R. Miranda, T. Conway, M. Leatham, D. Chang, W. Norris et al., Glycolytic and Gluconeogenic Growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the Mouse Intestine, Infection and Immunity, vol.72, issue.3, pp.1666-1676, 2004.
DOI : 10.1128/IAI.72.3.1666-1676.2004

A. Pernestig, D. Georgellis, T. Romeo, K. Suzuki, H. Tomenius et al., The Escherichia coli BarA-UvrY Two-Component System Is Needed for Efficient Switching between Glycolytic and Gluconeogenic Carbon Sources, Journal of Bacteriology, vol.185, issue.3, pp.843-853, 2003.
DOI : 10.1128/JB.185.3.843-853.2003

M. Leatham, S. Banerjee, S. Autieri, R. Mercado-lubo, T. Conway et al., Precolonized Human Commensal Escherichia coli Strains Serve as a Barrier to E. coli O157:H7 Growth in the Streptomycin-Treated Mouse Intestine, Infection and Immunity, vol.77, issue.7, pp.2876-288600059, 2009.
DOI : 10.1128/IAI.00059-09

URL : http://iai.asm.org/content/77/7/2876.full.pdf

L. Durso, D. Smith, and R. Hutkins, Measurements of Fitness and Competition in Commensal Escherichia coli and E. coli O157:H7 Strains, Applied and Environmental Microbiology, vol.70, issue.11, p.7, 2004.
DOI : 10.1128/AEM.70.11.6466-6472.2004

D. Chang, D. Smalley, D. Tucker, M. Leatham, W. Norris et al., Carbon nutrition of Escherichia coli in the mouse intestine, Proceedings of the National Academy of Sciences, vol.49, issue.1, pp.7427-7432, 2004.
DOI : 10.1136/gut.49.1.47

N. Kamada, Y. Kim, H. Sham, B. Vallance, J. Puente et al., Regulated Virulence Controls the Ability of a Pathogen to Compete with the Gut Microbiota, Science, vol.175, issue.10, pp.1325-1329, 2012.
DOI : 10.4049/jimmunol.175.10.6900

N. Kamada, G. Chen, N. Inohara, and G. Núñez, Control of pathogens and pathobionts by the gut microbiota, Nature Immunology, vol.86, issue.7, pp.685-690, 2013.
DOI : 10.1084/jem.20120504

A. Fabich, S. Jones, F. Chowdhury, A. Cernosek, A. Anderson et al., Comparison of Carbon Nutrition for Pathogenic and Commensal Escherichia coli Strains in the Mouse Intestine, Infection and Immunity, vol.76, issue.3, pp.1143-115201386, 2008.
DOI : 10.1128/IAI.01386-07

B. Enjalbert, F. Letisse, and J. Portais, Physiological and Molecular Timing of the Glucose to Acetate Transition in Escherichia coli, Metabolites, vol.56, issue.3, pp.820-837, 2013.
DOI : 10.1016/j.copbio.2007.07.002

O. Kotte, J. Zaugg, and M. Heinemann, Bacterial adaptation through distributed sensing of metabolic fluxes, Molecular Systems Biology, vol.73, p.355, 2010.
DOI : 10.1016/S1369-5274(03)00033-X

A. Wolfe, The Acetate Switch, Microbiology and Molecular Biology Reviews, vol.69, issue.1, pp.12-50, 2005.
DOI : 10.1128/MMBR.69.1.12-50.2005

URL : http://mmbr.asm.org/content/69/1/12.full.pdf

A. Edwards, L. Patterson-fortin, C. Vakulskas, J. Mercante, K. Potrykus et al., Circuitry linking the Csr and stringent response global regulatory systems, Molecular Microbiology, vol.178, issue.6, pp.1561-1580, 2011.
DOI : 10.1128/jb.178.4.1012-1017.1996

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2011.07663.x/pdf

A. Mckee, B. Rutherford, D. Chivian, E. Baidoo, D. Juminaga et al., Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli, Microbial Cell Factories, vol.11, issue.1, p.79, 2012.
DOI : 10.1093/nar/gkq1143

T. Romeo, M. Gong, M. Liu, and A. Brun-zinkernagel, Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties., Journal of Bacteriology, vol.175, issue.15, pp.4744-47554744, 1993.
DOI : 10.1128/jb.175.15.4744-4755.1993

