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Abstract  "&!

In the Congo River Basin (CRB), due to the lack of contemporary in situ observations, "' !

there is a limited understanding of the large-scale variability of its present-day hydrologic "( !

components and their link with climate. In this context, remote sensing observations ") !

provide a unique opportunity to better characterize those dynamics. Analyzing the Global "* !

Inundation Extent Multi-Satellite (GIEMS) time series, we first show that surface water #+!

extent (SWE) exhibits marked seasonal patterns, well distributed along the major rivers #" !

and their tributaries, and with two annual maxima located: i) in the lakes region of the ##!

Lwalaba sub-basin and ii) in the ÒCuvette CentraleÓ, including Tumba and Mai-Ndombe #$!

Lakes. At an interannual time scale, we show that SWE variability is influenced by ENSO #%!

and the Indian Ocean dipole events. We then estimate water level maps and surface water #&!

storage (SWS) in floodplains, lakes, rivers and wetlands of the CRB, over the period 2003-#' !

2007, using a multi-satellite approach, which combines the GIEMS dataset with the water #( !

level measurements derived from the ENVISAT altimeter heights. The mean annual #) !



! #!

variation in SWS in the CRB is 81±24 km3 and contributes to 19±5 % of the annual #* !

variations of GRACE-derived terrestrial water storage (33±7 % in the Middle Congo). It $+!

represents also ~6±2 % of the annual water volume that flows from the Congo River into $" !

the Atlantic Ocean.  $#!

Keywords: Surface water storage; Congo River Basin; Remote sensing. $$!

 $%!

1. Introduction $&!

Despite its importance, the Congo River Basin (CRB), located in the central region of $' !

Africa, has not attracted as much attention among the climate and hydrology communities $( !

as has the Amazon Basin or other large rivers in the world [Alsdorf et al., 2016]. Up to $) !

now, there is still an insufficient knowledge of the regional hydro-climatic characteristics $* !

and changes in this region, even though the CRB plays a crucial role at global and regional %+!

scales. Firstly, the CRB is remarkable as the second largest river system of the world in %"!

terms of both water discharge, with a mean annual flow of ~40,600 m3/s, and drainage %#!

basin size (~3.7 ! 10 6 km2) [Laraque et al., 2001, 2009]. It also plays a key role in the %$!

Earth system as one of the three main convective centers in the Tropics, with the Amazon %%!

River basin and the Ômaritime continentÕ of Eastern Indian and western tropical Pacific %&!

Oceans [Hastenrath, 1985]. Secondly, more than 80% of people in the CRB live %'!

exclusively on activities that are highly dependent on climate and water resource %(!

availability: fisheries, agriculture and livestock [Bele et al., 2010]. In this region, the food %)!

production depends heavily on rain-fed agriculture, leading the population particularly %*!

vulnerable to food insecurity [Brown et al., 2014]. Moreover, a couple of studies have &+!

shown that the CRB has already experienced changes in climate variability and in the &"!

hydrological system [MahŽ and Olivry, 1999; Camberlin et al., 2001; Laraque et al., 2001; &#!

Samba et al., 2008; Samba and Nganga, 2012]. Thirdly, about 50% of the CRB land area &$!

is covered by tropical forest (~190 106 ha, Verhegghen et al., 2012), representing about &%!



! $!

18% of the worldÕs tropical forests (~1100 106 ha, Achard et al., 2002), and playing a &&!

crucial role as a sink of CO2, storing about 50 billion tons of carbon [Verhegghen et al., &' !

2012]. In a recent study, Dargie et al., [2017] highlighted that the ÒCuvette CentraleÓ &(!

peatland (Fig.1) stores about 30 billion tons of carbon. This total amount of carbon is &)!

equivalent to ~ 80 billion tons of CO2 or about 2.3 years of current global anthropogenic &*!

emissions (~ 35 billion tons in 2015, Olivier et al., 2016). This stock is particularly '+ !

vulnerable to land-use change and any future change in the water cycle. For all these '" !

reasons, there is an obvious need to better understand the CRB dynamic and to characterize '# !

its vulnerability to climate change and other crucial challenges. In particular, it is necessary '$ !

to gain solid knowledge about the past and current hydro-climate processes of the CRB, in '%!

order to significantly reduce the uncertainties associated with future climate response '& !

under global warming. The limited understanding of the CRB's hydro-climate processes '' !

results mainly from the lack of in situ data availability: the network of stations, which data '( !

are publicly released, is sparse and poorly maintained, and it is substantially difficult of ') !

perform fieldwork, notably in the swamps. However, recent developments and '* !

improvements in remote sensing technology provide more observations than ever before (+ !

[Alsdorf et al., 2007; Prigent et al., 2016] and allow us the unique opportunity to better (" !

understand the spatial and temporal variability of the CRBÕs hydro-climatic patterns.  (# !

 ($ !

In this study, our primary focus is on the CRB surface water (SW) dynamics, a key (%!

component of the land water budget equation. The SW, corresponding to water stored in (&!

rivers, lakes, wetlands, floodplains and in man-made reservoirs, is crucial to the survival of (' !

all living organisms, including humans and is a precious resource in term of biodiversity, (( !

ecology, water management and economy. Moreover, SW storage (SWS) plays a major () !

role at all scales in the terrestrial water balance and in the Earth's climate system (* !

variability, through its interactions with the atmosphere and ocean. Up until now, the )+ !
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spatial and temporal dynamics of SW stored on the Earth's surface remains still largely )" !

unknown [Alsdorf et al., 2007]. Since the last decades, progresses in satellite remote )# !

sensing are improving substantially our understanding of SW dynamics in the major river )$ !

basins of the world. Among these derived-products, radar altimetry is providing since the )%!

early 1990s a monitoring of water levels variations of lakes, rivers, floodplains and )&!

reservoirs [Birkett, 1995; CrŽtaux and Birkett, 2006; Calmant et al., 2008]. Additionally, it )' !

is possible to extract locally the extent of water bodies using satellite imagery, which, )( !

combined with altimetry data, enable the SWS estimation of lakes and reservoirs [Baup et )) !

al., 2014; CrŽtaux et al., 2016] and of floodplains [Frappart et al., 2005]. More recently, )* !

merging information derived from active and passive microwave sensors and from optical *+ !

data, the Global Inundation Extent from Multi-Satellite (GIEMS) dataset [Prigent et al., *" !

