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Abstract

This paper presents a compositional approach to specification-guided abstrac-
tion refinement for control synthesis of a nonlinear system associated with a
method to over-approximate its reachable sets. Given an initial coarse partition
of the state space, the control specification is given as a sequence of the cells
of this partition to visit at each sampling time. The dynamics are decomposed
into subsystems where some states and inputs are not observed, some states are
observed but not controlled and where assume-guarantee obligations are used
on the uncontrolled states of each subsystem. A finite abstraction is created for
each subsystem through a refinement procedure starting from a coarse partition
of the state space, then proceeding backwards on the specification sequence
to iteratively split the elements of the partition whose coarseness prevents the
satisfaction of the specification. Each refined abstraction is associated with a
controller and it is proved that combining these local controllers can enforce the
specification on the original system. The efficiency of the proposed approach
compared to other abstraction methods is illustrated in a numerical example.

Keywords: Symbolic control; abstraction refinement; compositional synthesis;
hybrid systems.

1. Introduction

In the past decades, a lot of work has been devoted towards model checking
and plan synthesis of a finite transition system with respect to high-level spec-
ifications such as Linear Temporal Logic [2]. However, when the system is too
large to be handled by such methods in reasonable time or when the system
is not finite (e.g. continuous dynamics), we must rely on abstraction methods
that create a smaller finite system related to the concrete system through a
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behavioral relationship such as simulation, bisimulation or their alternating and
approximate versions [43]. Despite the significant progress in both the fields of
model checking and abstraction, the link between them is not as straightforward
as it appears. For example, it is possible that the specification is satisfied on the
concrete system but not on the chosen abstraction, which would thus require
looking for a finer abstraction where this satisfaction can be proved.

This observation is the origin of the development of an interface layer named
abstraction refinement, whose goal is to use both the dynamics and the specifi-
cation to automatically obtain an abstract system satisfying the specification by
iteratively refining an initial coarse abstraction. This topic has received many
contributions, mainly during the 1990s and early 2000s in the context of model
checking for hardware design. As a consequence, these works primarily focus
on verification (as opposed to control synthesis) of a formula in fragments of
Computation Tree Logic (CTL) for large but finite systems, where the abstrac-
tion procedure is thus only used to reduce the complexity. The most popular
approach is called CounterExample-Guided Abstraction Refinement (CEGAR)
and consists in exploiting the counterexample provided by the model checker
when the abstraction does not satisfy the formula in order to see where the ab-
straction is too coarse. These counterexamples can either guide the refinement
towards splitting the discrete states of the abstraction where the counterexample
originates [11] or improving the partial description of a decomposable system by
considering more subsystems [4, 3, 20]. Other refinement methods also consider
computing under- or over-approximations of the concrete transition system with
iteratively increasing accuracy [27, 40, 28], using reachability analysis in a bisim-
ulation algorithm [9] or its formula-guided version [45], or uniformly splitting
the cells of the state partition based on some error measurement for stochastic
systems [16].

In this paper, we present a method for specification-guided abstraction re-
finement for control synthesis of continuous systems. In this approach, a coarse
abstraction of the system is initially considered and iteratively refined (through
repartitioning of the state space) in its elements preventing the satisfaction
of the specification. The problem of abstraction refinement for control syn-
thesis has been mostly unexplored by the methods mentioned in the previous
paragraph due to the fact that counterexamples of control problems are much
harder to use to guide the refinement since they take the form of trees [21, 17]
(instead of single paths for model checking). Our approach instead considers
a specification-guided approach using reachability analysis to identify the ele-
ments of the abstraction that need to be refined in order to find a satisfying
controller. In addition, although some of the previously mentioned works con-
sider infinite state space [45, 10, 9, 21], most results of the above initial literature
on abstraction refinement assume that the forward or backward reachable sets
can be exactly computed, which is rarely true in systems with a continuous
state space. As a consequence, approaches based on reachability analysis to
split good and bad states into two disjoint sets [9, 45, 11, 21, 17] lose a part of
their efficiency in such cases. Our approach thus relies on methods to efficiently
compute over-approximations of reachable sets, using for example polytopes [8],

2



oriented hyper-rectangles [42], ellipsoids [26], zonotopes [18], level sets [35] or
the monotonicity property [1]. The use of such over-approximations ensures
that a controller synthesized on the abstraction can be applied to the original
system in order to satisfy the same specification. The recent years have seen
a renewed interest on the topic of abstraction refinement, but with a focus on
control synthesis for continuous systems as in the present paper. Among the
most relevant work, we can see several refinement approaches applied to differ-
ent types of abstraction. Indeed, while we use over-approximations of finite-time
reachable sets to obtain a non-deterministic abstraction, other approaches con-
sider infinite-time reachability analysis [38], using some feedback controller on
the continuous system to obtain a deterministic abstraction [29], or using sets
of finite prefixes to describe abstractions of infinite behaviors [36]. Another ab-
straction refinement approach is given in [44], where the refinement is not guided
by the specifications as in our approach but by some behavioral relationship
(similar to approximate bisimulation) which is not satisfied on the initial coarse
abstraction. Another relevant method is [19], where the refinement approach is
applied on an automaton structure related to the specifications instead of on an
abstraction of the system as we do.

As any abstraction-based verification and synthesis problem, this approach
is limited to low-dimensional systems due to the classical exponential growth of
the abstraction size when the dimension of the state space increases. This paper
thus aims at introducing this abstraction refinement method within a composi-
tional approach where a control objective for the whole system is achieved by
working on smaller components [15], thus widening the range of applications to
systems of larger dimensions or systems only equipped with distributed compu-
tation capabilities (e.g. multi-robot systems). More specifically, we adapt the
compositional abstraction method presented in [33] and [30] to this abstraction
refinement framework. In this approach, the global system is decomposed into
subsystems representing partial descriptions of the dynamics, where some of the
states and inputs are not observed and some states are observed to increase the
precision of the model but not controlled. Then, an abstraction can be created
for each subsystem using the abstraction refinement approach and the composi-
tion of the controllers synthesized on each of these abstractions can be used to
control the original system. To reduce the conservatism of this compositional
approach, we consider an assume-guarantee reasoning [23], similarly used in
e.g., the recent results [39] to synthesize controlled invariant sets and [13] for a
symbolic control synthesis using small-gain theorem. With such reasoning, the
abstraction of each subsystem is obtained under the assumption that other sub-
systems satisfy their own control objectives and the controller synthesized on
one subsystem is then used to guarantee that the assumptions of other subsys-
tems hold. Defining abstraction refinement within a compositional framework
has been mostly unexplored in the literature apart from some results on finite
systems [7, 22, 5, 24] and, to the best of our knowledge, a single contribution
on systems with infinite state space (using hybrid automata) [6]. As opposed
to these papers which are all based on the CEGAR method and thus rely on a
model checker providing counterexamples to guide the abstraction refinement,
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our approach only uses reachability analysis in order to detect unsatisfiability
of the specification.

The structure of this paper is as follows. The problem is formulated in Sec-
tion 2. Section 3 describes the general method to obtain compositional abstrac-
tions. The abstraction refinement algorithm to be applied to each subsystem is
presented in Section 4. Then, Section 5 provides the main result that the local
controllers can be composed to control the original system. Finally, a numerical
illustration of this method for the temperature regulation in a 8-room building
is presented in Section 6.

