so that by Proposition 3.9,
µt satisfies the LDP with good convex rate function I defined by

I(ν) = − inf
G∈Nν

s(G) = − inf
G∈Nν

s(G).

We now show that I(ν) = +∞ when ν /∈ Pϕ(Ω). Since µt ∈ P(Ω), and since P(Ω) is closed, one
immediately obtains I(ν) = +∞ if ν /∈ P(Ω). Now, if ν ∈ P(Ω) \ Pϕ(Ω), one can find a function
g ∈ C(Ω) such that f := g − g ◦ ϕ satisfies 〈f, ν〉 = 1. Then, for all µ ∈ G(ν, f, 1/2), we have
〈f, µ〉 > 1/2. However, by construction,

〈f, µt(ω)〉 =
1

t
(g(ω)− g ◦ ϕt(ω)) ≤ 2

t
‖g‖,

which is eventually < 1/2. Thus, P(µt ∈ G(ν, f, 1/2)) = 0 for t large enough, and

I(ν) ≥ − lim inf
t→∞

1

t
logP(µt ∈ G(ν, f, 1/2)) = +∞.

Following the same ideas as in Proposition 4.3 (see also [9, Theorem 4.5.10] and [34]), we now
identify I and Q∗ using Varadhan’s integral theorem and the convexity of I. For fixed f ∈ C(Ω), let
φf = 〈f, ·〉, which is a continuous function onM(Ω). Denoting by Pt be the law of µt, we have

Q(f) = lim
t→∞

1

t
log

∫
M(Ω)

etφf (ν)dPt(ν).

Since for any γ > 1 we have Q(γf) < ∞ (or more simply, using that Pt is supported on the
compact set P(Ω)), we can apply Varadhan’s theorem, and obtain36

Q(f) = I∗(f) = sup
ν∈M(Ω)

(〈f, ν〉 − I(ν)).

Since this is true for all f ∈ C(Ω), and since I is convex and lower semicontinuous, we find that
I = Q∗, which is (6.4) (see [4, Theorem 3.10] or [9, Lemma 4.5.8] for variants of the duality
principle between convex conjugate functions that apply in the present setup). 2

36Recall that C(Ω) is the dual ofM(Ω) with the weak-? topology, so I∗ is naturally defined on C(Ω).
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6.2 Alternative expression for the rate function

Assuming also (UD), we now derive an alternative expression for the rate function I of Proposi-
tion 6.1. This new expression will imply, in particular, that I is affine on Pϕ(Ω).

Given Q ∈ P(Ω) and t ∈ N, consider the relative entropy (recall (2.15))

Ent(Qt|Pt) = ςt(Q)− ht(Q),

where we set, with the usual convention that 0 log 0 = 0,

ςt(Q) =


−
∑
w∈Ωt

Qt(w) logPt(w) if Qt � Pt,

+∞ otherwise,

ht(Q) = −
∑
w∈Ωt

Qt(w) logQt(w).

For Q ∈ Pϕ(Ω), we have

lim
t→∞

1

t
ht(Q) = h(Q),

where h(Q) is the Kolmogorov–Sinai entropy of Q with respect to ϕ. The limit exists, is finite, and
the mapping h : Pϕ(Ω)→ [0,∞) is upper semicontinuous and affine.37 For completeness, a proof
of these elementary properties of the Kolmogorov–Sinai entropy is provided in Lemma A.4.

We first need a technical lemma.

Lemma 6.2. Assume (UD). Let f, g be two non-negative random variables on (Ω,F ,P) such that
f is Fn-measurable and g is Fr-measurable with n, r ∈ N. Then〈

f (g ◦ ϕn+τn),P
〉
≤ ecn+τn log |A| 〈f,P〉 〈g,P〉 .

Proof. Recalling the conventions in the beginning of Section 3, we obtain by (UD)〈
f (g ◦ ϕn+τn),P

〉
=

∑
uξv∈Ω+

n+τn+r

f(u)g(v)P(uξv)

≤
∑

uξv∈Ω+
n+τn+r

f(u)g(v)ecnP(u)P(v)

≤
∑
ξ∈Ωτn

ecn 〈f,P〉 〈g,P〉 ,

which implies the claim, since |Ωτn | = |A|τn . (The factor involving A would not be needed with
the alternative (UD) assumption mentioned in Remark 2.2.) 2

Proposition 6.3. Suppose that (UD) is satisfied.38 Then the limit

ς(Q) := lim
t→∞

1

t
ςt(Q) (6.5)

37See Corollary 4.3.14, Corollary 4.3.17 and the remark following it in the book [21].
38Although (SLD) is a standing assumption in this section, observe that this proposition does not rely on it provided

that we define I by (6.4). This proposition does not rely on the validity of the LDP for µt either.
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exists for any measure Q ∈ Pϕ(Ω), and the mapping ς : Pϕ(Ω)→ [0,∞] is lower semicontinuous.
Moreover, for any Q ∈ Pϕ(Ω), we have

I(Q) = ς(Q)− h(Q) = lim
t→∞

1

t
Ent(Qt|Pt), (6.6)

and I is an affine function of Q ∈ Pϕ(Ω).