T. Esquerré, M. Bouvier, C. Turlan, A. Carpousis, L. Girbal et al., The Csr system regulates genome-wide mRNA, 2016.

S. Sowa, G. Gelderman, A. Leistra, A. Buvanendiran, S. Lipp et al., Integrative FourD omics approach profiles the target network of the carbon storage regulatory system, Nucleic Acids Research, vol.45, pp.1673-1686, 2017.
DOI : 10.1093/nar/gkx048

S. Bhatt, A. Edwards, H. Nguyen, D. Merlin, T. Romeo et al., The RNA Binding Protein CsrA Is a Pleiotropic Regulator of the Locus of Enterocyte Effacement Pathogenicity Island of Enteropathogenic Escherichia coli, Infection and Immunity, vol.77, issue.9, pp.3552-356800418, 2009.
DOI : 10.1128/IAI.00418-09

B. Wei, A. Brun-zinkernagel, J. Simecka, B. Prüss, P. Babitzke et al., Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli, Molecular Microbiology, vol.96, issue.1, pp.245-256, 2001.
DOI : 10.1073/pnas.96.11.6456

A. Yakhnin, C. Baker, C. Vakulskas, H. Yakhnin, I. Berezin et al., mRNA from RNase E-mediated cleavage, Molecular Microbiology, vol.31, issue.4, pp.851-866, 2013.
DOI : 10.1093/nar/gkg595

URL : http://onlinelibrary.wiley.com/doi/10.1111/mmi.12136/pdf

H. Yang, M. Liu, and T. Romeo, Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product., Journal of Bacteriology, vol.178, issue.4, pp.1012-1017, 1996.
DOI : 10.1128/jb.178.4.1012-1017.1996

S. Gudapaty, K. Suzuki, X. Wang, P. Babitzke, and T. Romeo, Regulatory Interactions of Csr Components: the RNA Binding Protein CsrA Activates csrB Transcription in Escherichia coli, Journal of Bacteriology, vol.183, issue.20, pp.6017-60276017, 2001.
DOI : 10.1128/JB.183.20.6017-6027.2001

T. Weilbacher, K. Suzuki, A. Dubey, X. Wang, S. Gudapaty et al., A novel sRNA component of the carbon storage regulatory system of Escherichia coli, Molecular Microbiology, vol.9, issue.3, pp.657-670, 2003.
DOI : 10.1007/978-94-011-4485-8_2

K. Suzuki, P. Babitzke, S. Kushner, and T. Romeo, Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E, Genes & Development, vol.20, issue.18, pp.2605-2617, 2006.
DOI : 10.1101/gad.1461606

C. Vakulskas, Y. Leng, H. Abe, T. Amaki, A. Okayama et al., Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins, Nucleic Acids Research, vol.44, issue.16, pp.7896-7910, 2016.
DOI : 10.1093/nar/gkw484

K. Suzuki, X. Wang, T. Weilbacher, A. Pernestig, O. Melefors et al., Regulatory Circuitry of the CsrA/CsrB and BarA/UvrY Systems of Escherichia coli, Journal of Bacteriology, vol.184, issue.18, pp.5130-5140, 2002.
DOI : 10.1128/JB.184.18.5130-5140.2002

A. Pannuri, C. Vakulskas, T. Zere, L. Mcgibbon, A. Edwards et al., ABSTRACT, Journal of Bacteriology, vol.198, issue.21, pp.3000-301500454, 2016.
DOI : 10.1128/JB.00454-16

B. Wei, S. Shin, D. Laporte, A. Wolfe, and R. T. , Global Regulatory Mutations in csrA and rpoS Cause Severe Central Carbon Stress in Escherichia coli in the Presence of Acetate, Journal of Bacteriology, vol.182, issue.6, pp.1632-1640, 2000.
DOI : 10.1128/JB.182.6.1632-1640.2000

B. Enjalbert, M. Cocaign-bousquet, J. Portais, and F. Letisse, ABSTRACT, Journal of Bacteriology, vol.197, issue.19, pp.3173-318100128, 2015.
DOI : 10.1128/JB.00128-15

T. Esquerré, S. Laguerre, C. Turlan, A. Carpousis, L. Girbal et al., Dual role of transcription and transcript stability in the regulation of gene expression in Escherichia coli cells cultured on glucose at different growth rates, Nucleic Acids Research, vol.42, issue.4, pp.2460-2472, 2014.
DOI : 10.1093/nar/gkt1150

J. Mercante, K. Suzuki, X. Cheng, P. Babitzke, and T. Romeo, CsrA Defines Two Subdomains of Critical Functional Importance, Journal of Biological Chemistry, vol.6, issue.42, pp.31832-31842, 2006.
DOI : 10.1093/nar/22.22.4673

B. Enjalbert, J. F. Portais, and J. , Intuitive Visualization and Analysis of Multi-Omics Data and Application to Escherichia coli Carbon Metabolism, PLoS ONE, vol.1, issue.6, 2011.
DOI : 10.1371/journal.pone.0021318.s004

A. Chapman, L. Fall, and D. Atkinson, Adenylate energy charge in Escherichia coli during growth and starvation, J Bacteriol, vol.108, pp.1072-1086, 1971.