2. Problem formulation

2.1. Notations

In this paper, a decomposition of a system into subsystems is considered. As
a result, both scalar and set variables are used as subscript of other variables,
sets or functions:

• lower case letters and scalars give naming information relating a variable,
set or function to the subsystem of corresponding index (e.g. xi and ui
are the state and input of the i-th subsystem Si);

• index sets denoted by capital letters are used to represent the projection
of a variable on the dimensions contained in this set. Alternatively, we
also use the projection operator πI to project a set or variable on the
dimensions contained in I (e.g. for x ∈ Rn and I ⊆ {1, . . . , n}, xI = πI(x)).

2.2. System description

We consider a nonlinear control system subject to disturbances described by

ẋ = f(x, u, w), (1)

with state x ∈ X ⊆ Rn and bounded control and disturbance inputs u ∈ U ⊆ Rp

and w ∈ W ⊆ Rq, respectively. We denote as U and W the sets of piecewise
continuous control and disturbance inputs u : R+

0 → U and w : R+
0 → W,

respectively. Φ(t, x0,u,w) denotes the state reached by (1) at time t ∈ R+
0

from initial state x0 ∈ X, under control and disturbance functions u ∈ U and
w ∈ W, respectively. If the control input is constantly equal to u ∈ U over
the interval [0, t], we use the notation Φ(t, x0, u,w). The reachable set of (1) at
time t ∈ R+

0 , from a set of initial states X0 ⊆ X and for a subset of constant
control inputs U ′ ⊆ U is defined as

RS(t,X0,U ′) =
{

Φ(t, x0, u,w)
∣∣ x0 ∈ X0, u ∈ U ′, w ∈W

}
. (2)

Throughout this paper, we assume that we are able to compute over-approximations
RS(t,X0,U ′) of the reachable set defined in (2):

RS(t,X0,U ′) ⊆ RS(t,X0,U ′). (3)
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Several methods exist for over-approximating reachable sets for fairly large
classes of linear and nonlinear systems, see e.g. [8, 42, 26, 18, 35, 1].

Given a sampling period τ ∈ R+
0 , the sampled version of system (1) with

piecewise constant control inputs can then be described as a non-deterministic
infinite transition system S = (X,U,−→) where

• X ⊆ Rn is the state space,

• U = U is the set of inputs,

• a transition x
u−→ x′ (equivalently written as x′ ∈ Post(x, u)) exists if

x′ ∈ RS(τ, {x}, {u}), i.e. if there exists a disturbance function w ∈ W
such that x′ can be reached from x exactly in time τ by applying the
constant control u on [0, τ ].

Because of the fact that the control objectives in this paper are expressed
in discrete time, the continuous-time system (1) is immediately sampled. Nev-
ertheless, we note that the analysis is initialized with a continuous-time system
to ensure a more general approach where the behavior of the system between
sampling times (e.g. when w is not a constant disturbance function) is taken
into consideration in the computation of the reachable set (2). If a discrete-time
system x+ = F (x, u, w) is given instead of (1), it can be used to replace S and
the reachable set operator (2) can be redefined as RS(X0,U ′) = F (X0,U ′,W).

The choice of the sampling period τ for general dynamics as in (1) is a
difficult problem which is not treated in this paper and will be the focus of
future work. Some guidelines to choose its value are provided in [31] for the
particular case of dynamics taking the form: ẋ = g(x,w) + u.

2.3. Specification

Let the state space X ⊆ Rn be a n-dimensional interval and P a partition of
X into smaller intervals. This partition P needs to be obtained from a Cartesian
product of partitions in each dimension i ∈ {1, . . . , n} of X. In what follows, the
elements of P are called cells of the state space. We consider a finite sequence
of cells (σ0, . . . , σr) ∈ P r+1 which is used to define a discrete-time specification
of the following form:

ψ = σ0 ∧©σ1 ∧©© σ2 ∧ · · · ∧© · · ·©︸ ︷︷ ︸
r

σr, (4)

where© is the temporal operator “next” [2] corresponding to the time sampling
of period τ ∈ R+

0 as in S. The problem of interest can then be formulated as
follows.

Problem 1. Find a controller C : X → U such that the sampled system S sat-
isfies the specification ψ in (4), i.e. for any finite sequence of states (x0, . . . , xr)

with x0 ∈ σ0 and such that xk
uk

−→ xk+1 and uk = C(xk) for all k ∈ {0, . . . , r −
1}, it holds that xk ∈ σk for all k ∈ {0, . . . , r}.
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Although focusing only on specifications of the form of ψ in (4) may seem re-
strictive, we can alternatively consider that we are first provided a more general
specification expressed as a Linear Temporal Logic (LTL) formula [2] and that
ψ is taken as any plan satisfying this LTL formula. Since this paper is mainly
focused on the presentation of the general framework for compositional abstrac-
tion refinement, we only consider finite plans as in (4) which thus correspond to
subclasses of LTL formulas satisfiable in finite time, such as co-safe LTL formu-
las [25] or formulas defined over finite traces [14]. Such plans can be extracted
from these subclasses of LTL formulas as presented in [31]. For more general
LTL formulas, satisfying plans take the form of a lasso ψ = ψpref .(ψsuff )ω com-
posed of two strings in P : a finite prefix path ψpref , followed by a finite suffix
path ψsuff repeated infinitely often [2]. Guidelines on how to consider such
infinite-length plans within the compositional abstraction refinement approach
are presented in [32].

3. Compositional abstractions

In this paper, Problem 1 is addressed with a compositional abstraction re-
finement approach, where the system is decomposed into subsystems, an ab-
straction is created for each subsystem using abstraction refinement (Section 4)
and the obtained local controllers are then composed to obtain a controller of
the original system S (Section 5). In this section, we present the general method
adapted from [33] and [30] to obtain compositional abstractions.

3.1. System decomposition

Consider that we decompose our dynamics (1) into m ∈ N subsystems. Let
(Ic1 , . . . , I

c
m) be a partition of the state indices {1, . . . , n} and (J1, . . . , Jm) a

partition of the control input indices {1, . . . , p}. As illustrated in Figure 1,
subsystem i ∈ {1, . . . ,m} can be described using the following sets of indices:

• Ici represents the state components to be controlled;

• Ii ⊇ Ici are all the state components whose dynamics are modeled in the
subsystem;

• Ioi = Ii\Ici are the state components that are only observed but not con-
trolled;

• Ki = {1, . . . , n}\Ii are the remaining unobserved state components con-
sidered as external inputs to subsystem i;

• Ji are the input components used for control;

• Li = {1, . . . , p}\Ji are the remaining control components considered as
external inputs to subsystem i.
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Io1
I1
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J1 J2 J3 Jm

L1

Figure 1: Example partition of the state and control dimensions and index sets for subsystem
1.