Proof. We first prove the existence and lower semicontinuity of the limit (6.5) by using a classical
subadditivity argument. For each pair of integers t, n with t ≥ n+ τn, we let M = bt/(n+ τn)c.
By using (UD) M − 1 times, we find for all w ∈ Ω+

t

logPt(w) ≤ logP(n+τn)M (w[1,(n+τn)M ]) ≤
M−1∑
k=0

logPn(w[k(n+τn)+1,k(n+τn)+n]) + (M − 1)cn,

where both sides may be −∞. Integrating this inequality with respect to −t−1Q and using the
translation invariance of Q yields

1

t
ςt(Q) ≥ M

t
ςn(Q)− (M − 1)cn

t
≥
(

1

n+ τn
− 1

t

)
ςn(Q)− cn

n+ τn
,

where we have also used that ςn(Q) ≥ 0. Sending now t→∞ yields

lim inf
t→∞

1

t
ςt(Q) ≥ 1

1 + τn/n

(
1

n
ςn(Q)− cn

n

)
.

Taking the lim sup as n→∞ shows that the limit ς(Q) exists (it can be infinite). We then find that

ς(Q) = sup
n∈N

1

1 + τn/n

(
1

n
ςn(Q)− cn

n

)
,

and thus, since Q 7→ ςn(Q) is continuous for all n, we obtain that ς is lower semicontinuous.

We now fix Q ∈ Pϕ(Ω) and establish (6.6). The second equality in (6.6) follows from the
definitions, and we need to show that I(Q) = L(Q) := limt→∞

1
tEnt(Qt|Pt).

We first deal with the special case where there exists t0 ∈ N such that Qt0 is not absolutely
continuous with respect to Pt0 . Then Ent(Qt|Pt) =∞ for all t ≥ t0, and thus L(Q) =∞. Let us
choose w ∈ Ωt0 such that Q(w) > 0 = P(w). For all n ∈ N, let fn(ω) = n1lω[1,t0]=w. Observe
that 〈fn,Q〉 = nQ(w) and that Q(fn) = 0, since Stfn vanishes on the support of P. Thus, using
(6.4), we see that

I(Q) ≥ 〈fn,Q〉 −Q(fn) = nQ(w) for all n ∈ N,

so that I(Q) =∞.

Suppose now that Qt � Pt for all t ∈ N. We shall first prove that L(Q) ≥ I(Q). Let f ∈ Cfin(Ω)
be Fr-measurable for some r ∈ N, and let

At =
〈

eStf ,P
〉
.

By Jensen’s inequality and the invariance of Q, we have

logAt = log
〈
eStf ,P

〉
= log

∫
Σt+r−1

eStf
dPt+r−1

dQt+r−1
dQt+r−1

≥
∫

Σt+r−1

(
Stf − log

dQt+r−1

dPt+r−1

)
dQt+r−1

= t〈f,Q〉 − Ent(Qt+r−1|Pt+r−1),
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where Σt is the support of Qt. Dividing by t and sending t→∞ shows that L(Q) ≥ 〈f,Q〉−Q(f).
Since f ∈ Cfin(Ω) is arbitrary, Cfin(Ω) is dense in C(Ω), and Q is Lipschitz, we find

L(Q) ≥ sup
f∈Cfin(Ω)

(〈f,Q〉 −Q(f)) = sup
f∈C(Ω)

(〈f,Q〉 −Q(f)) = I(Q).

It remains to prove that L(Q) ≤ I(Q). Fix two integers n,M ≥ 1 and let t = n′M where
n′ = τn+n. Consider the Fn-measurable function f = 1

n′ log Qn
Pn . This function is well defined on

the support of Qn (and, hence, on the support of Pn), and we define it by −∞ on the complement.
Note that

Ent(Qn|Pn) = n′〈f,Q〉. (6.7)

We have (see Figure 1) the decomposition

Stf =
n′−1∑
s=0

f (M)
s , f (M)

s (ω) =
M−1∑
k=0

f(ω[kn′+s+1,kn′+s+n]). (6.8)

Using Hölder’s inequality and translation invariance leads to

〈
eStf ,P

〉
≤

n′−1∏
s=0

〈
en
′f

(M)
s ,P

〉1/n′
=
〈
en
′f

(M)
0 ,P

〉
.

Using then Lemma 6.2 recursively M − 1 times and translation invariance, we obtain

〈
eStf ,P

〉
≤ e(M−1)dn

〈
en
′f ,P

〉M
= e(M−1)dn

〈
Qn

Pn
,P
〉M

= e(M−1)dn
(
Qn(Ω+

n )
)M ≤ e(M−1)dn ,

where dn = cn + τn log |A| = o(n). Thus,

1

t
logAt ≤

(M − 1)dn
t

≤ dn
n′
,

whence Q(f) ≤ dn
n′ . Combining this with (6.7), we derive

1

n
Ent(Qn|Pn) =

n′

n
〈f,Q〉 ≤ n′

n
(〈f,Q〉 −Q(f)) +

dn
n
≤ n′

n
I(Q) +

dn
n
.