2007; Papa et al., 2010; Prigent et al., 2016] offers unprecedented information on the *# !

variations of SW extent (SWE) at the global scale. The combination of GIEMS estimates *$ !

with radar altimetry observations has further allowed the provision of spatio-temporal *%!

variations of SWS in large tropical river basins, such as the Amazon, GangesÐBrahmaputra *&!

and Orinoco basins [Frappart et al., 2008, 2010, 2012, 2015b; Papa et al., 2015]. *' !

Recently, a few studies tried to understand the SW dynamics in the CRB using remote *( !

sensing and/or modeling [Rosenqvist and Birkett, 2002; Bwangoy et al., 2010; Jung et al., *) !

2010; Beighley et al., 2011; Lee et al., 2011; Tshimanga et al., 2011; Tshimanga and ** !

Hughes, 2012; OÕLoughlin et al., 2013; Becker et al., 2014; Betbeder et al., 2014; Lee et "++ !

al., 2014, 2015]. For instance, Rosenqvist and Birkett, [2002] demonstrated that Synthetic "+" !

Aperture Radar (SAR) image mosaics can be used to appraise the maximum extents of "+# !

flooding in the CRB, but were not relevant to assess the SW dynamics and ranges of the "+$ !

variations. Bwangoy et al., [2010] demonstrated the utility of optical and radar remotely "+%!

sensed data in characterizing the wetlands of the ÒCuvette CentraleÓ. They estimated that "+&!

the wetlands cover an area of 32% in the ÒCuvette CentraleÓ, equivalent to 360000 km2. "+' !
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Crowley et al., [2006], using Gravity Recovery and Climate Experiment (GRACE) data, "+( !

estimated the terrestrial water storage (surface water storage plus groundwater storage and "+) !

soil moisture) within the CRB. Over 4 years (2002-2006), the estimate exhibited "+* !

significant seasonal variations (30±6 mm of equivalent water thickness) and long-term ""+ !

negative trend (~ -70km3/year). Lee et al., [2011], using GRACE data and other satellite """ !

measurements, estimated that the amount of water annually filling and draining the Congo ""# !

wetlands is about 111 km3, i.e. one-third the magnitude of the water volumes found on the ""$ !

mainstream Amazon floodplain. Lee et al., [2014], integrating terrestrial water storage ""%!

(TWS) changes from GRACE, water level changes from radar altimetry, and inundation ""& !

extents from SAR imagery, quantified TWS change and its surface and subsurface ""' !

components over the central CRB. They showed that annual variations of the TWS ""( !

changes during the period of 2007Ð2010 from 21 to 31 km3 and are mostly controlled by "") !

surface storage changes. Lee et al., [2015] developed water depth maps over the ÒCuvette ""* !

CentraleÓ based on a linear regression model from altimetry and imagery data. They "#+ !

reported in their study area water storage volumes of about 11 km3 (Dec-2006), 10 km3 "#" !

(Dec-2007), and 9 km3 (Dec-2008). Finally, Becker et al., [2014] released an "## !

unprecedented dataset of water level time series over the entire CRB for the period 2003 to "#$ !

2009, obtained from the ENVISAT radar altimetry mission. From this unique data set, they "#%!

proposed an altimeter-based river level height regionalization scheme and thus identified "#&!

nine distinct hydrological regions in the CRB.  "#' !

 "#( !

Hence, to supplement this work, we analyze the spatio-temporal variability of SW extent "#) !

and storage in the CRB, at seasonal and interannual time-scales. For this, along with "#* !

GIEMS data covering the period 1993-2007, we further develop the observation-based "$+ !

technique combining SWE and radar altimetry measurements [Frappart et al., 2008] to "$" !

estimate the CRBÕs SWS variations over the period 2003Ð2007. The results are evaluated "$# !



! '!

and analyzed along with other in situ and remote sensing measurements of three "$$ !

hydrological parameters (discharge, rainfall and terrestrial water storage). The comparisons "$%!

with the latter will provide, for the first time, the time series of both SW and sub-surface "$&!

water (SSW) variations distributed throughout the CRB. The paper is structured as follows. "$' !

In Section 2 we briefly describe the CRB. Section 3 presents the datasets used in this study. "$( !

In Section 4, we analyze the SWE dynamics from the GIEMS dataset at both seasonal and "$) !

interannual time-scales for the period 1993 to 2007. Section 5 describes the methodology "$* !

for deriving SWS from a combination of multi-satellite observations and the results are "%+!

presented and discussed over the 2003Ð2007 period. Finally, conclusions and perspectives "%"!

are presented in Section 6. "%#!

 "%$!

2. The study region: The Congo River Basin (CRB)  "%%!

The CRB is a transboundary basin located in equatorial Africa (Fig. 1). In the heart of the "%&!

CRB, the shallow depression along the equator is named the ÒCuvette CentraleÓ [Bernard, "%' !

1945] (Fig. 1). The Congo River begins its course at the Chambeshi River (Fig. 2), rising "%(!

south of the Lake Tanganyika and transferred by the Bangweulu Swamps. After flowing "%)!

through Lake Mweru, it joins the Lwalaba River [Balek, 1977]. The permanent surface "%*!

area of Lake Bangweulu is about 3,000 km2 and can expand to about 15,000 km" at the end "&+!

of the rainy season when its swamps and floodplains get flooded. Lake Mweru covers "&" !

about 4,650 km2, and is surrounded by permanent swamps (~1,500 km2) and floodplains "&#!

(~900 km2). The Kasai River from the south, and the Ubangi River from the north are the "&$!

two principal tributaries of the Congo River. Right-bank tributaries of the Congo River "&%!

below its junction with the Ubangi include the Likouala aux Herbes, Sangha, Likouala and "&&!

Alima rivers. Swamp forests predominate on the floodplains in this section [Beadle, 1981; "&' !

Hughes et al., 1992; Betbeder et al., 2014]. The coupled ocean-atmosphere modes of El "&( !