The role of all the index sets above can be summarized as follows: for subsystem
i ∈ {1, . . . ,m}, we model the states xIi = (xIc

i
, xIo

i
) where xIc

i
are to be con-

trolled using the inputs uJi and xIo
i

are only observed to increase the precision
of the subsystem while xKi and uLi are considered as external disturbances.
It is important to note that the subsystems may share common modeled state
components (i.e. the sets Ii may overlap), though the sets of controlled state
components Ici and modeled control input components Ji are necessarily dis-
joints for two subsystems. Note also that although the control inputs uJi

have
an influence over the states xIo

i
, these states are said to be uncontrolled due to

the fact that their behavior is irrelevant to the design of a controller for this
subsystem.

3.2. Subsystem’s abstraction

For each subsystem i ∈ {1, . . . ,m}, we want to create a finite abstraction Si

of the sampled system S, which models only the state and input components
xIi and uJi , respectively. Si will then be used to synthesize a local controller
focusing on the satisfaction of the specification for the controlled state compo-
nents xIc

i
using the modeled control inputs uJi

. The general structure of the
abstraction Si = (Xi, Ui,−→

i
) is as follows.

• Xi is a partition of πIi(X) into a finite set of intervals called symbols.
It is initially taken equal to πIi(P ) and will then be refined through a
procedure detailed in Section 4.

• Ui is a finite subset of the control set πJi
(U) ⊆ πJi

(Rp). The choice of
the discretization of πJi

(U) into Ui is free, although it should be noted
that having a larger finite set Ui increases the chances to find a satisfying
controller while also increasing the computational burden.

• A transition si
ui−→
i

s′i (equivalently written as s′i ∈ Posti(si, ui)) exists

if s′i ∩ πIi(RSAG2
i (si, ui)) 6= ∅, where the set RSAG2

i (si, ui) ⊆ X defined
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later in this section is an over-approximation of the reachable set of (1)
based on the partial knowledge available to subsystem i.

One requirement to be able to compute such an over-approximation of the
reachable set is that all variables acting as external disturbances for the consid-
ered subsystem need to be bounded. By definition of system (1), we know that
this is the case for the control and disturbance inputs (u ∈ U and w ∈ W) and
in particular the unmodeled control input components satisfy uLi ⊆ πLi(U).
Moreover, we know that other subsystems will synthesize controllers satisfying
the specification for the unobserved and uncontrolled state components (xKi

and xIo
i
, respectively) of subsystem i: if the state of subsystem i is in the

projection πIi(σ
k) of some cell σk ∈ P involved in the specification ψ, then the

unobserved states xKi
also start from the projection πKi

(σk) of this cell and the
uncontrolled states xIo

i
will reach the next step πIo

i
(σk+1) of ψ. Assuming that

the whole specification ψ in (4) is known to each subsystem i ∈ {1, . . . ,m}, the
remark above can be formalized by the following assume-guarantee obligations.

A/G Obligation 1. For all x ∈ X, i ∈ {1, . . . ,m} and k ∈ {0, . . . , r}, if
xIi ∈ πIi(σk), then xKi ∈ πKi(σ

k).

A/G Obligation 2. For all i ∈ {1, . . . ,m}, si ∈ Xi and k ∈ {0, . . . , r − 1}, if
si ⊆ πIi(σk), then πIo

i
(RSAG2

i (si, ui)) ⊆ πIo
i
(σk+1) for all ui ∈ Ui.

The main two differences between these assume-guarantee obligations are
that:

• A/G Obligation 1 deals with unobserved states xKi
, while A/G Obliga-

tion 2 deals with observed but uncontrolled states xIo
i
,

• A/G Obligation 1 deals with the initial states (in σk), while A/G Obliga-
tion 2 deals with the successors after one time step (in σk+1).

Remark 2. Unlike traditional assumptions, the assume-guarantee obligations
are only taken internally in each subsystem and they do not imply any additional
constraints on the overall approach: the control synthesis achieved in each sub-
system is exploited to guarantee that the obligations on other subsystems hold.

We can now finalize the definition of the transition relation of Si, where the
over-approximation RSAG2

i (si, ui) is obtained in two steps, each using one of
the above assume-guarantee obligations. Given a symbol si ∈ Xi of Si with
si ⊆ πIi(σ

k) and a control value ui ∈ Ui, the first step is to compute an
intermediate set RSAG1

i (si, ui) ⊆ X using A/G Obligation 1 and the operator
RS in (3) as follows:

RSAG1
i (si, ui) = RS(τ, σk ∩ π−1Ii

(si),U ∩ π−1Ji
({ui})). (5)

Given a set s ⊆ X such that s ⊆ σk and a control input u ∈ U , equations (2),
(3) and (5) thus give the following inclusions:

RS(τ, s, {u}) ⊆ RS(τ, s, {u}) ⊆ RSAG1
i (πIi(s), πJi

(u)), (6)
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xIci

xIoi
σk+1 σk+1 σk+1

Figure 2: Illustration of A/G Obligation 2 in a 2D example (controlled states xIci
on the

horizontal axis and uncontrolled but observed states xIoi
on the vertical axis) with 3 cases of

reachable sets colored in red for RSAG1
i and purple for RSAG1

i ∩RSAG2
i .

which implies that the set RSAG1
i (si, ui) is an over-approximation of the reach-

able set (2) of S at time τ , from initial states x ∈ σk with πIi(x) ∈ si and for
control inputs u ∈ U with πJi

(u) = ui.
The second step towards obtaining RSAG2

i (si, ui) is to use A/G Obligation 2
to reduce the conservatism of RSAG1

i (si, ui) by exploiting the fact that the
control objective of subsystem i only focuses on the controlled state components
xIc

i
while the uncontrolled but observed states xIo

i
can be considered to satisfy

their specifications due to the control action of other subsystems. For any
si ∈ Xi such that si ⊆ πIi(σk) and ui ∈ Ui, we define:

RSAG2
i (si, ui) = RSAG1

i (si, ui) ∩ {x ∈ X | πIo
i
(x) ∈ πIo

i
(σk+1)}. (7)

RSAG2
i is thus the same set as the over-approximation RSAG1

i but without
the states that violate the specification ψ on the uncontrolled state dimensions
Ioi . This is illustrated in the three cases of Figure 2. In the first case we
have πIo

i
(RSAG1

i (si, ui)) ⊆ πIo
i
(σk+1) and A/G Obligation 2 thus has no effect:

RSAG2
i = RSAG1

i . In the second case, the top part of RSAG1
i (in red) is re-

moved after applying A/G Obligation 2 due to the assumed control action of
other subsystems on the state dimensions Ioi . In the third case, applying A/G
Obligation 2 as in (7) results in RSAG2

i = ∅, which means that despite the best
control actions from other subsystems, the state of the system will always go out
of the targeted cell σk+1. This case will need to be treated separately in the next
sections by considering as invalid any pair (si, ui) such that RSAG2

i (si, ui) = ∅.

4. Refinement algorithm

In our previous work [30] where we introduced the compositional abstraction
approach summarized in Section 3, the whole transition system Si is computed
only once for each subsystem as in Section 3.2 and is mainly based on the knowl-
edge of the dynamics while disregarding most of the influence of the specification
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ψ (apart from the computation of the sets RSAG1
i and RSAG2

i ). As a result, the
set of successors Posti(si, ui) needs to be computed and stored for all symbols
si ∈ Xi and all control values ui ∈ Ui before being able to start working on
the synthesis of a plan satisfying the specification. In addition, if the chosen
partition P of the state space is too coarse, it is likely that no satisfying plan
can be found, which then requires the user to pick a new and finer partition and
repeat the whole process until the specification is satisfied.