Passing to the limit as n → ∞ shows that L(Q) ≤ I(Q), and (6.6) follows. Finally, since both
Q 7→ h(Q) and Q 7→ ς(Q) are affine, we obtain from (6.6) that so is I. 2

ω1 ω2 ω3 ωt

f
(4)
0

f
(4)
1

f
(4)
2

f
(4)
3

f
(4)
4

Figure 1: Illustration of (6.8) in the case n = 3, τn = 2, M = 4
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6.3 Level-3 fluctuation relation

Proposition 6.4. Assume (UD)39 and that P̂ = ΘP with Θ as in Definition 2.5. Then, for any Q ∈
Pϕ(Ω) such that (ΘQ)t and Qt are equivalent for all t, I(Q) < +∞, and I(ΘQ) < +∞, we have

I(ΘQ) = I(Q) + ep(Q), (6.9)

where we set ep(Q) = ς(ΘQ)− ς(Q). Moreover,

ep(Q) = lim
t→∞

1

t
〈σt,Q〉. (6.10)

Proof. (UD) and Proposition 6.3 imply

I(Q) = ς(Q)− h(Q), I(ΘQ) = ς(ΘQ)− h(ΘQ). (6.11)

Since θt is a bijection, we see that

ht(Q) = −
∑
w∈Ωt

Qt(w) logQt(w) = −
∑
w∈Ωt

Qt

(
θt(w)

)
logQt

(
θt(w)

)
= ht(ΘQ).

It follows that h(ΘQ) = h(Q). Combining this with (6.11), we arrive at (6.9). We now prove
(6.10). As was already observed in the proof of Proposition 6.3, the conditions I(Q) < +∞, and
I(ΘQ) < +∞ imply that Qt � Pt and (ΘQ)t � Pt for all t. We remark that

〈σt,Q〉 = −
〈

log
Qt

Pt
,Qt

〉
+

〈
log

Qt

P̂t
,Qt

〉
= −

〈
log

Qt

Pt
,Qt

〉
+

〈
log

(ΘQ)t
Pt

, (ΘQ)t

〉
= −Ent(Qt|Pt) + Ent((ΘQ)t|Pt).

Dividing this relation by t, passing to the limit as t→∞, and using (6.6), we obtain

lim
t→∞

1

t
〈σt,Q〉 = I(ΘQ)− I(Q).

Comparing this with (6.9), we arrive at the required relation (6.10). 2

A Appendix

A.1 Technical results

We first prove two lemmas justifying Remarks 2.3 and 2.4.

Lemma A.1. Assume that (UD) holds for both P and P̂, and that (SLD) holds for both P and P̂
with the same ξ, in the sense that for all t ∈ N, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1, there exists
|ξ| ≤ τt such that for both P] = P and P] = P̂,

e−ctP](u)P](v) ≤ P](uξv).

Then (SSD) holds (for some larger τt and ct).

39The same remark as in Proposition 6.3 applies: although it is a standing assumption in this section, (SLD) is not
necessary in this proposition if we simply define I by (6.4).
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Proof. Let u ∈ Ωt and v ∈ Ωfin. Then, by Lemma 3.5, there exists b ∈ Ωτt such that P](v) ≥
P](bv) ≥ P](v)e−Cτt . By assumption there is |ξ| ≤ τt such that

P](uξbv) ≥ e−ctP](u)P](bv) ≥ e−ct−CτtP](u)P](v).

Let then ξ′ = ξb. By (UD), we have

P](uξ′v) ≤ ectP](u)P](ξ′[τt+1,|ξ′|]v) ≤ ectP](u)P](v).

(Note that ξ′[τt+1,|ξ′|] may be the empty word.) Thus,

e−ct−CτtP](u)P](v) ≤ P](uξ′v) ≤ ectP](u)P](v).

Since |ξ′| ≤ 2τt, (SSD) holds with τt and ct replaced with the sequences 2τt and ct + Cτt, which
are also o(t). 2

Turning to Remark 2.4, we now give a sufficient condition for P to be ergodic (which is fulfilled, in
particular, if (SLD) holds with supt τt <∞ and supt ct <∞).

Lemma A.2. Assume the following form of lower decoupling: there exist c > 0 and k ∈ N0 such
that for all t ∈ N, all u ∈ Ωt and all v ∈ Ωfin, |v| ≥ 1,∑

ξ∈Ωfin
τt−k≤|ξ|≤τt

P(uξv) ≥ e−cP(u)P(v).

Then P is ergodic.

Proof. Consider first two cylinder sets C1 and C2 given by Ci = {ω ∈ Ω | ω[1,r] ∈ Ci} for some
r ∈ N and sets Ci ⊂ Ωr, i = 1, 2. Observe that, by assumption,

τt∑
j=τt−k

P(C1 ∩ ϕ−r−jC2) =

τt∑
j=τt−k

∑
u∈C1

∑
v∈C2

∑
ξ∈Ωj

P(uξv)

≥ e−c
∑
u∈C1

∑
v∈C2

P(u)P(v) = e−c P(C1)P(C2).

Thus, there exists t ∈ [r + τt − k, r + τt] such that

P(C1 ∩ ϕ−tC2) ≥ C P(C1)P(C2),

whereC = e−c/(k+1) > 0. Since any Borel set in Ω can be approximated by cylinder sets (and the
constant C is independent of the choice of Ci), it follows that P is ergodic. The details are as follows.
Assume B ⊂ Ω is an invariant Borel set (i.e., P(B4ϕ−1B) = 0),40 and let ε > 0. We can find
two cylinder sets C1, C2 that approximate B and Bc, in the sense that P(Bc4C1) + P(B4C2) ≤ ε.
Then,

0 = sup
t∈N0

P(Bc ∩ ϕ−tB) ≥ sup
t∈N0

P(C1 ∩ ϕ−tC2)− ε

≥ C P(C1)P(C2)− ε ≥ C(P(Bc)− ε)(P(B)− ε)− ε
≥ C P(Bc)P(B)− (2C + 1)ε.

