Skip to Main content Skip to Navigation
Journal articles

Cuts in matchings of 3-connected cubic graphs

Kolja Knauer 1 Petru Valicov 1
1 ACRO - Algorithmique, Combinatoire et Recherche Opérationnelle
LIS - Laboratoire d'Informatique et Systèmes
Abstract : We discuss conjectures on Hamiltonicity in cubic graphs (Tait, Barnette, Tutte), on the dichromatic number of planar oriented graphs (Neumann-Lara), and on even graphs in digraphs whose contraction is strongly connected (Hochst\"attler). We show that all of them fit into the same framework related to cuts in matchings. This allows us to find a counterexample to the conjecture of Hochst\"attler and show that the conjecture of Neumann-Lara holds for all planar graphs on at most 26 vertices. Finally, we state a new conjecture on bipartite cubic oriented graphs, that naturally arises in this setting.
Document type :
Journal articles
Complete list of metadata

Cited literature [18 references]  Display  Hide  Download
Contributor : Petru Valicov <>
Submitted on : Monday, September 17, 2018 - 9:49:25 AM
Last modification on : Monday, August 31, 2020 - 9:52:21 AM
Long-term archiving on: : Tuesday, December 18, 2018 - 12:30:41 PM


Files produced by the author(s)




Kolja Knauer, Petru Valicov. Cuts in matchings of 3-connected cubic graphs. European Journal of Combinatorics, Elsevier, 2018, 76, ⟨10.1016/j.ejc.2018.09.004⟩. ⟨hal-01672548v2⟩



Record views


Files downloads