The approach presented in this section aims at addressing both the above
problems by:

• avoiding the computation of the whole abstraction when only a small part
is actually relevant to the specification and

• automatically adapting the state partition (and hence the set of symbols
Xi for each subsystem i) if the specification is not initially satisfied.

The proposed approach can be described as a compositional abstraction
refinement method guided by the control specification ψ in (4). The general
idea is that, for each subsystem i ∈ {1, . . . ,m}, starting from the most coarse
abstraction corresponding to the initial partition Xi = πIi(P ) as in Section 3.2,
we identify an element of the abstraction preventing the satisfaction of the
specification ψ on the state dimensions Ii of subsystem i and refine it to obtain
a more precise abstraction. This process is then repeated on the new abstraction
until ψ can be satisfied by subsystem i.

This approach is presented in Algorithm 1 and explained below. For clarity
of notations, Algorithm 1 is given in the particular case of Assumption 3 below,
where for each subsystem, the specification ψ does not visit the same cell twice.
The straightforward modifications required to cover the general case without
Assumption 3 are provided at the end of this section.

Assumption 3. For any k, l ∈ {0, . . . , r} such that k 6= l and for all subsystems
i ∈ {1, . . . ,m} we have πIi(σ

k) 6= πIi(σ
l).

Inputs. The refinement method presented in Algorithm 1 is described in more
details as follows. We first assume that we are provided with the initial partition
P of the state space X, the sequence of cells (σ0, . . . , σr) ∈ P r+1 defining the
specification ψ as in Section 2.3, a finite set Ui of control values for subsystem
i as in Section 3.2 and an operator Pi : P → 2Xi giving the set of all symbols
si ∈ Xi included in the projection πIi(σ) of a cell σ ∈ P . For each cell σk in the
sequence (σ0, . . . , σr) we want to compute the subset V k

i of symbols in Pi(σ
k)

which are considered as valid with respect to the specification ψ. The set V k
iX

then corresponds to the projection of V k
i on the continuous state space πIi(X).

Initialization. The set of symbols Xi is initially taken as the most coarse par-
tition of the state space πIi(X) (i.e. πIi(P )) and is then refined during the
algorithm when unsatisfaction of ψ is detected. We proceed backward on the fi-
nite sequence (σ0, . . . , σr), where the target cell σr is fully valid: V r

i = Pi(σ
r) =

10



Input: Partition P of X,
Input: Cell sequence (σ0, . . . , σr) ∈ P r+1,
Input: Discrete control set Ui,
Input: Partition projection Pi : P → 2Xi such that

Pi(σ) = {si ∈ Xi | si ⊆ πIi(σ)}.
Initialization: Xi = πIi(P ), V r

i = {πIi(σr)}, V r
iX = πIi(σ

r),
Queue = ∅.
for k from r − 1 to 0 do

[V k
i , V

k
iX , Ci] = ValidSets (k, V k+1

iX )
Queue = AddToQueue (σk)
while V k

i = ∅ do
σj = FirstInQueue (Queue)
forall si ∈ Pi(σ

j)\V j
i do

Xi = Split (si)
end
for l from j to k do

[V l
i , V

l
iX , Ci] = ValidSets (l, V l+1

iX )
end

end

end

return Xi,
⋃r−1

k=0 V
k
i ⊆ Xi and Ci :

⋃r−1
k=0 V

k
i → Ui

Algorithm 1: Refinement algorithm for subsystem i.

{πIi(σr)} and V r
iX = πIi(σ

r). We also initialize a priority queue which will be
used to determine which cell of P is to be refined at the next iteration of the
algorithm.

Input: P , (σ0, . . . , σr), Ui and Pi : P → 2Xi from Input to Algorithm 1,
Input: Index of considered cell k ∈ {0, . . . , r − 1},
Input: Next cell’s valid set V k+1

iX .

V k
i =

{
si ∈ Pi(σ

k)
∣∣ ∃ui ∈ Ui such that ∅ 6= πIi(RS

AG2
i (si, ui)) ⊆ V k+1

iX

}
V k
iX =

{
xi ∈ πIi(X)

∣∣ ∃si ∈ V k
i such that xi ∈ si

}
∀si ∈ V k

i , Ci(si) is chosen in
{
ui ∈ Ui

∣∣ ∅ 6= πIi(RS
AG2
i (si, ui)) ⊆ V k+1

iX

}
return V k

i , V k
iX and Ci

Algorithm 2: ValidSets. Computes the valid sets and controller for subsys-
tem i at step k of the specification sequence (σ0, . . . , σr) ∈ P r+1.

External functions. Algorithm 1 calls four external functions. The function
ValidSets looks for the valid symbols and their associated control inputs for
a particular step of the specification sequence. This function is detailed in Al-
gorithm 2 and explained in the next paragraph. Functions AddToQueue and
FirstInQueue deals with the management of the priority queue and Split rep-
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resents the refinement of the partition. Although we provide some guidelines
and explanations on the role of these functions in the following paragraphs,
they are voluntarily left partially undefined due to their limited influence on
the global outcome of the refinement algorithm. Indeed, if a satisfying refined
partition can be found, changing the order in which partition elements are re-
fined or in how many sub-elements they are split only influences how quickly a
solution is reached by Algorithm 1. Some possible heuristics for these functions
are detailed for the simulation results in Section 6.2. While the main advantage
of using a queue to manage the order in which cells are refined is that Algo-
rithm 1 always refines the coarsest cells first, other approaches are possible such
as associating a cost to the refinement of each cell and refining the cell with
minimal cost, as proposed in [31].

Valid sets. In the main loop of Algorithm 1, assuming we have previously found
non-empty valid sets (V k+1

i , . . . , V r
i ), we call the function ValidSets for step

k of the specification as in Algorithm 2. This function first computes the valid
set V k

i for step k by looking for the symbols in Pi(σ
k) for which the over-

approximation RSAG2
i of the reachable set is both non-empty and contained in

the valid set V k+1
i of the next cell σk+1 for at least one value of the discrete

control input. Note that in this particular call when the cell σk is visited for
the first time, Pi(σ

k) contains a single element πIi(σ
k). The set V k

iX is taken as
the projection of V k

i on the continuous state space πIi(X). Then, the controller
Ci associates each valid symbol in V k

i to the first of such satisfying control
values that has been found. Algorithm 2 finally outputs V k

i , V k
iX and Ci to

Algorithm 1. Since the cell σk is considered here for the first time, we also add
it to the priority queue with the function AddToQueue.

Refinement and update. If the valid set V k
i is empty, we select (with function

FirstInQueue) the first cell σj of the priority queue and refine it. The refine-
ment is achieved by the function Split and consists in uniformly splitting all
the invalid symbols of Pi(σ

j) into a number of identical subsymbols (e.g. 2 in
each state dimension in Ii). After this, we need to update the valid sets V j

i and

V j
iX and controller Ci of the refined cell σj using the ValidSets function. The

possibly larger valid set V j
iX obtained after this refinement can then induce a

larger valid set at step j − 1, which in turns influences the following steps. The
refinement and update of the valid set at step j thus requires an update (using
function ValidSets) for all other cells from σj−1 to σk. The refined cell σj

can then be moved to any other position in the priority queue (here assumed to
be handled by the function FirstInQueue) and these steps are repeated until
V k
i 6= ∅. Note that in real implementations, a stopping condition should be

added to escape the while loop in case the smallest allowed level of partitioning
is reached after a certain number of unsuccessful iterations.