Ni–o Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are the main "&) !



! (!

drivers of the CRB hydro-climatic dynamics [Saji et al., 1999; Behera and Yamagata, "&* !

2001; Reason, 2002; Balas et al., 2007; Hastenrath et al., 2007]. In this study, following "'+ !

the drainage patterns and physical characteristics, the CRB has been divided into six sub-"'" !

basins: Ubangi, Sangha, Middle-Congo, Lower-Congo, Kasai, and Lwalaba. These "'# !

locations are shown in Fig. 1 and characteristics of the sub-basins are presented in Table 1. "'$ !
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 #$%!
Table 1. Water balance of Congo River Basin, based on [Bultot, 1971; Edwards et al., 1983; Rodier, 1983; Olivry et al., 1988; Bricquet, 1995; #$&!

MahŽ and Olivry, 1995; Laraque et al., 2001] (---: Insufficient data to estimate SWS) #$$!

 #$' !
!
!
Basin name 

!
Drainage area 

(km2) 

!
!

Major rivers and lakes 

Mean annual 
rainfall 

1993-2007 
(mm) 

Mean annual discharge 

location m3/s 

Mean annual SWE area 
over 1993-2007 

(km2) 

min max 

SWS 
mean annual 

amplitude 

(km3) 

Total of SWS 
flows out the 

sub-basin 

(%) 
!
Ubangi 

Sangha 

Middle  congo 

Lower congo 

Kasai 

Lwalaba 

!
651,918 

!
!

191,953 
!
!

710,758 
!
!

144,123 
!
!

884,370 
!
!

1,105,879 

!
Uele, Bomu, Ubangi 

Sangha, Likouala aux herbes 

Congo, Ruki 
!

From Kasai/Congo confluence to the 
CRB mouth 

!

Kasai, Lukenie, Kwango, Lake Mai- 
Ndombe 

!

Lomani, Lwalaba, Lake Mweru, Lake 
Tanganyika, Lake Bangweulu 

!
1,924 

!
!

1,950 
!
!

2,164 
!
!

1,800 
!
!

1,834 
!
!

1,634 

!
Ubangi mouth 

Sangha mouth 

Above Ubangi 

Brazzaville 

Lediba 
!
Confluence 
Lomani-Lwalaba 

!
5,936 

!
!

2,471 
!
!

15,484 
!
!

40,600 
!
!

11,320 
!
!

8,358 

!
4,785 

!
!

1,752 
!
!

17,128 
!
!

464 
!
!

10,158 
!
!

10,713a 

!
7,648 

!
!

4,668 
!
!

24,590 
!
!

1,486 
!
!

13,003 
!
!

37,047a 

!
24±4 

!
!

10±2 
!
!

43±7 
!
!

--- 
  

 
28±4 

34±4 

!
13±2 

!
!

13±2 
!
!

9±1 
!
!

--- 

8±1 

13±2

2% 
!
TOTAL 

!
3,689,001 

!
CRB 

!
1,842 

!
Brazzaville 

!
40,600 

!
47,393 a 

!
78,932 a 

!
81±24 

 

!
6±2 

!#$" !

( )!*+, !-./01(/1! 0234(-,!.4!1+,!*(/5(/678(! 9(8,: !(3.2/; !<=:$>>!8? =:!70!/.1 !7/-@2;,;A!#$B!

 #'> !
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3. Dataset  #$#!

3.1. ENVISAT radar altimeter observations #$%!

The ENVIronmental SATellite (ENVISAT) was launched in March 2002 by the European #$&!

Space Agency and its mission was ended in April 2012. The ENVISAT mission carried, #$' !

among others instruments, a nadir radar altimeter [Wehr and Attema, 2001]. Along its #$( !

ground tracks, repeated every 35 days, we can extract a water level time series, or Òvirtual #$) !

stationsÓ (VS), at each intersection with wetlands, large rivers and smaller tributaries of the #$$!

CRB. The raw ENVISAT data are freely distributed by the Centre for Topographic studies #$* !

of the Oceans and Hydrosphere [CTOH] in along-track Geophysical Data Records (GDRs) #$" !

format. We used the ice-1 retracker [Wingham et al., 1986; Bamber, 1994]  as previous #*+ !

showed that it is the more suitable for hydrological studies in terms of accuracy of water #*# !

levels and availability of the data among the commonly available retracker present in the #*%!

GDRs [e.g.,Frappart et al. 2006; Santos Da Silva et al. 2010]. Thus, over 2003-2009, we #*&!

estimated the water level time series at 350 VS (Fig. 2) using the Virtual ALtimetry Station #*' !

Tool [VALS Tool, 2009] and the Multi-mission Altimetry Processing Software (MAPS). #*( !

Details about VALS and MAPS procedures can be found in Santos Da Silva et al. [2010] #*) !

and in Frappart et al., [2015a]. All 350 VS passed an efficient and reliable quality control #*$ !

(outlier, gap, shift). As shown in several studies [Frappart et al., 2005; Santos Da Silva et #** !

al., 2010; Papa et al., 2012], the accuracy of altimetry derived water levels over inland #*" !

water bodies is estimated to range between 10 and 40-50 cm on rivers according to the #"+ !

radiometric contrast between the water body and its environment within the radar footprint #"# !

(vegetation, sand banks, etc É). #"%!

 #"&!

3.2. GIEMS surface water extent dynamics  #"' !

A globally applicable remote-sensing technique has been developed to derive wetland #"( !

inundation extents: the Global Inundation Extent from Multi-Satellites (GIEMS) [Prigent #") !



! #+!

et al., 2001, 2007, 2012, 2016, Papa et al., 2006, 2010]. GIEMS merges: Microwave (19 #"$ !

and 37 GHz) observations from the Special Sensor Microwave/Imager (SSM/I), #"* !

backscatter at 5.25 GHz from the European Remote Sensing (ERS) scatterometer, and #"" !

visible (0.58Ð 0.68 µm) and near-infrared (0.73Ð 1.1 µm) reflectance from the Advanced %++!

Very High Resolution Radiometer (AVHRR) to account for vegetation canopy effects %+#!

