M. Bleyer, C. Rother, and P. Kohli, Surface stereo with soft segmentation, Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pp.1570-1577, 2010.

J. Bouguet, Pyramidal implementation of the affine Lucas Kanade feature tracker description of the algorithm, Intel Corporation, vol.5, issue.110, p.4, 2001.

M. Garrigues and A. Manzanera, Video++, a modern image and video processing C++ framework, Design and Architectures for Signal and Image Processing (DASIP), 2014 Conference on, pp.1-6, 2014.
DOI : 10.1109/dasip.2014.7115639

URL : https://hal.archives-ouvertes.fr/hal-01118322

A. Geiger, P. Lenz, and R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248074

URL : http://www.cvlibs.net/publications/cvpr12.pdf

H. C. Longuet-higgins, A computer algorithm for reconstructing a scene from two projections, 1987.
DOI : 10.1038/293133a0

B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, IJCAI, pp.674-679, 1981.

J. Peng, T. Hazan, D. Mcallester, and R. Urtasun, Convex max-product algorithms for continuous MRFs with applications to protein folding, Proc. ICML, 2011.

A. Plyer, G. L. Besnerais, and F. Champagnat, Massively parallel Lucas Kanade optical flow for real-time video processing applications, Journal of Real-Time Image Processing, vol.31, issue.5, pp.713-730, 2016.
DOI : 10.1007/3-540-47969-4_40

H. Richard, In defence of the 8-point algorithm, Proceedings of the 5th International Conference on Computer Vision, pp.1064-1070, 1995.

E. Rosten and T. Drummond, Machine learning for highspeed corner detection, European Conference on Computer Vision (ECCV'06), pp.430-443, 2006.
DOI : 10.1007/11744023_34

URL : http://mi.eng.cam.ac.uk/~er258/work/rosten_2006_machine.ps.gz

G. Sansoni, M. Trebeschi, and F. Docchio, State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation, Sensors, vol.160, issue.52, pp.568-601, 2009.
DOI : 10.1016/j.forsciint.2005.10.007

T. Senst, J. Geistert, I. Keller, and T. Sikora, Robust local optical flow estimation using bilinear equations for sparse motion estimation, 2013 IEEE International Conference on Image Processing, pp.2499-2503, 2013.
DOI : 10.1109/ICIP.2013.6738515

C. Vogel, K. Schindler, and S. Roth, 3D Scene Flow Estimation with a Piecewise Rigid Scene Model, International Journal of Computer Vision, vol.3, issue.2, pp.1-28
DOI : 10.1007/BFb0028345

K. Yamaguchi, T. Hazan, D. Mcallester, and R. Urtasun, Continuous Markov Random Fields for Robust Stereo Estimation, European Conference on Computer Vision, pp.45-58, 2012.
DOI : 10.1007/978-3-642-33715-4_4

URL : http://ttic.uchicago.edu/~rurtasun/publications/yamaguchi_et_al_eccv12.pdf

K. Yamaguchi, D. Mcallester, and R. Urtasun, Robust Monocular Epipolar Flow Estimation, 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp.1862-1869, 2013.
DOI : 10.1109/CVPR.2013.243

URL : http://ttic.uchicago.edu/~rurtasun/publications/yamaguchi_et_al_cvpr13.pdf

K. Yamaguchi, D. Mcallester, and R. Urtasun, Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation, European Conference on Computer Vision, pp.756-771, 2014.
DOI : 10.1007/978-3-319-10602-1_49

URL : http://www.cs.toronto.edu/%7Eurtasun/publications/yamaguchi_et_al_eccv14.pdf

Y. Zhang, M. Gong, and Y. Yang, Local stereo matching with 3D adaptive cost aggregation for slanted surface modeling and sub-pixel accuracy, 2008 19th International Conference on Pattern Recognition, pp.1-4, 2008.
DOI : 10.1109/ICPR.2008.4761101

URL : http://figment.cse.usf.edu/~sfefilat/data/papers/MoCT2.1.pdf

Z. Zhang, Microsoft Kinect Sensor and Its Effect, IEEE Multimedia, vol.19, issue.2, pp.4-10, 2012.
DOI : 10.1109/MMUL.2012.24

URL : http://research.microsoft.com/en-us/um/people/zhang/Papers/Microsoft Kinect Sensor and Its Effect - IEEE MM 2012.pdf