Outputs. The algorithm provides three outputs. The first one is the refined
partition Xi for subsystem i. The second one gathers the sets V k

i ⊆ Pi(σ
k) ⊆ Xi

of valid symbols for all k ∈ {0, . . . , r}. Finally, the controller Ci associates a

12



unique control value to each valid symbol. Note that there is a single value
per valid symbol due to the fact that in the presented version of the refinement
algorithm, we do not compute the whole set of satisfying control values for a
valid symbol, but instead stop looking as soon as one is found and thus avoiding
unnecessary computation time.

Remark 4. A potentially interesting direction to be explored in the future is
to try to combine the abstraction refinement to some cost minimization problem
on the control input. For this, an alternative version of Algorithm 2 could
be proposed where the whole set {ui ∈ Ui | ∅ 6= πIi(RS

AG2
i (si, ui)) ⊆ V k+1

iX }
of satisfying controls would be computed and thus the output would be a non-
deterministic controller Ci :

⋃r−1
k=0 V

k
i → 2Ui . Once Algorithm 1 terminates,

we could then select the values which are optimal according to the considered
minimization problem.

As mentioned above, Algorithm 1 is presented in the simpler case of Assump-
tion 3, where the projection of the specification ψ on the state space of each
subsystem does not have any duplicated element. However, the general case
without Assumption 3 can easily be covered with the following modifications:

• AddToQueue should be adapted so that duplicated cells only appear once
in the queue;

• the controller Ci should not only depend on the current symbol si ∈ Xi

but also on the position k ∈ {0, . . . , r} in the specification to know which
next cell to target (e.g. if πIi(σ

k) = πIi(σ
l) for some k 6= l, Ci(si, k) aims

towards σk+1 while Ci(si, l) needs to target σl+1 6= σk+1).

5. Composition

Algorithm 1 in Section 4 is applied to each subsystem i ∈ {1, . . . ,m} sep-
arately. In this section, we then show that combining the controllers Ci of all
subsystems results in a global controller solving Problem 1 by ensuring that the
sampled system S satisfies the specification ψ.

5.1. Operator for partition composition

Before defining the transition system corresponding to the composition of
the abstractions Si of each subsystem, we need to define an operator to be used
in the composition of sets of symbols (either the refined partition Xi or the
valid sets V k

i obtained in Algorithm 1). There are two main reasons for the
introduction of this new operator:

• the state space of two subsystems i and j may overlap on some dimensions
Ii ∩ Ij , hence a simple Cartesian product is not possible;

• the refined partition Xi of subsystem i does not necessarily match the
partition of other subsystems on their common state dimensions.

13



Intuitively, given two refined sets Xi and Xj as obtained from Section 4 with
Ii∩Ij 6= ∅, we want their composition to be at least as fine as both partitions Xi

and Xj , which implies that on the common dimensions Ii ∩ Ij , the composition
needs to be at least as fine as the finest of both partitions πIj (Xi) and πIi(Xj).
To ensure the satisfaction of this condition, we can then define the composition
operator e as follows:

Xi eXj =

{
s ∈ πIi∪Ij (2X)

∣∣∣∣ ∃si ∈ Xi, πIi(s) ⊆ si,
∃sj ∈ Xj , πIj (s) ⊆ sj

}
, (8)

which provides all the subsets of πIi∪Ij (X) whose projections onto the state
dimensions Ii and Ij are contained in (or equal to) elements of Xi and Xj ,
respectively.

Proposition 5. If Xi and Xj are partitions of πIi(X) and πIj (X), respectively,
then XieXj defined in (8) is a covering of πIi∪Ij (X), i.e.

⋃
s∈XieXj

s = πIi∪Ij (X).

Proof. Let x ∈ πIi∪Ij (X). Since Xi and Xj are partitions, there exists si ∈ Xi

and sj ∈ Xj such that πIi(x) ∈ si and πIj (x) ∈ sj , which implies from (8) that
there exists s ∈ Xi eXj such that x ∈ s.

Although the set in (8) contains symbols defined by the finest of both parti-
tions Xi and Xj as mentioned above, it also contains all the subsets included in
these symbols, which is not desired if we want the obtained composition XieXj

to be a partition of πIi∪Ij (X). We thus remove these extra undesired subsets
by updating the set Xi eXj in (8) in the following algorithmic expression:

Xi eXj := Xi eXj\{s ∈ Xi eXj | ∃s′ ∈ Xi eXj , s  s′}, (9)

where the new composition is based on the old definition of Xi eXj in (8) from
which we remove all the elements contained in but not equal to another element
of Xi eXj . In this way, we ensure that we only keep the largest of the elements
satisfying (8), leading to the desired partition of πIi∪Ij (X).

Proposition 6. If Xi and Xj are partitions of πIi(X) and πIj (X), respectively,
then Xi eXj defined in (9) is a partition of πIi∪Ij (X).

Proof. From Proposition 5 and (9), we know that XieXj defined in (9) is also a
covering since an element s of (8) is only removed in (9) if it is strictly contained
in another element s′ ∈ Xi eXj .

Let x ∈ πIi∪Ij (X). Since Xi and Xj are partitions, there exists si ∈ Xi and
sj ∈ Xj such that πIi(x) ∈ si and πIj (x) ∈ sj , and we know that si and sj are
unique. Let now s, s′ ∈ XieXj as defined in (9) and such that x ∈ s∩ s′. From
(8), we thus have πIi(s) ⊆ si and πIj (s) ⊆ sj , which implies that s∪s′ ∈ XieXj .
From (9), this implies that s and s′ can only be in XieXj if s = s′ = s∪s′.

In the particular case where Ii and Ij do not have any common state di-
mension (Ii ∩ Ij = ∅), this composition takes the simpler form of a Cartesian
product:

Xi eXj =
{
s ∈ πIi∪Ij (2X) | πIi(s) ∈ Xi, πIj (s) ∈ Xj

}
,
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where the projections on the dimensions of Ii and Ij need to be exactly an
element of Xi and Xj , respectively.

5.2. Composed transition system

We now define the transition system Sc = (Xc, Uc,−→
c

) as the composition of

the abstractions of the subsystems for all i ∈ {1, . . . ,m} obtained in Algorithm 1.
Sc contains the following elements:

• Xc = X1 e · · ·eXm is the composition as per (9) of the refined partitions
for each subsystem. From Proposition 6, we know that Xc is a partition
of X.

Due to (8), the projection πIi(s) of s ∈ Xc does not necessarily correspond
to a symbol of Xi. However, we know (see proof of Proposition 6) that there
exists a unique symbol si ∈ Xi containing this projection. Therefore, for each
i ∈ {1, . . . ,m}, we define the decomposition function di : Xc → Xi such that
di(s) = si is the unique symbol si ∈ Xi satisfying πIi(s) ⊆ si.