[Papa et al., 2010]. GIEMS, from 1993 to 2007, provides monthly inundation percentage %+%!

at 0.25¡ resolution grid cells (each pixel equals 773 km2). GIEMS dataset has been %+&!

extensively (i) evaluated at global scale [Prigent et al., 2007; Papa et al., 2008, 2010] and %+'!

for a broad range of environments [Frappart et al., 2008; Papa et al., 2008, 2013; %+(!

Frappart et al., 2015b; Papa et al., 2015]; and (ii) used for climatic and hydrological %+)!

studies, such as the methane surface emissions evaluation [Bousquet et al., 2006; Ringeval %+$!

et al., 2010] and the river flooding scheme validation coupled with land surface models %+*!

[Decharme et al., 2008, 2011; Getirana et al., 2012; Pedinotti et al., 2012; Ringeval et al., %+"!

2012]. Uncertainties on the inundation estimate from GIEMS is about 10% [Prigent et al., %#+!

2007]. In rather densely forested regions, detection of the small areas of surface water can %##!

be challenging [Prigent et al., 2007]. This is the case within the CRB, where some regions %#%!

have very dense vegetation with a network of narrow rivers, such as in the upper part of the %#&!

Uele River in the Ubangi sub-basin and along the Lukenie and Sankuru Rivers in the Kasai %#'!

sub-basin. In these regions, when accurate VS are obtained from ENVISAT, but where %#(!

GIEMS shows limitations in properly delineating the extents of rivers and probably %#)!

underestimates small wetlands [Prigent et al., 2007], we filled the missing data by %#$!

distributing 10% of water extent to each river pixel. %#*!

Note also that large freshwater bodies such as the Lake Baikal, the Great Lakes, Lake %#"!

Victoria, and more importantly here for the present study, the Lake Tanganyika, have been %%+!

masked in the GIEMS database [Prigent et al., 2007]. However, its extent shows small %%#!

variations on seasonal timescale and does play an important role in the SW dynamics of the %%%!



! ##!

CRB. Nevertheless, its water storage variations will be taken into account when estimating %%&!

SWS variations (see Section 5). %%'!

 %%(!

3.3. Ancillary data %%)!

3.3.1. GRACE Regional Solution %%$!

The Gravity Recovery And Climate Experiment (GRACE) mission, placed in orbit in %%*!

March 2002, provides data over the continents and can be used to derive the monthly %%"!

changes of the terrestrial water storage (TWS) expressed in terms of equivalent water %&+!

height (EWH) [Tapley et al., 2004]. In this work, we used maps of monthly TWS from the %&#!

Jet Propulsion Laboratory GRACE land mascon solution (JPL RL05M, available at %&%!

http://grace.jpl.nasa.gov). This solution proposed some improvements to reduce leakage %&&!

errors i) across land/ocean boundaries using a Coastline Resolution Improvement filter and %&'!

ii) for continental hydrology applications providing a set of gain factors. The description of %&(!

the JPL RL05M solution in detail can be find in Watkins et al., [2015] and Wiese [2015]. %&)!

The dataset resolution is 0.5¡x0.5¡, but it represents equal-area of 3¡x3¡ spherical caps.  In %&$!

the CRB, the measurement error dominates the leakage error, i.e 5.3 mm vs 2.7 mm %&*!

respectively of EWH [Wiese et al., 2016]. Over land, the scaled uncertainty derived using %&"!

methods described in Wahr et al., [1998]  are provided and are in the range [0.7 15.8] mm %'+!

of EWH over the CRB.    %'#!

 %'%!

3.3.2. Rainfall datasets %'&!

CRU TS4.00  %'' !

We used the Climatic Research Unit (CRU) Time-series (TS) version 4.00 (CRU TS4.00) %'( !

[Harris et al., 2014; Harris and Jones, 2017]. These data are rainfall gridded fields based %') !

on monthly observations at meteorological stations across the worldÕs land areas and are %'$!

provided on high-resolution (0.5x0.5 degree) grids over the period 1901-2015.  %'* !



! #%!

GPCP  %'" !

The Global Precipitation Climatology Project (GPCP, V2.3) monthly dataset is used in this %(+!

study. This dataset is computed by combining multi-satellite estimates with precipitation %(#!

gauge information on 2.5¡ resolution grids from 1979 to present [Adler et al., 2003]. %(%!

TRMM %(&!

The precipitation estimates over the CRB are also obtained from the Tropical Rainfall %(' !

Measuring Mission (TRMM) 3B43-v7 product [Huffman et al., 2007]. This data set is %((!

available since January 1998 at 0.25¡!0.25¡ spatial resolution and at monthly time scale. %()!

 %($!

3.3.3. In situ gauge stations %(*!

We use the daily discharge time series over 1993Ð2007 at Brazzaville (Fig. 2 15.3¡E and %("!

4.3¡S, Station: 1070500105 from the Direction de la Gestion des Ressources Hydrauliques %)+!

(DGRH) - Brazzaville Ð Congo), Bangui (Fig. 2 18.6¡E and 4.36¡N Station: 1060700105 %)#!

from the Direction GŽnŽrale de L'Hydraulique Service de l'Hydrologie - Bangui - Central %)%!

African Republic), and Ouesso over 1993-1999 (Fig. 2 16.05¡E and 1.61¡N Station: %)&!

1070800120 from the DGRH).  %)' !

 %)(!

3.3.4. Altimeter-derived lake height %))!

We use the time series of monthly water levels of Lake Mweru (Fig. 2, 28.5¡E and 9¡S) %)$!

and Lake Bangweulu (Fig. 2, 29.5¡E and 11¡S) provided by Hydroweb %)*!

(,--./0011123456726879:;.2<=0<=076>0,?@=6365;40,?@=61480A. Hydroweb is %)"!

developed by the Laboratoire d'Etudes en GŽophysique OcŽanographie Spatiales (LEGOS) %$+!

in France and provides water level time series of selected water bodies (rivers, lakes, %$#!

reservoirs and wetlands) worldwide using the merged data from the Topex/Poseidon, %$%!

Jason-1, Jason-2, Jason-3, ERS2, ENVISAT, SARAL and Geosat Follow-On (GFO) %$&!