Since ε was arbitrary, we have P(Bc)P(B) = 0, so that P(B) ∈ {0, 1}. This completes the proof.
2

The next lemma proves the properties of irreducible Markov processes mentioned in Example 2.20.
40The symmetric difference A4B of two sets A and B is defined as (A \B) ∪ (B \A).
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Lemma A.3. Let P ∈ Pϕ(Ω) be a Markov process. Then (UD) holds. Assume furthermore that it
is irreducible (i.e., that for all a, b ∈ A, there exists ξ(a,b) ∈ Ωfin such that P(aξ(a,b)b) > 0). Then
(SLD) holds. If, in addition, P̂ ∈ Pϕ(Ω) is another Markov process such that P2 � P̂2, then (SSD)
holds.

Proof. Since P is Markov and shift-invariant, we have

P(w) = P1(w1)P (w1;w2)P (w2;w3) · · ·P (wt−1;wt), w ∈ Ωt,

for some transition matrix (P (a; b))a,b∈A.

Upper Decoupling. We show that (UD) holds with τt ≡ 0 and

ct ≡ − min
a∈A:P1(a)>0

logP1(a).

Indeed, given u ∈ Ωt and v ∈ Ωfin such that P1(v1) > 0, we have

P(uv) =
P (ut; v1)

P1(v1)
P(u)P(v) ≤ ectP(u)P(v).

If P1(v1) = 0, then by invariance P(uv) = 0 ≤ ectP(u)P(v), so that (UD) is proved.

Selective Lower Decoupling. Assume now that the process is irreducible. This implies that
P1(a) > 0 for all a ∈ A. Let τ = maxa,b∈A |ξ(a,b)|. Given two words u ∈ Ωt and v ∈ Ωfin,
|v| ≥ 1, let ξ = ξ(ut,v1). Then either |ξ| = 0, in which case

P(uv) =
P (ut; v1)

P1(v1)
P(u)P(v), (A.1)

or k := |ξ(ut,v1)| ≥ 1, in which case

P(uξv) =
P (ut; ξ1)P(ξ)P (ξk; v1)

P1(ξ1)P1(v1)
P(u)P(v). (A.2)

The factors in front of P(u)P(v) on the right-hand sides of (A.1) and (A.2) are positive and depend
only on ut and v1. We obtain a lower bound by taking the minimum over all possible values of ut
and v1. This implies that (SLD) holds with τt ≡ τ and some ct independent of t.

Selective Symmetric Decoupling. Assume finally that P̂ is another Markov process such that
P2 � P̂2. Then by the Markov property we have that Pt � P̂t for all t, so P̂ is irreducible, and
one can choose the same ξ(a,b) as for P (i.e., we have both P(aξ(a,b)b) > 0 and P̂(aξ(a,b)b) > 0).
Considerations similar to the above imply that (SSD) holds. 2

Finally, for the reader’s convenience, we prove some well-known properties of the Kolmogorov–
Sinai entropy that are used in the proof of Proposition 6.3 (see for example Section 4.3 of [21]).

Lemma A.4. For all Q ∈ Pϕ(Ω), the limit

h(Q) = lim
t→∞

1

t
ht(Q) (A.3)

exists, is finite, and the mapping h : Pϕ(Ω)→ [0,∞) is upper semicontinuous and affine.

Proof. First, it follows from ϕ-invariance and the inequality log x ≤ x− 1 that

ht+t′(Q)− ht(Q)− ht′(Q) =
∑
w∈Ωt

∑
w′∈Ωt′

Q(ww′) log
Q(w)Q(w′)

Q(ww′)
≤ 0.
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By subadditivity, the limit (A.3) exists, is finite, and h(Q) = inft∈N
1
tht(Q). Moreover, as an

infimum over a family of continuous functions, h is upper semicontinuous. That h is affine is an
immediate consequence of the following relation: for all Q(1),Q(2) ∈ Pϕ(Ω), and all p1 ∈ (0, 1),
p2 = 1− p1, we have

∑
i=1,2

piht
(
Q(i)

)
≤ ht

∑
i=1,2

piQ(i)

 ≤ ∑
i=1,2

piht
(
Q(i)

)
−
∑
i=1,2

pi log pi. (A.4)

To complete the proof, we now establish (A.4). The first inequality follows from the concavity of
x 7→ f(x) := −x log x. Indeed, we have

∑
i=1,2

piht
(
Q(i)

)
=
∑
w∈Ωt

∑
i=1,2

pif
(
Q(i)(w)

)
≤
∑
w∈Ωt

f

∑
i=1,2

piQ(i)(w)

 = ht

∑
i=1,2

piQ(i)

 .

For the second inequality, we observe that

ht

∑
i=1,2

piQ(i)

 = −
∑
w∈Ωt

∑
i=1,2

piQ(i)(w) log

∑
j=1,2

pjQ(j)(w)


≤ −

∑
w∈Ωt

∑
i=1,2

piQ(i)(w) log
(
piQ(i)(w)

)
= −

∑
i=1,2

pi
∑
w∈Ωt

Q(i)(w) log
(
Q(i)(w)

)
−
∑
i=1,2

pi log pi
∑
w∈Ωt

Q(i)(w)

=
∑
i=1,2

piht
(
Q(i)

)
−
∑
i=1,2

pi log pi.

The proof is complete. 2

A.2 Hidden Markov chain example

In the section we discuss the hidden Markov chain of Example 2.24. For reasons of space, we only
outline the main steps of the analysis; the details are easy to fill.