• Uc = U1 × · · · × Um is the composition of the discretized control sets
(which is a simple Cartesian product since they are defined on disjoint
dimensions).

• ∀s, s′ ∈ Xc, u ∈ Uc, s
u−→
c

s′ ⇐⇒ ∀i ∈ {1, . . . ,m}, uJi
= Ci(di(s)) and

di(s)
uJi−→
i
di(s

′).

Intuitively, the transition s
u−→
c
s′ (equivalently written as s′ ∈ Postc(s, u))

exists when the control input u ∈ Uc is allowed by the local controllers Ci for all
i ∈ {1, . . . ,m} and the transition in Sc can be decomposed (using the decom-
position functions di : Xc → Xi) into existing transitions for all subsystems.
Consider now the controller Cc : Xc → Uc defined by composing the controllers
Ci : Xi → Ui obtained on the abstraction of each subsystem:

∀s ∈ Xc, Cc(s) = (C1(d1(s)), . . . , Cm(dm(s))). (10)

The definition of the transition relation of Sc can then be reformulated as:

∀s, s′ ∈ Xc, u = Cc(s), s
u−→
c
s′ ⇐⇒ ∀i ∈ {1, . . . ,m}, di(s)

uJi−→
i
di(s

′),

which emphasizes the fact that the composed system Sc defined in this section
is restricted to the control inputs allowed by the controller Cc. This can also be
expressed by the fact that the set Uc(s) = {u ∈ Uc | Postc(s, u) 6= ∅} of allowed
controls from a symbol s is included in the singleton {Cc(s)}. We prove later
(Corollary 9 in Section 5.3) that we actually have the equality Uc(s) = {Cc(s)}.
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5.3. Main result

To control the original model S with the above controller (10), the systems
S = (X,U,−→) and Sc = (Xc, Uc,−→

c
) must satisfy a feedback refinement

relation defined below and adapted from [41]. In the case where Xc is a partition
of X as in this paper, such relation corresponds to a particular case of an
alternating simulation relation [43] where S and Sc apply the same control
inputs.

Definition 7 (Feedback refinement). A map H : X → Xc is a feedback re-
finement relation from S to Sc if it holds: ∀x ∈ X, s = H(x), ∀u ∈ Uc(s) ⊆
U, ∀x′ ∈ Post(x, u), H(x′) ∈ Postc(s, u).

This definition means that for any pair (x, s) of matching state and symbol
and any control u of the abstraction Sc, any behavior of S using this control
is matched by a behavior of Sc with the same control. As a consequence,
if a controller is synthesized so that Sc satisfies some specification, then this
controller can be refined (using the relation H as in Definition 7) into a controller
ensuring that S satisfies the same specification. In what follows, we provide such
a relation based on the partition Xc of X.

Theorem 8. The map H : X → Xc such that H(x) = s⇔ x ∈ s is a feedback
refinement relation from S and Sc.

Proof. Let x ∈ X, s = H(x) ∈ Xc and u ∈ Uc(s) ⊆ U . By definition of Sc,
we necessarily have Uc(s) ⊆ {Cc(s)} for all s ∈ Xc since Cc restricts the choice
of controls in Sc. If Uc(s) = ∅, then the condition for feedback refinement in
Definition 7 is trivially satisfied. Otherwise, we have u = Cc(s) defined as in
(10) which necessarily implies that x ∈ σk for some k ∈ {0, . . . , r− 1}. Let x′ ∈
Post(x, u), s′ = H(x′) and denote the decompositions of s and s′ as si = di(s)
and s′i = di(s

′) for all i ∈ {1, . . . ,m}. By definition of the over-approximation
operator RS in (3), we have x′ ∈ RS(τ, s, {u}). With the inclusion in (6) and
the fact that πIi(s) ⊆ si, we obtain x′ ∈ RSAG1

i (si, uJi
) for all i. If x′ ∈ σk+1,

we immediately have x′Ii ∈ s′i∩πIi(RSAG2
i (si, uJi

)) and this intersection is thus
non-empty, which implies that s′i ∈ Posti(si, uJi

) for all i. Then, by definition
of the transition relation of Sc, we have s′ ∈ Postc(s, u). On the other hand,
if x′ /∈ σk+1, then there exists l ∈ {1, . . . , n} such that x′l /∈ πl(σk+1) and there
exists a unique subsystem j ∈ {1, . . . ,m} such that l ∈ Icj . Therefore we have

x′Ic
j
/∈ πIc

j
(σk+1) and then πIj (RSAG1

j (sj , uJj )) * πIj (σk+1). This implies that

uJj 6= Cj(sj) which contradicts the fact that u = Cc(s). This case (x′ /∈ σk+1)
thus cannot happen and this concludes the proof of the feedback refinement.

The result in Theorem 8 thus confirms that restricting the over-approximations
with the Assume/Guarantee Obligations 1 and 2 is reasonable since it preserves
the feedback refinement relation (i.e. using the controls of Sc, all behaviors of S
are matched by behaviors of Sc) while allowing us to reduce the conservatism
of the approach compared to the general case without assume-guarantee obli-
gations. The proof of Theorem 8 can also be used to show that the composed
system Sc is non-blocking, i.e. if Cc(s) is defined then Postc(s, Cc(s)) 6= ∅.
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Corollary 9. Uc(s) = {Cc(s)} for all s ∈ Xc.

Proof. We already know that Uc(s) ⊆ {Cc(s)} for all s ∈ Xc, so we only need
to prove that Cc(s) ∈ Uc(s) whenever Cc(s) is defined. This is immediately
derived from the proof of Theorem 8 which states that if Cc(s) exists, then
Postc(s, Cc(s)) 6= ∅.

These two results can then be exploited to solve Problem 1, where we use
the controller CX

c : X → U obtained by combining the controller Cc : Xc → Uc

of Sc in (10) and the feedback refinement relation H : X → Xc from Theorem 8:

∀x ∈ X, CX
c (x) = Cc(H(x)). (11)

Theorem 10. Let (x0, . . . , xr) ∈ Xr+1 be any finite trajectory of S from an
initial state x0 ∈ X such that H(x0) ∈ V 0

1 e · · ·eV 0
m and subject to the controller

CX
c in (11), i.e. with xk

CX
c (xk)−→ xk+1 for all k ∈ {0, . . . , r − 1}. Then we have

xk ∈ σk for all k ∈ {0, . . . , r} and S satisfies the specification ψ in (4).

Proof. Due to the feedback refinement relation in Theorem 8, it is sufficient to
prove that the composed system Sc controlled by Cc in (10) satisfies ψ if it starts
in s0 = H(x(0)) ∈ V 0

1 e · · ·eV 0
m. Let k ∈ {0, . . . , r−1} and s ∈ Xc such that s ∈

V k
1 e · · ·eV k

m. The control value Cc(s) in (10) is thus well defined since we have
di(s) ∈ V k

i for all i and Corollary 9 implies that there exists s′ ∈ Postc(s, Cc(s)).
By definition of Sc, this implies that di(s

′) ∈ Posti(di(s), Ci(di(s))) for all
i. Then Algorithm 2 gives that di(s

′) ∈ V k+1
i for all i and therefore s′ ∈

V k+1
1 e · · · e V k+1

m .