! #&!

satellite missions. The processing procedure details of Hydroweb can be found in CrŽtaux %$'!

et al., [2011].  %$(!

 %$)!

4. Spatio-temporal variations of surface water extent (SWE)  %$$!

The mean and maximum of the SWE per grid cell over 1993 to 2007 are displayed in Figs. %$*!

3a and 3b. A very realistic spatial distribution of the major rivers (Congo, Kasai, Ubangi %$"!

and Lwalaba) and some tributaries is shown by these maps. Associated inundated areas, %*+!

wetlands and the region of the ÒCuvette CentraleÓ are also well delineated. Maxima are %*#!

located in two regions: (i) in the Lwalaba basin, mainly along the major lakes; and (ii) in %*%!

the ÒCuvette CentraleÓ along the Congo main stream, between 15¡-18¡E and 0¡-2.5¡S, %*&!

including Lake Mai-Ndombe and Lake Tumba. The SWE and precipitation seasonal %*' !

variations are presented in Fig."4 and in Table 1. In this analysis, we computed the monthly %*(!

rainfall averages over 1993-2007 from CRU TS4.00, GPCP and TRMM products. In %*)!

Ubangi, Sangha and Middle Congo sub-basins, the precipitation dynamics present a %*$!

bimodal distribution, which is not observed in the SWE seasonal variations. However, %**!

SWE in Ubangi and Middle Congo follow slowly the overall increase trend of precipitation %*"!

from April to November. The SWE in Sangha presents a sharp increase from September to %"+!

November. The SWE in these three sub-basins drops a month after the beginning of the %"#!

precipitation decrease and reaches their minima 2-3 months after those of precipitation. %"%!

These three sub-basins see their flooded area increase two to three-fold on average over the %"&!

year. For instance, in the Middle Congo, the flooded areas vary from 16,700 km2 at low %"' !

waters to 26,000 km2 at high waters. The SWE in Kasai shows very little variations over %"(!

the year, probably due to the low GIEMS data coverage in this specific area. In the Lower %")!

Congo, between August and December, the SWE drops a month after the beginning of the %"$!

precipitation decrease and reach its minimum 3 months after the precipitation minimum. %"*!



! #'!

The flood period generally occurs between October and November and is perfectly in %""!

phase with the precipitation dynamics.  &++!

 &+#!

The SWE dynamics over 1993-2007 is also compared to: (i) the in situ river discharge &+%!

measured at Brazzaville, Bangui and Ouesso (Fig. 5, see Fig. 2 for their locations) and (ii) &+&!

satellite altimeter-derived height at Mweru, Bangweulu and Mai-Ndombe lakes (Fig. 6, see &+' !

Fig. 2 for their locations). In Fig. 5, the river discharge time series of Brazzaville is &+(!

compared to the total area of SWE in the ÒCuvette CentraleÓ, i.e. [15-20¡E 3-0¡S] and the &+)!

Bangui and Ouesso discharge time series are compared to the total area of SWE in the &+$!

Ubangui and Sangha sub-basins respectively. Fig. 5 a, b, and c show that the annual &+*!

variability of each river discharge time series are closely connected to the SWE dynamics, &+"!

with high correlation coefficients (r#0.8). At Bangui and Ouesso, the discharge peak &#+!

occurs one month before the SWE maximum.  &##!

 &#%!

In the following, we removed seasonal variation from the time series by using a 12-month &#&!

moving average. The interannual deseasonalized anomalies of the discharge and SWE time &#' !

series are presented in Fig. 5 d, e, and f.  We obtain a moderate agreement (r>0.5) in the &#(!

interannual temporal patterns between the two variables in the three locations. These SWE &#)!

interannual patterns probably result in a nonlinear relationship between the discharges and &#$!

other parameters of the water balance, such as groundwater levels.  In addition surface &#*!

water residence time could also be influenced by the size and depth of the drainage &#"!

systems, and by the connection/disconnection regimes between main streams and &%+!

associated inundation zones. Further investigations are needed to clarify these dynamics.  &%#!

 &%%!

The time series of 3 lakes height variations (Mai-Ndombe, Mweru, Bangweulu) are &%&!

compared in Fig. 6 with the cumulated SWE dynamics around the area. It shows that lake &%'!



! #(!

height variations and the SWE are generally well correlated (r#0.8, Fig. 6 a,b,c) at seasonal &%(!

timescales with a delay lag of 1 and 2 months for the Bangweulu and the Mweru, &%)!

respectively. At an interannual timescale, Fig 6 (d,e,f) also show high correlation (r#0.7) &%$!

between the anomalies of the two variables, especially over the Mweru Lake. Over Mweru, &%*!

three particular events are noticeable in 1997-1998, 2000-2001 and 2006-2007 (November &%"!

to May period). Because of shorter time series, only the 2006-2007 event is noticeable for &&+!

the Mai-Ndombe and Bangweulu lakes. The periods 1997-1998 and 2006-2007 are &&#!

characterized by positive Indian Ocean Dipole (pIOD) events in conjunction with an El &&%!

Ni–o event [Ummenhofer et al., 2009]. In general, pIOD events induce large rainfall deficit &&&!

in the eastern Indian Ocean and Indonesia, and floods in western Indian Ocean, South &&' !

India, and East Africa [McPhaden, 2002]. During those events, the Mweru SWE reaches &&(!

record high extent (2,700 km2 and 1,900 km2) associated with large positive anomalies in &&)!

the water level of the lake (Fig. 6 d and e). &&$!

 &&*!

In order to better characterize SWE interannual variability and its possible relation with &&"!

large climate events, we further analyze the deseasonalized anomalies between 1993 and &'+ !

2007 (Fig. 7). The SWE interannual variability over the Ubangi, Kasai, Middle Congo and &'# !

Lower Congo show the same dynamics (Fig 7a). A large negative anomaly in SWE is &'%!

observed from 1998 to 2000, which could be associated with the 1998-2000 persistent La &'& !

Ni–a event. This type of event is often linked to drier than normal conditions over &'' !

equatorial East Africa [McPhaden, 2002]2 The SWE interannual variability over the &'( !