Let (γ(n))n∈N0 be a sequence of non-negative numbers such that γ(0) = 0 and γ(n+1) ≥ γ(n)+ε
for all n and some ε > 0. We consider a countable Markov chain with states 0, 1, 2, . . . such that
from each state n ∈ N0, we move either to n+ 1 with probability g(n+ 1) := eγ(n)−γ(n+1) or we
move to 0 with probability 1− g(n+ 1) (see Figure 2).

0 1 2 3 4

g(1) g(2) g(3)

1− g(1) . . .

Figure 2: Illustration of the Markov chain.
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This Markov chain admits a unique invariant measure, and we denote by Q the corresponding
Markov process on NN

0 . Note that

Q1(n) = Z−1e−γ(n), Z =
∞∑
n=0

e−γ(n).

LetA = {a,b} and let Ψ : NN
0 → AN be defined by Ψ(ω1, ω2, . . . ) = (ψ(ω1), ψ(ω2), . . . ), where

ψ(0) = a and ψ(n) = b for all n ≥ 1. Our main object of interest is the invariant probability
measure on Ω = AN defined by P = Q ◦Ψ−1. The following holds:

• The measure P has full support, and for any words u and v we have

P(uav) = P(ua)P(av)/P1(a).

Moreover, P is reversible in the sense that Pt(w1, . . . , wt) = Pt(wt, . . . , w1) for all t ∈ N and
w ∈ Ωt.

• Let us set

pt(w) =
Pt+2(awa)

P1(a)
, w ∈ Ωt,

with the convention p0(κ) = P2(aa)/P1(a) = 1− g(1), where κ is the empty word. Then

p|u|+|v|+1(uav) = p|u|(u)p|v|(v) for all u, v ∈ Ωfin.

• The quantities Pt+1(bta), Pt+1(abt) and Pt(bt) are bounded above and below by some constant
(independent of t) times e−γ(t). More generally, the quantities Pt+1(aw), Pt+1(wa) and pt(w)
are bounded above and below by a constant (independent of t and w ∈ Ωt) times Pt(w).

• P satisfies (SLD) with τt ≡ 1 and supt ct <∞ (by taking ξ = a in (2.2)).

• P satisfies (UD) with τt ≡ 0 and ct = c + supn∈N0
[γ(n) + γ(t) − γ(n + t)] for some c > 0,

provided that (γ(n))n∈N0 is such that ct = o(t).

We assume now that P̂ is constructed in the same way, with (γ̂(n))n∈N0 satisfying the same
conditions as (γ(n))n∈N0 . We define p̂t in the same way as pt. Then the following holds:

• The pair (P, P̂) satisfies (SSD) with τt ≡ 1 and supt ct <∞ (by taking ξ = a in (2.4)).

• The function q defined in (2.8) can be written as

q(α) = lim
t→∞

1

t
log

∑
w∈Ωt

ζt,α(w), α ∈ R,

where the quantity ζt,α(w) := e(α+1) log pt(w)−α log p̂t(w) defined for t ∈ N0 and w ∈ Ωt satisfies
the relation

ζ|u|+|v|+1,α(uav) = ζ|u|,α(u)ζ|v|,α(v), u, v ∈ Ωfin.

• We have q(α) = − log ρ(α), where ρ(α) is the radius of convergence of the power series

Rα(x) =
∑
t∈N0

rt(α)xt, rt(α) =
∑
w∈Ωt

ζt,α(w).

• Let us set
Uα(x) =

∑
t∈N0

ut(α)xt, ut(α) = ζt,α(bt),
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and observe that

ut(α) = (1− g(t+ 1))α+1(1− ĝ(t+ 1))−αe−(α+1)γ(t)+αγ̂(t),

where 1 − g(t + 1) and 1 − ĝ(t + 1) are bounded from above by one and from below by a
constant c > 0 uniformly in t. The radius of convergence of Uα is

κ(α) = lim inf
t→∞

exp((α+ 1)t−1γ(t)− αt−1γ̂(t)).

• By sorting the words w ∈ Ωt according to the position of the first occurrence of the symbol a (if
there is one), we get the renewal equation

rt(α) =

t−1∑
k=0

uk(α)rt−1−k(α) + ut(α).

This relation translates into the algebraic equation Rα(x) = xRα(x)Uα(x) + Uα(x), so that

Rα(x) =
Uα(x)

1− xUα(x)
.

The power series defined above have strictly positive coefficients for all α. They are strictly
increasing functions of x ≥ 0, and jointly lower semicontinuous in α ∈ R and x ≥ 0. As already
discussed, the quantity of interest is the radius of convergence ρ(α) of Rα. For each fixed α, we
are in one of the following two cases:

(a) There exists x > 0 such that xUα(x) = 1, and in this case ρ(α) = x.

(b) xUα(x) < 1 for all 0 ≤ x ≤ κ(α), in which case ρ(α) = κ(α).

In both cases, we have ρ(α) = sup{x ≥ 0 : xUα(x) ≤ 1}. In case (a), ρ′(α) can be obtained by
differentiating the relation ρ(α)Uα(ρ(α)) ≡ 1, and we obtain

ρ′(α) = −
∑

n≥0 ∂αun(α)ρn+1(α)∑
n≥0 un(α)(n+ 1)ρn(α)

. (A.5)

In case (b), we simply have ρ′(α) = κ′(α). (Of course these relations hold only if the corresponding
quantities are well defined, and if α is not at a transition point between the two cases.)