The above result thus states that if Algorithm 1 terminates in finite time
for all subsystems i, the controller CX

c obtained from composing all subsystem’s
controllers Ci can be used so that the sampled system S satisfies the specification
ψ. On the other hand, if there exists a controller such that S satisfies ψ,
we cannot always guarantee that Algorithm 1 will find partitions Xi for all
subsystems i where ψ can be satisfied, due to the fact that the abstractions Sc

and Si are obtained from using over-approximations of the reachable set of S.
We also wish to emphasize the fact that the approach presented in this paper

remains applicable even in the case of unstable dynamics or strongly connected
state variables between two subsystems (the state of one subsystem thus creates
a large disturbance on the other). Indeed, such cases would induce very large
over-approximations of the reachable sets, thus making the abstraction refine-
ment algorithm unlikely to terminate in reasonable time, but the main result
still holds: if Algorithm 1 terminates for all subsystems, the composition of the
obtained controllers is a satisfying controller for the original system.

6. Numerical illustration

6.1. System description

In this section, we illustrate the proposed compositional refinement proce-
dure on a numerical example representing a temperature regulation problem
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in an 8-room building sketched in Figure 3. The model is inspired by the
small-scale experimental building equipped with UnderFloor Air Distribution
described in [34], where the air in an underfloor plenum is cooled down and sent
into each room of the building using controlled fans. The excess of air in the
room is then pushed into a ceiling plenum through exhausts in the fake ceiling
and then sent back to the underfloor to be cooled down again. The walls high-
lighted in red in Figure 3 correspond to open doors and each room is assumed
to contain one person whose body heat is considered as a disturbance. The
temperature control of the underfloor is assumed to be realized separately and
the model of the building is described by:

Ṫ = f(T, u, w), (12)

where the state T ∈ R8 represents the temperature of all rooms, u ∈ [−1, 0]8

is the controlled ventilation in all rooms (using negative values since it has
a cooling effect) and w = [Tu, Tc, To, Tb] ∈ R4 is the disturbance vector con-
taining the underfloor temperature Tu ∈ [15, 16] ◦C, the ceiling temperature
Tc ∈ [26, 28] ◦C, the outside temperature To ∈ [28, 30] ◦C and the body heat
(assumed to be the same in all rooms) Tb = 37 ◦C. For simplicity of presenta-
tion, we assume that all rooms have the same size and same parameters (wall
conduction factor, ventilation factor, . . . ) The temperature variations in room
i ∈ {1, . . . , 8} can then be described by:

dTi
dt

=
∑
j∈Ni

ai,j(Tj − Ti) + uib(Ti − Tu) + c(T 4
b − T 4

i ). (13)

The first term of (13) models both the conduction through walls and the heat
transfers through open doors between room i and a space j ∈ Ni, where Ni

contains all neighbor rooms of room i as well as the underfloor, ceiling and
outside indices {u, c, o}. The parameter ai,j = 1 ∗ 10−5 is thus taken for a wall
between i and j, while we consider ai,j = 3∗10−5 for an open door. The second
heat transfer uib(Ti−Tu) with b = 2∗10−4 is related to the mass flow rate from
the underfloor plenum of temperature Tu to room i of temperature Ti, with
a ventilation power ui ∈ [−1, 0]. While each room i is associated to its own
ventilation controlled by ui, for the purpose of demonstrating the generality of
the proposed approach, we consider that the ventilation in room 6 is achieved
at 75% by u6 and 25% by the control u8 of the neighbor room 8. As a result, for
i = 6 in (13), the second term is replaced by 0.75u6b(T6−Tu)+0.25u8b(T6−Tu).
The last term represents the radiation from the heat source of temperature
Tb = 37 ◦C. Although the chosen parameter c = 10−13 may appear to be
negligible compared to ai,j and b, it should be noted that the temperatures in
(13) are to be written in Kelvin degrees, thus resulting in cT 4

b = 9.3∗10−5 which
has a similar order of magnitude than other heat transfers.

The global system (12) is chosen to be decomposed into 5 subsystems as
sketched in Figure 3. The first 3 subsystems each cover two rooms I1 = Ic1 =
J1 = {1, 3}, I2 = Ic2 = J2 = {4, 6} and I3 = Ic3 = J3 = {7, 8} where all the
observed states are also controlled (Io1 = Io2 = Io3 = ∅). The last 2 subsystems
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Figure 3: Sketch of the 8-room building decomposed into 5 subsystems.

only aim at controlling a single state each, but also observe an additional state:
I4 = {2, 4}, Ic4 = J4 = {2}, Io4 = {4} and I5 = {5, 6}, Ic5 = J5 = {5}, Io5 = {6}.
Note that the control input u8 (which has a direct influence over the temperature
variations in room 6) will be considered as a disturbance in both subsystems 2
and 5 in which the temperature of room 6 is modeled.

The nonlinear system describing the 8-room building in (12) and (13) can
be shown to satisfy a monotonicity property as in [1], which can be exploited to
compute over-approximations of the reachable set, similarly to [37] and to [12]
for the larger class of mixed-monotone systems.

6.2. Simulation results

The considered state space X = [20, 30]8 (in Celsius degrees) is partitioned
into 5 elements per dimension, thus resulting in a partition P of 390625 cells.
The control interval U = [−1, 0]8 is discretized uniformly into 5 values per
dimension: {−1,−0.75,−0.5,−0.25, 0}. Given an initial state in the cell [28, 30]8

and a sampling period τ = 30 minutes, our control objective is to reach, within
2 hours, the conditions describing the following temperature gradient (from left
to right in the building of Figure 3): T1, T2 ∈ [26, 28], T3, T4 ∈ [24, 26], T5, T6 ∈
[22, 24] and T7, T8 ∈ [20, 22]. To reach these conditions within 4 time steps while
reducing the energy consumption, we choose the specification ψ = σ0σ1σ2σ3σ4

as follows, where the room temperatures are kept in the initial cell as long as
possible:

• σ0 = [28, 30]8 is the initial cell,

• σ1 is such that T1, T2, T3, T4, T5, T6 ∈ [28, 30] and T7, T8 ∈ [26, 28],

• σ2 is such that T1, T2, T3, T4 ∈ [28, 30], T5, T6 ∈ [26, 28] and T7, T8 ∈
[24, 26],

• σ3 is such that T1, T2 ∈ [28, 30], T3, T4 ∈ [26, 28], T5, T6 ∈ [24, 26] and
T7, T8 ∈ [22, 24],

• σ4 is the final cell described above.
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Note that the chosen specification ψ does not satisfy Assumption 3, since we
have e.g., πI1(σ0) = πI1(σ1) = πI1(σ2) = [28, 30]2. While Assumption 3 was
introduced in Section 4 for clarity of notations, the general case without this
assumption does not create any problem from an implementation point of view
since each element πIi(σ

k) is treated independently (e.g. with its own partition
refinement) even if it represents a previously considered cell.