Lwalaba basin (Fig. 7c) presents a large positive event in 1997/1998, previously observed &') !

in the Mweru Lake height variations (Fig. 6b/e), where a pIOD event (associated with an &'$ !

excess of rain in western Indian Ocean, South India, and East Africa) occurs in conjunction &'* !

with an El Ni–o event [Ummenhofer et al., 2009]. For example, after the 1997 pIOD event, &'" !

the level of Lake Victoria rose by 1.7 m, Lake Tanganyika by 2.1 m and Lake Malawi by &(+!
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1.8 m; the Sudd marshes levels also rose [Birkett et al., 1999; Becker et al., 2010] and very &(#!

high river flows were measured at Kinshasa [Conway et al., 2005]. Moreover, these &(%!

devastating floods have resulted in several thousand deaths and hundreds of thousands &(&!

people have been displaced in Kenya, Somalia, Sudan, Uganda, and Ethiopia [Cai et al., &(' !

2014]. In the Lwalaba basin, the SWE increased significantly by a factor of ~4 from late &(( !

1997 to the end of 1998. &() !

 &($!

5. Spatio-temporal variations of surface water storage (SWS)  &(* !

Here we present the spatio-temporal variability of SWS estimated by combining the SWE &(" !

from GIEMS with the 350 altimeter-derived water level heights. The two-step &)+!

methodology is described briefly in the following sections and we refer to Frappart et al., &)#!

[2008, 2011] for more details. The results are analyzed for 2003-2007, the common period &)%!

of availability for both datasets.  &)&!

5.1. Monthly maps of surface water level anomalies &)' !

Monthly maps of water level in the CRB were obtained by combining GIEMS and &)( !

ENVISAT derived water levels. Following Frappart et al. [2008, 2011], water levels for a &)) !

given month were linearly interpolated over GIEMS inundation. Each SW level map had a &)$!

spatial resolution of 0.25¡!0.25¡, and the elevation of each pixel is given with reference to &)* !

a map of minimum SW levels estimated over 2003Ð2007 using a hypsometric approach &)" !

(see Fig. S1 from Frappart et al., [2012]). For each inundated pixel of coordinates !! ! ! ! ! !, &$+!

the minimum elevation is given as : &$#!

! !"# ! ! ! ! ! ! !! !! ! !"# ! ! ! ! ! ! ! !
! ! ! !! ! !! ! ! !!" ! !

              (1) &$%!

where ! !"#  is the minimum elevation (m) during the observation period !!  for a &$&!

percentage of inundation !  from GIEMS, which varies between 0 and 100 and ! is a &$' !

monthly observation during !!.  &$(!



! #$!

Fig. 8 shows the seasonal evolution of surface water heights (SWH) in the CRB sub-basins &$)!

for the period August 2006 to May 2007 covering a pIOD-El Ni–o event. In the Ubangi &$$!

and Sangha basins the SWH increase in August-October (up to 4 m) and reach their &$*!

maximum values in November (up to 6 meters). In the Middle Congo River Basin, SWH &$"!

increase from October to December and show an important spatial variability. The SWH &*+!

highest values (~3 m) are along the Congo River mainstream and in the south of the basin &*#!

along the Ruki River. From January, we observe increases in the southern part of the CRB &*%!

basin. In the upper Lwalaba basin we observe from January to March an important &*&!

inundation zone (up to 4 m). From April, the SWH start to decline. The monthly maps of &*' !

SWH are now used to estimate surface water storage expressed as volumes for 2003Ð2007. &*( !

 &*) !

5.2. Monthly time series of surface water volume variations &*$!

Following Frappart et al. [2008, 2011], the time variations of SW volume, are computed &** !

as : &*" !

! !" ! ! ! !
! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !"# ! ! ! ! !!"# !"# ! ! !!!!        (2) &"+!

where ! !"  is the volume (km3) of SW, ! ! the earthÕs radius (6378 km), ! ! ! ! ! ! ! ! , &"#!

! ! ! ! ! ! ! ! ,!! !"# ! ! ! ! !  are respectively the percentage of inundation, the water level at &"%!

time !, and the minimum of water level at the pixel ! ! ! ! ! ; !! and !! are respectively &"&!

the grid steps in longitude and latitude. Monthly surface water storage (SWS) fluctuations &"' !

are estimated for over 2003Ð2007.  &"( !

 &") !

For lakes Bangweulu, Mai-Ndombe and Mweru, surface water volume anomalies !! !"  &"$!

were computed following Baup et al. [2014]: &"* !

!! !" ! ! ! ! ! ! !! ! ! !"#!!! ! !
! ! ! ! ! !

!
 (3) &"" !



! #*!

Where !S(t)=S(t)-S(t-1) and !h(t)=h(t)-h(t-1) are the variations of the surface and height '++ !

of the lake between instants t and t-1 respectively. '+# !

 '+%!

For Lake Tanganiyka, anomalies of water volume were simply estimated multiplying the '+& !

surface of the lake (32,600 km$ from Spigel and Coulter, 1996) by the anomaly of water '+' !

stage obtained using ENVISAT altimetry data. '+( !

 '+) !

The volume of SW is the sum of the contributions of the water volume contained in the '+$ !

floodplains and the lakes of the CRB. Accordingly, the time variations of TWS (VTWS(t)) '+* !

anomalies are computed following Ramillien et al., [2005]: '+" !

!! !"# ! ! ! !
! ! ! !"# ! ! ! ! ! ! !! ! ! !"# ! ! !"!# (4) '#+ !

where hTWS("j,#j,t) is the equivalent height anomaly of TWS (km3) at time t of the pixel of '## !

coordinates (" j,#j), ! ! the earthÕs radius (6378 km), !! and !! are respectively the grid '#%!

steps in longitude and latitude. The maximum error for the SW volume variation (km3), '#& !

!!, is estimated as : '#' !

!"# !! ! ! !"# !! ! !"# ! !! !"# ! ! !"#    (5) '#( !

where !!"#  is the maximum flooded surface (km2), ! ! !"#  is the maximum SWH variation '#) !

(km) between two consecutive months, !!!"#  is the maximum error for the flooded surface '#$ !