Different situations can occur depending on the concrete choice of (γ(n))n∈N0 and (γ̂(n))n∈N0 .
We now briefly discuss six interesting cases. We do not give any proofs, as these examples are
easily understood by substituting the relevant values in the formulas for κ(α) and ρ(α) (and
their derivative). The interested reader may wish to investigate the matter further by trying other
expressions for (γ(n))n∈N0 and (γ̂(n))n∈N0 .

Example 1. Let γ(n) = n and γ̂(n) = n2. We have κ(α) = +∞ for α < 0, κ(0) = e, and
κ(α) = 0 for α > 0. For α ≤ 0 we are in case (a), and it follows from the identity ρ(α)Uα(ρα) ≡ 1
that ρ, and hence q, are analytic on (−∞, 0). We know already that q(0) = 0. When α > 0,
we have ρ(α) = κ(α) = 0, and hence we are in case (b) with q(α) = +∞.41 Evaluating the
quantity (A.5) in the limit α ↑ 0 and ρ(α) ↓ ρ(0) = 1 shows that 0 > ρ′(0−) > −∞. Since
q′(α) = − d

dα log ρ(α) = −ρ′(α)
ρ(α) , we conclude that q′(0−) is finite (numerical evaluation gives

q′(0−) = 0.3294...). See Figure 3a.42

41The fact that q(α) is infinite when α > 0 also follows from the observation that in the sum
∑
w∈Ωt

eασt(w)Pt(w),

the contribution of w = bt grows like e−(α+1)t+αt2 .
42A bisection method was used to find ρ(α) = sup{x ≥ 0 : xUα(x) ≤ 1}. After that, q = − log ρ was obtained by

direct computation.
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Example 2. By replacing n2 with exp(2n) in Example 1, we obtain the same results except that
now q′(0−) = +∞. See Figure 3b.

Example 3. Let γ(n) = n + cn2 and γ̂(n) = n2 with c ∈ (0, 1). An analysis similar to that of
Example 1 shows that q(α) is infinite for α > α∗ := c/(1− c), and finite for α ≤ α∗. The case
c = 1/2, α∗ = 1 is represented in Figure 3c.

Example 4. Let γ(n) = cn2 and γ̂(n) = n2 + n3/2 with c ∈ (0, 1). For α < α∗ := c/(1− c) we
are in case (a), while for α ≥ α∗ we are in case (b) with κ(α) = 0 and q(α) = +∞. The function
q increases continuously to +∞ when α ↑ α∗. The case c = 1/2 is plotted in Figure 3d.
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(d) Example 4

Figure 3: Graph of q for Examples 1–4. The horizontal axis represents α. In Examples 1–3, the
line is interrupted where q jumps to +∞.

Example 5. Let γ(n) = n and γ̂(n) = 2n − 2 log(1 + n/2). In this case, κ(α) = exp(1 − α).
One shows that there exists α∗ > 1 (numerical evaluation gives α∗ = 1.1305...) such that we are in
case (a) if α ≤ α∗, and in case (b) if α > α∗. By evaluating (A.5) as α ↑ α∗, ρ(α) ↓ ρ(α∗) = κ(α∗)
and comparing with κ′(α∗), one shows that q is not differentiable at α∗. See Figure 4.

Example 6. Take now γ(0) = 0, γ(1) = 0.01, γ(n) = n + 5 log(1 + n/5) for n ≥ 2, and
γ̂(n) = 10 + 2n + 5 log(1 + n/5) for all n ≥ 0. Here again, κ(α) = exp(1 − α). Explicit
computations show that κ(α)Uα(κ(α)) < 1 on some interval I = (−0.6418 . . . ,−0.2042 . . . )
and κ(α)Uα(κ(α)) ∈ (1,+∞] outside of the closure of I (the numerical values in the definition of
γ(n) and γ̂(n) were chosen to ensure the existence of such an interval). Then for α ∈ I we are
in case (b), and for α /∈ I we are in case (a). It follows that q is analytic everywhere except at
the boundaries of I . Explicit computations using (A.5) show that q is not differentiable at those
boundaries. See Figure 5.

We note that in all the examples except the last, both P and P̂ satisfy (UD) with τt ≡ 0 and
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Figure 4: Numerical evaluation of ρ, κ and q for Example 5.
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Figure 5: Numerical evaluation of ρ, κ and q for Example 6.

supt ct <∞. In the last example, both measures satisfy (UD) with supt ct =∞ and ct = o(t).

In order to make direct comparison with the results of [3] and [8], we introduce the following
construction.

Remark A.5. Given the pair (P, P̂) constructed in this section, one can define a new pair of
measures (P, P̂) on A N, with the product alphabet A = A×A, such that (P, P̂) are related
by an involution as in Definition 2.5. For any word (u, v) ∈ A t = At × At, define P(u, v) =

P(u)P̂(v), and set P̂(u, v) = P(θt(u, v)) where43 θt(u, v) = (v, u). It is easy to show that the
pair (P, P̂) satisfies (SSD) (with ξ = (a, a) ∈ A ) and that the entropy production Σt of the pair
(P, P̂) can be expressed in terms of the entropy production σt of (P, P̂) by

Σt(u, v) := log
Pt(u, v)

P̂t(u, v)
= σt(u)− σt(v), u, v ∈ Ωt.