A. Feist, C. Henry, J. Reed, M. Krummenacker, A. Joyce et al., A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information, Molecular Systems Biology, vol.64, p.121, 2007.
DOI : 10.1093/jb/mvh147

URL : http://msb.embopress.org/content/msb/3/1/121.full.pdf

M. Camacho, A. Alvarez, R. Chavez, T. Romeo, E. Merino et al., Effects of the Global Regulator CsrA on the BarA/UvrY Two-Component Signaling System, Journal of Bacteriology, vol.197, issue.5, pp.983-99102325, 2015.
DOI : 10.1128/JB.02325-14

D. Zheng, C. Constantinidou, J. Hobman, and S. Minchin, Identification of the CRP regulon using in vitro and in vivo transcriptional profiling, Nucleic Acids Research, vol.32, issue.19, pp.5874-5893, 2004.
DOI : 10.1093/nar/gkh908

K. Bettenbrock, T. Sauter, K. Jahreis, A. Kremling, J. Lengeler et al., Correlation between Growth Rates, EIIACrr Phosphorylation, and Intracellular Cyclic AMP Levels in Escherichia coli K-12, Journal of Bacteriology, vol.189, issue.19, pp.6891-690000819, 2007.
DOI : 10.1128/JB.00819-07

URL : http://jb.asm.org/content/189/19/6891.full.pdf

J. Preiss, Bacterial Glycogen Synthesis and its Regulation, Annual Review of Microbiology, vol.38, issue.1, pp.419-458, 1984.
DOI : 10.1146/annurev.mi.38.100184.002223

G. Eydallin, M. Montero, G. Almagro, M. Sesma, A. Viale et al., Genome-Wide Screening of Genes Whose Enhanced Expression Affects Glycogen Accumulation in Escherichia coli, DNA Research, vol.17, issue.2, pp.61-71, 2010.
DOI : 10.1093/dnares/dsp028

T. Yamamotoya, H. Dose, Z. Tian, A. Fauré, Y. Toya et al., Glycogen is the primary source of glucose during the lag phase of E. coli proliferation, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1824, issue.12, pp.1442-1448, 2012.
DOI : 10.1016/j.bbapap.2012.06.010

L. Wang and M. Wise, Glycogen with short average chain length enhances bacterial durability, Naturwissenschaften, vol.40, issue.9, pp.719-729, 2011.
DOI : 10.1007/BF00394558

T. Baba, A. T. Hasegawa, M. Takai, Y. Okumura, Y. Baba et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Molecular Systems Biology, vol.170, 2006.
DOI : 10.1353/pbm.1973.0061

H. Taymaz-nikerel, M. De-mey, C. Ras, A. Ten-pierick, R. Seifar et al., Development and application of a differential method for reliable metabolome analysis in Escherichia coli, Analytical Biochemistry, vol.386, issue.1, pp.9-19, 2009.
DOI : 10.1016/j.ab.2008.11.018

E. Cinquemani, V. Laroute, M. Cocaign-bousquet, H. De-jong, and D. Ropers, Estimation of time-varying growth, uptake and excretion rates from dynamic metabolomics data, Bioinformatics, vol.33, issue.14, pp.301-310, 2017.
DOI : 10.1093/bioinformatics/btx250

URL : https://hal.archives-ouvertes.fr/hal-01607919

K. Zhou, L. Zhou, Q. Lim, R. Zou, G. Stephanopoulos et al., Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR, BMC Molecular Biology, vol.12, issue.1, p.18, 2011.
DOI : 10.1016/S0003-2697(02)00311-1

J. Parrou and J. François, A Simplified Procedure for a Rapid and Reliable Assay of both Glycogen and Trehalose in Whole Yeast Cells, Analytical Biochemistry, vol.248, issue.1, pp.186-188, 1997.
DOI : 10.1006/abio.1997.2138

J. Schellenberger, R. Que, R. Fleming, I. Thiele, J. Orth et al., Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0, Nature Protocols, vol.249, issue.9, pp.1290-1307, 2011.
DOI : 10.1165/rcmb.2007-0306OC