(km2) and !! ! !"#  is the maximum dispersion (km) of the SWH between two consecutive '#* !

months. '#" !

 '%+!

Fig. 9 presents the spatial patterns of SWS changes, estimated as the year among the five '%#!

years being the maximum range of SWS. It shows realistic spatial structures along the '%%!

Congo River and the ÒCuvette CentraleÓ, as well as in the Tumba and Mai-Ndombe lakes, '%&!

where annual maximum storage variations reach up to 1.3 km3/year per grid cell. '%' !



! #"!

Secondary maxima are observed in the Lwalaba basin around the lakes Kivu and '%( !

Bangweulu and along the Lwalaba River upstream, with SWS varying between 0.3Ð0.6 '%) !

km3/year per grid cell. Low SWS changes are observed in other locations of CRB (below '%$!

0.2 km3/year), in accordance with very low variations in water levels observed in the '%* !

altimetry measurements.  '%" !

 '&+ !

To illustrate the interannual variability at the basin-scale, Fig. 10 shows the yearly '&# !

variations of SWS, as a percentage of the difference from median computed 2003-2007. It '&%!

reveals rather strong year-to-year and spatial variability. For instance, during the 2007 '&&!

pIOD/El Ni–o year, a clear positive anomaly of SWS is observed all over the CRB basin. '&' !

During 2003, a pIOD year, increases in SWS are observed along the Ubangi river '&( !

mainstream and along the north part of the Lwalaba River whereas a deficit of SWS is '&) !

observed in the Kasai sub-basin. Conversely, in 2004, one notices positive anomalies of '&$ !

SWS of about 80-100% in the Kasai sub-basin whereas a negative anomaly is observed in '&* !

the rest of CRB.  '&" !

 ''+ !

For the entire CRB over 2003-2007, on average the annual SWS amplitude is 81±24 km3 ''# !

(Fig. 11 and Table 1). A significant year-to-year variation is observed, with for instance an ''% !

annual amplitude of ~57 km3 in 2003 whereas the amplitude reaches 114 km3 in 2006. ''& !

That corresponds to 6±2 % of the total fresh water volume that flows out annually from the ''' !

CRB as river discharge into the Atlantic Ocean with a mean flow of  ~ 40,600 m3/s (i.e. ''( !

~1,280 km3/year). As a comparison, the Amazon River SWS annual variation corresponds '') !

to ~15% of the total fresh water volume that flows out annually of its basin as river ''$ !

discharge [Frappart et al., 2012]. In the Ubangi basin, the mean annual SWS amplitude ''* !

24±4 km3, with a minimum of ~20 km3 observed in 2004 and a maximum of ~30 km3 in ''" !

2007. We report an annual mean SWS amplitude of 10±2 km3 for the Sangha and 28±4 '(+ !
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km3 for the Kasai. The Middle Congo presents a mean annual SWS amplitude of 43±7 '(# !

km3, with a minimum of ~34 km3 observed in 2003 and a maximum of ~52 km3 in 2007. In '(% !

contrast, the Lwalaba basin shows an annual SWS minimum of ~30 km3 observed in 2007 '(& !

and a maximum of ~41 km3 in 2005. On average this basin shows a mean annual SWS '(' !

amplitude of 34±4 km3, where we have included the volume variations of Bangweulu, '(( !

Mweru and Tanganyika Lakes obtained from the combination of altimetry and GIEMS. '() !

We estimated the maximum error for the SWS change in the CRB using Equation (5) and '($ !

using the following values: !!"#  = 78 932 km2 in February, 2007; !! !"#  = 0.6 m, mean '(* !

maximum SWH change between two consecutive months during 2003-2007; !! !"#  = 10% '(" !

from Prigent et al., [2007] of 78 932 km2; and !! ! !"#  = 0.2 m, maximum average ')+ !

dispersion of the SWH in 2007. We obtain a maximum error of ~20 km3 for an annual ')# !

variation of 76 km3 in 2007, i.e., an error of ~26%. This value is of the same order of ')% !

magnitude as that obtained over the Rio Negro (~23% Frappart et al., [2008]), over the ')& !

Orinoco Basin (~30%, Frappart et al., [2015b]) and over the Ganges-Brahmaputra Basin ')' !

(~24%, Papa et al., [2015]). In the same way, we obtained over the sub-basins the ')( !

maximum errors of ~17% for the Ubangui, ~23% for the Sangha, ~17% for the Middle ')) !

Congo, ~19% over the Kasai, and ~27% over the Lwalaba.  Respectively, the mean annual ')$ !

variation in SWS represents 13±2 % of the total volume of water that flows out the Ubangi ')* !

basin and at the Sangha mouth, 8±1 % at the Kasai mouth, 9±1 % along the Congo River ')" !

above the Ubangi mouth and ~13±2% at the Lwalaba mouth.  '$+ !

 '$# !

In Fig 11, we compared the SWS and TWS from the GRACE solution. For the entire CRB, '$%!

the correlation between the SWS and TWS is ~0.8 and the SWS preceded TWS by one '$& !

month. The seasonal SWS variations, estimated as the ratio between the mean amplitude of '$' !

SWS and TWS variations over the study period, represent 10±1 % of the TWS variations '$( !

in the Ubangi basin, 18±1% in the Sangha, 33±7 % in the Middle Congo, encompassing '$) !



! %#!

extensive floodplains and Lake Tumba, and 12±2 % in the Lwalaba sub-basins. For the '$$ !

entire CRB, the seasonal SWS variations represent 19±5 % of the TWS variations. As a '$* !

comparison, using the same approach, the seasonal contribution of SWS to TWS variations '$" !

were found to be of ~43% for the Amazon [Frappart et al., 2012] and 45% in the Ganges-'*+ !

Brahmaputra basin [Papa et al., 2015].  '*# !

 '*% !

We subtract SWS to TWS in order to obtain the ÔÔsub-surface water storageÕÕ variations '*& !

(Sub-SWS, Fig.11) defined as the sum of soil moisture and groundwater. We assume that '*' !

the variations in water storage compartments derived from canopy are negligible over the '*( !