Algorithm 1 is then applied to each subsystem, where the Split function
uniformly splits a symbol into 2 subsymbols per dimension and the priority
queue is handled as follows: we only refine a cell when no coarser candidate exists
and when more than one cell can be refined, we prioritize the one whose last
refinement is the oldest. In Figure 4, we display the resulting refined partitions
and valid symbols (in red) for each subsystem. Below, we detail the refinement
process in the case of subsystem 3 in Figure 4c. The bottom left cell πI3(σ4) is
fully valid since it is the final step of the specification. For πI3(σ3), no satisfying
control is found to bring the whole cell into πI3(σ4), so it is split into 4 identical
subsymbols, one of which (the bottom left one) is valid. The next cell πI3(σ2) is
in the same situation, but even after splitting it no control can drive any of its
subsymbols into the single valid symbol of πI3(σ3). The next element in Queue
is πI3(σ3), so each of its 3 symbols which are not valid is split into 4 subsymbols.
Among the obtained 12 subsymbols of πI3(σ3), 5 are valid (as in Figure 4c) and
an update on πI3(σ2) shows that all 4 symbols of πI3(σ2) can now be controlled
towards the new valid set V 3

3 of πI3(σ3). Proceeding with πI3(σ1), we obtain
V 1
3X = πI3(σ1) after splitting πI3(σ1) once. The same is then done on πI3(σ0),

which also results in V 0
3X = πI3(σ0) and thus terminates Algorithm 1 since we

obtained a non-empty valid set for the initial cell.
Algorithm 1 is similarly applied to the other 4 subsystems. Note that since

these subsystems do not satisfy Assumption 3 (unlike subsystem 3), the results
(refined partition and valid symbols) are only partially visible in Figure 4 due
to overlapped cells. The sequences of refined cells before termination of Al-
gorithm 1 are as follows (for clarity of notation, the projections πIi into the
relevant state spaces are omitted):

• S1: σ3, σ2, σ1, σ2, σ0, σ1, σ0,

• S2: σ3, σ2, σ1, σ2, σ1, σ0, σ0, σ1, σ2, σ0, σ1,

• S4: σ3, σ2, σ1, σ2, σ0, σ1, σ0,

• S5: σ3, σ2, σ1, σ0.

We can observe that a larger number of refinements are required in subsystem
2 due to its weaker control power in room 6 (only 75% of u6) and the additional
disturbance in room 6 created by u8 (which is not controlled by this subsystem).
Using Matlab on a laptop with a 2.6 GHz CPU and 8 GB of RAM, these results
after applying Algorithm 1 for all subsystems were obtained in 36 seconds. As
a comparison, for the abstraction refinement algorithm applied in a centralized
approach (no decomposition and a single abstraction representing the whole
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(a) I1 = Ic1 = J1 = {1, 3} (b) I2 = Ic2 = J2 = {4, 6}

(c) I3 = Ic3 = J3 = {7, 8} (d) I4 = {2, 4}, Ic4 = J4 = {2}

(e) I5 = {5, 6}, Ic5 = J5 = {5}

Figure 4: Refined partitions and valid symbols (in red) for all 5 subsystems.
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system), the algorithm was still running after more than 64 hours of computation
without yet reaching a result.

6.3. Complexity comparison

The complexity reduction induced by the compositional abstraction refine-
ment approach proposed in this paper can be further illustrated by comparing
the number of evaluations of the over-approximation operator RSAG2

i in (7) (or
RS in (3) for a centralized case with m = 1) in various abstraction methods.
In Table 1, we compare 4 such methods: the compositional abstraction refine-
ment from the present paper, the centralized abstraction refinement that can
appear as a particular case of this paper with a single subsystem m = 1 and
an abstraction creation without refinement, both in the centralized and compo-
sitional cases as in [30]. For these comparisons to be meaningful, we consider
that the last three methods are computed with a partition corresponding to the
finest elements of the refined partition from the first approach (i.e. each cell of
the initial coarse partition P is split into 24 = 16 elements per dimension, since
πI2(σ1) is refined 4 times in the simulation above).

# over-approximations to compute Centralized Compositional

Abstraction (no refinement) 6.55 ∗ 1020 5.44 ∗ 105

Abstraction refinement 6.74 ∗ 1015 9933

Table 1: Number of evaluations of the over-approximation of a reachable set (3) or (7) for
four abstraction methods.

For both cases without refinement in the top row of Table 1, the indicated
number is the exact number of evaluations of the over-approximation operator
required to create the whole abstractions. For the centralized abstraction refine-
ment, the value is an upper bound on the real number of evaluations since we
stop checking other values of the control input as soon as one is found to be valid
for a given symbol. In addition, it is likely that a coarser satisfying partition
can be found with the centralized approach due to the considered model being
more accurate than the ones used in the compositional approach which only
deals with partial representations. Finally, for the compositional abstraction
refinement, the value in Table 1 corresponds to the exact number of evaluations
in the simulation described in Section 6.2.

From these results, we can thus observe that the abstraction refinement
approach reduces the computational burden in three ways. Firstly, since the
refinement is guided by the specification ψ, the obtained abstractions Si are
among the coarsest that provide satisfaction of ψ: all cells in P\{σ0, . . . , σr}
are left unexplored since they are not relevant to ψ and we stop refining those
in {σ0, . . . , σr} as soon as a satisfying path of Si is found. The second point
which saves both computation time and memory space is the fact that Algo-
rithm 1 never actually creates or updates any abstraction: the refinement is
done directly on the partitions Xi and the transitions are checked using the
over-approximation operator RSAG2

i but the list of successors is never stored.
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The last point is that satisfying controllers Ci are obtained from the refinement
procedure which means that even at the end of Algorithm 1, we avoid creating
the final abstraction and iterating through it for the controller synthesis.

In the particular case of compositional abstraction refinement, an additional
complexity reduction is obtained by the decomposition of the dynamics in order
to work on lower-dimensional subsystems. Note however that while the compo-
sitional approach is always faster than the centralized one in the case without
refinement [30], it is not always true in the case of abstraction refinement. In-
deed, the loss of information in the subsystems of the compositional method may
require the algorithm to refine more before finding a satisfying solution, which
can overcome the complexity reduction from the decomposition. For this rea-
son, the compositional abstraction refinement approach is particularly adapted
to large but weakly coupled systems.

7. Conclusion

In this paper, we have presented a novel approach to abstraction creation and
control synthesis in the form of a compositional specification-guided abstraction
refinement procedure. This approach applies to any nonlinear system associated
with a method to over-approximate its reachable sets and any control objective
formulated as a sequence of locations (in the state space) to visit. The dynamics
are first decomposed into subsystems representing partial descriptions of the
system and a finite abstraction is then created for each subsystem through a
refinement procedure starting from a coarse partition of the state space. Each
refined abstraction is associated with a controller and we prove that combining
these local controllers can enforce the specification on the original system. The
efficiency of the proposed approach compared to other abstraction and synthesis
methods was then illustrated in a numerical example showing that this approach
is particularly suited to large and weakly coupled systems.

Current efforts aim at combining this approach with specification revision
methods into a common framework whose objective is to select for each sub-
system which approach is the most advantageous between the abstraction re-
finement and the specification revision. Another interesting research direction
is to consider a refinement on the assume-guarantee obligations (instead of the
partition as in this paper), where the controller obtained on a subsystem could
be used to shrink the obligations associated with its controlled states, and then
send these refined obligations to other subsystems which would then update
their abstractions.
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