As a consequence, we find that

Q(α) := lim
t→∞

1

t
log
〈
eαΣt ,P

〉
= q(α) + q(−α− 1), α ∈ R. (A.6)

Note that Q satisfies the symmetry (2.12), i.e., Q(−α) = Q(α− 1) for all α ∈ R.

We finish with a brief comment on how, for the pairs of measures (P, P̂) constructed from the
pairs (P, P̂) in the above six examples, the results of [8] and [3] fail to apply or to provide the global
LDP in Theorem 2.8. We remark that in the first five cases the measures P and P̂ satisfy (UD)
with τt ≡ 0 and supt ct <∞, while in the last case, both measures satisfy (UD) with supt ct =∞
and ct = o(t).

43Since P and P̂ are reversible, one could as well define θt(u, v) = ((vt, . . . , v1), (ut, . . . , u1)). This means that
both cases of Definition 2.5 are actually covered.
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• The results of [3] apply to the pairs (P, P̂) of Examples 1–5 above, and give a local LDP
for in the interval (Q′(−1+),Q′(0−)). Only in Example 2 is this interval equal to R (see
(A.6)), and hence in this case [3] gives the full LDP. Example 6 cannot be handled by the
method of [3], because it does not satisfy (UD) with supt ct <∞. Note also that in Example
6, Q is not differentiable in (−1, 0), unlike in the situation of [3].

• As mentioned in [8, Example 0.16], if the sequence (Gt)t∈N ⊂ C(A N) defined by Gt =
log Pt

44 is asymptotically additive (see the definition and characterizations in [8]), then [8,
Theorem 4.5] applies, and provides the global LDP for t−1σt. This is the case of Examples
5 and 6 above. Examples 1–4 clearly cannot be handled by [8], as under the assumptions
therein the entropic pressure e(α) = q(−α) is finite for all α ∈ R.

A.3 Weak Gibbs measures

LDPs for weak Gibbs measures (on shift spaces and more general dynamical systems) have been
abundantly studied; see for example [5, 42, 43, 35, 8] and the references therein. The weak Gibbs
condition and our decoupling assumptions are essentially incomparable (see below). We show
here that given a weak Gibbs measure supported on a subshift satisfying a suitable specification
property, one can still construct a map ψn,t satisfying the conclusions of Proposition 3.1. As our
results use (SLD) and (SSD) only through the conclusions of Proposition 3.1, they remain valid for
weak Gibbs measures.

We first introduce the notion of weak Gibbs measure on a subshift. The measure P can be viewed
as an invariant measure for the dynamical system (Ω+, ϕ). Recall that Ω+ = suppP was defined
in (2.1). In this setup the following two conditions are natural. We again assume that τt = o(t).

Weak specification property (WSP). For all t ∈ N, all u ∈ Ω+
t , and all v ∈ Ω+

fin, there exists
ξ ∈ Ω+

fin satisfying |ξ| ≤ τt such that uξv ∈ Ω+
fin.45

Weak Gibbs condition (WGC). The measure P is weak Gibbs46 with respect to some potential
f ∈ C(Ω+); i.e., there exists a real number p (called pressure) and a real sequence (dt)t∈N
such that dt = o(t), and for all ω ∈ Ω+ and all t ∈ N,

e−dt+Stf(ω)−tp ≤ Pt(ω1, . . . , ωt) ≤ edt+Stf(ω)−tp.

Measures satisfying (WGC) with supt dt < ∞ are called Gibbs measures (see Example 2.21).
Without loss of generality, we shall assume that p = 0 (by replacing f with f − p if necessary).

Note that (WSP) is a condition on the structure of the set Ω+, while (WGC) is a condition47 on P.
Once the set Ω+ is fixed, (WGC) implies a strong lower bound on the probability of the “allowed”
words:

Pt(w) ≥ e−Ct, t ∈ N, w ∈ Ω+
t , (A.7)

where C = ‖f‖+ supt dt/t. Our decoupling assumptions are different in philosophy, as they are
formulated at the level of measures only. They compare to (WSP) and (WGC) as follows.

• As mentioned in Example 2.21, if (WSP) holds and P is a Gibbs measure (i.e., (WGC) holds
with supt dt <∞), then the (UD) and (SLD) assumptions are satisfied. On the contrary, if

44Pt is defined as the marginal of P on the first t coordinates of A N.
45For similar and weaker forms of specification properties and related results, see for example [36, 37, 40, 23]
46All the considerations in this section can be adapted with minor technical changes to the case where the potential is

asymptotically additive. For definitions, see for example [8] and references therein.
47From the point of view of dynamical systems, one is first given a subshift Ω+ satisfying (WSP), and then one

introduces (weak) Gibbs measures on it.
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supt dt =∞, then (WSP) and (WGC) do not imply any of our decoupling assumptions in
general.

• (SLD) implies (WSP).

• Even put together, (SLD) and (UD) do not imply (WGC) in general, as (A.7) may fail.
Indeed, (SLD) ensures that there is one ξ ∈ Ωfin, |ξ| ≤ τt such that P(uξv) ≥ e−ctP(u)P(v),
and says nothing about P(uξ′v) for ξ′ 6= ξ. See Example 2.24 and Appendix A.2.

We now establish an analogue of Proposition 3.1 for (WSP) and (WGC). Here, n, t, t′, N , P(n)

and Λt′ are as in Section 3.1.

Proposition A.6. Assume (WSP) and (WGC). Then there exists a map ψn,t : Ωt′ → Ωt such that
the following holds.