2003-2007 in the CRB and hence are not considered here. The Sub-SWS contribution '*) !

(Fig.11) in the Ubangi, Sangha and Lwalaba basins is very important and suggests that the '*$ !

hydrological compartments, such as soil moisture and groundwater, have a major influence '** !

on TWS. On the contrary, in the Middle Congo, the SWS alone contributes over one-third '*" !

of the TWS variations over this sub-basin. '"+ !

 '"# !

6. Conclusions and perspectives '"% !

This work presents an unparalleled analysis of the dynamics of surface water extent (1993Ð'"& !

2007) and storage (2003-2007) in the CRB. First, we show that the SWE seasonal patterns '"' !

from GIEMS dataset exhibit very realistic distributions of major rivers (Congo, Kasai, '"( !

Ubangi and Lwalaba) and their tributaries, with two maxima located: i) in the lake region '") !

of the Lwalaba sub-basin and ii) in the ÒCuvette CentraleÓ, including Tumba and Mai-'"$ !

Ndombe Lakes. For the period 1993-2007, we found a ENSO/IOD influence on the SWE '"* !

interannual variability. Following the approach developed by Frappart et al. [2008, 2011], '"" !

we combined GIEMS observations with inland water level variations from ENVISAT (++ !

radar altimetry (350 observations on the rivers) to analyze the variations of fresh water (+# !

stored in the CRB different hydrological compartments. Overall, during 2003-2007, the (+%!



! %%!

annual mean variation in SWS was 81±24 km3 and contributes to 19±5 % of the annual (+&!

variations of GRACE-derived TWS. It represents also 6±2 % of the annual fresh water (+' !

volume that flows from the CRB into the Atlantic Ocean. Finally, we can mention the very (+( !

different behavior in the Middle Congo River Basin, where SWS alone contributes more (+) !

than one-third of the TWS variations over this sub-basin. It is important to note that the (+$ !

spatial-resolution sampling of the altimetry-based virtual station dataset could be increased (+* !

using ENVISAT and ERS archives, especially with the recent reprocessing devoted land (+" !

water studies made available by CTOH [Frappart et al., 2016] and temporal extended (#+ !

using current altimetry satellites including Jason-1 (GDR E), Jason-2, Jason-3, SARAL, (## !

and Sentinel-3A, as well as future missions such as Sentinel-3B (to be launched in 2017), (#%!

Sentinel-6/Jason-CS (Jason-CS A and B planned for 2020 and 2026, respectively).  This (#&!

new surface water storage (and sub-surface water storage) dataset for the CRB over 5 years (#' !

is a further step towards improving our knowledge of climatic and hydrological processes (#( !

in this region. This new surface water storage (and sub-surface water storage) dataset for (#) !

the CRB over 5 years is a further step towards improving our knowledge of climatic and (#$ !

hydrological processes in this region. It is an unprecedented source of information for (#* !

hydrological modeling of the CRB as well as a baseline in the definition and validation of (#" !

future hydrology-oriented satellite missions such as the NASA-CNES Surface Water (%+!

Ocean Topography (SWOT) to be launched in 2021, which will be dedicated to global (%#!

surface hydrology. More generally, these results on the large scale CRB's hydro-climate (%%!

processes, in addition to improving our fundamental knowledge about this major (%&!

hydrologic basin, offer an unique opportunity for conducting many new studies in Africa (%' !

by using even larger datasets, with a focus on a clear gain for the management of water (%(!

resources in this continent. (%)!
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Figure captions: $*) !

Fig. 1. The Congo River Basin: topography and the major sub-catchment areas. $*$ !

Fig. 2. Location of the 350 ENVISAT radar altimeter virtual stations (black dots). Location $** !
of the in situ discharge stations (Brazzaville, Bangui and Ouesso) displayed with red $*" !
triangles. Lakes are: 1. Tumba, 2. Mai-Ndombe, 3. Kivu, 4. Tanganyika, 5. Mweru and 6. $"+ !
Bangweulu. The locations of the four lakes using in the study are displayed with diamonds $"# !
(Mai-Ndombe, Mweru, Tangkanyika and Bangweulu). Countries are AO: Angola; BU: $"%!
Burundi; CT: Central African Republic; DC: Democratic Republic of the Congo; RC: $"&!
Republic of the Congo; RW: Rwanda; SS: South Sudan; TZ: Tanzania; UG: Uganda; ZA: $"' !
Zambia;  $"( !

Fig. 3. Inundation extent from GIEMS over the Congo basin. Spatial distribution of the (a) $") !
monthly mean and (b) monthly maximum surface water extent averaged over 1993Ð2007, $"$ !
for each 773 km2 pixel.  $"* !

Fig. 4. Surface water extent seasonal variations (SWE, black) and rainfall average (blue) $"" !
over 1993Ð2007 by sub-basins. The shaded areas depict the standard deviations around the *++!
SWE and rainfall average. *+# !

Fig. 5. Comparison of annual and interannual monthly mean surface water extent *+%!
anomalies (SWE, black) and in-situ monthly mean discharge anomalies (Discharge, blue) *+&!
at Brazzaville, Bangui, and Ouesso locations.  *+' !

Fig. 6. Comparison of annual and interannual monthly mean surface water extent *+( !
anomalies (SWE, black) and altimetry monthly mean water height anomalies (Height, *+) !
blue) of Mweru, Bangweulu, and Mai-Ndombe lakes.  *+$ !

Fig. 7. Interannual monthly mean surface water extent (SWE) anomalies by sub-basins *+* !
over 1993Ð2007.  *+" !

Fig. 8. Seasonal evolution of the surface water heights (SWH) in meters. *#+ !

Fig. 9. Maximum annual surface water storage (SWS) amplitudes in km3 over 2003 to *## !
2007. *#%!

Fig. 10. Percentage of surface water storage (SWS) variations per year over 2003 to 2007. *#&!

Fig. 11. Anomalies of surface water storage (SWS, black line), the GRACE-derived *#' !
terrestrial water storage (TWS, blue line) and the resulting sub-surface water storage (Sub-*#( !
SWS, red line) for the entire Congo River Basin and for the sub-basins.  *#) !
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