1. We have
P(n)
t′ ◦ ψ

−1
n,t ≤ eg(n,t) Pt, with lim

n→∞
lim sup
t→∞

1

t
g(n, t) = 0. (A.8)

2. Let P̂ ∈ Pϕ(Ω), and assume one of the following: (a) P̂ = ΘP with Θ as in Definition 2.5
and θt(Ω+

t ) = Ω+
t ; or (b) there exists d̂t = o(t) and f̂ ∈ C(Ω) such that for all ω ∈ Ω+,48

e−d̂t+Stf̂(ω) ≤ P̂t(ω1, . . . , ωt) ≤ ed̂t+Stf̂(ω). (A.9)

Then ψn,t can be chosen so that, in addition to (A.8),

lim
n→∞

lim sup
t→∞

1

t
sup
w∈Λt′

∣∣∣∣∣σt(ψn,t(w))−
N−1∑
k=0

σn(w[kn+1,(k+1)n])

∣∣∣∣∣ = 0, (A.10)

and there exists c > 0 such that

|σt(w)| ≤ ct, t ∈ N, w ∈ Ω+
t . (A.11)

Proof. We first prove 1. For each w ∈ Ωt′ , we write w = w1w2 . . . wN with wi ∈ Ωn. Setting

ψn,t(w) = bw1ξ1w2ξ2 . . . wN−1ξN−1wN ∈ Ωt (A.12)

for some suitable ξi ∈ Ωn satisfying |ξi| ≤ τn for all i, we shall prove that

P(ψn,t(w)) ≥ e−g1(n,t)P(n)(w), with lim
n→∞

lim sup
t→∞

1

t
g1(n, t) = 0. (A.13)

Then, the conclusion of Part 1 follows from the same combinatorial argument as in Proposition 3.1
(see the discussion after (3.14)). In order to prove (A.13), we assume that wi ∈ Ω+

n for all i
(equivalently, that w ∈ Λt′), as the result is trivial otherwise. By following the same strategy as
in Proposition 3.1, using (WSP) instead of (SLD), we can choose ξ1, . . . , ξ

N−1 and b such that
ψn,t(w) ∈ Ω+

t . Next, let ω ∈ Ω+ be such that ω[1,t] = ψn,t(w). By (WGC),

Pt(ψn,t(w)) ≥ eStf(ω)−dt ≥ e−g1(n,t)
N∏
i=1

Pn(wi), (A.14)

where g1(n, t) = dt +Ndn + (t− t′)‖f‖. The relations N ≤ t/n and (3.3) imply (A.13), which
completes the proof of Part 1.

48Note that no requirement is made for ω /∈ Ω+.
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We now prove Part 2. By combining (A.14) with the corresponding upper bound, we obtain

lim
n→∞

lim sup
t→∞

1

t
sup
w∈Λt′

∣∣∣logPt(ψn,t(w))− logP(n)
t′ (w)

∣∣∣ = 0. (A.15)

Assume first that P̂ satisfies (b). By (A.9), the relation (A.15) also holds with P replaced with
P̂, and (A.10) immediately follows. Moreover, by (WGC) and (A.9), we obtain (A.11) with
c = ‖f − f̂‖+ supt(dt + d̂t)/t.

Assume now that P̂ satisfies (a) and let w ∈ Λt′ . Then ψn,t(w) ∈ Ω+
t and θt(ψn,t(w)) ∈ Ω+

t .
Hence there exists ω̂ ∈ Ω+ such that ω̂[1,t] = θt(ψn,t(w)). Since P̂t(ψn,t(w)) = Pt(θt(ψn,t(w))),
we obtain by (WGC) that

e−dt+Stf(ω̂) ≤ P̂t(ω1, . . . , ωt) ≤ edt+Stf(ω̂).

This and (WGC) imply (A.11) with c = 2‖f‖+ 2 supt dt/t. Using the notation (A.12), and intro-
ducing b̂ = θ|b|(b), ξ̂i = θ|ξi|(ξ

i), ŵi = θn(wi), we have either θt(ψn,t(w)) = b̂ŵ1ξ̂1 . . . ξ̂N−1ŵN

or θt(ψn,t(w)) = ŵN ξ̂N−1 . . . ξ̂1ŵ1b̂ (see Definition 2.5). Computations similar to (A.14) show
that (A.15) also holds with P replaced with P̂, so that (A.10) again follows. 2

By using Proposition A.6 instead Proposition 3.1, our results apply as follows.

• All the conclusions of Theorem 2.7 are valid under (WSP) and (WGC).

• All the conclusions of Theorem 2.8 are valid under (WSP), (WGC), and the assumptions in
Part 2 of Proposition A.6. The finiteness of q(α) for all α ∈ R follows from (A.11).

• All the conclusions of Theorem 2.13 are valid under (WSP) and (WGC). The estimates
requiring (UD) in Proposition 6.3 can easily be adapted by using the following consequence
of (WGC): for all w1, w2, . . . , wN ∈ Ωn and all ξ1, ξ2, . . . , ξN−1 ∈ Ωτn , we have

PNn+(N−1)τn(w1ξ1w2ξ2 · · ·wN−1ξN−1wn) ≤ eh(n,t)
N∏
i=1

Pn(wi),

where h(n, t) := dNn+(N−1)τn +Ndn + (N − 1)τn‖f‖ satisfies

lim
n→∞

lim sup
t→∞

t−1h(n, t) = 0.
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