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COUPLINGS IN Lp DISTANCE OF TWO BROWNIAN MOTIONS

AND THEIR LÉVY AREA

MICHEL BONNEFONT AND NICOLAS JUILLET

Abstract. We study co-adapted couplings of (canonical hypoelliptic) diffu-
sions on the (subRiemannian) Heisenberg group, that we call (Heisenberg) Brow-
nian motions and are the joint laws of a planar Brownian motion with its Lévy
area. We show that contrary to the situation observed on Riemannian manifolds
of non-negative Ricci curvature, for any co-adapted coupling, two Heisenberg
Brownian motions starting at two given points can not stay at bounded dis-
tance for all time t ≥ 0. Actually, we prove the stronger result that they can
not stay bounded in Lp for p ≥ 2.

We also prove two positive results. We first study the coupling by reflection
and show that it stays bounded in Lp for 0 ≤ p < 1. Secondly, we construct
an explicit static (and in particular non co-adapted) coupling between the laws
of two Brownian motions, which provides L1-Wasserstein control uniformly in
time.

Finally, we explain how the results generalise to the Heisenberg groups of
higher dimension.

1. Introduction

1.1. L∞ control. The motivation for this paper is a question, concerning heat
diffusion on the Heisenberg group, that is implicitly raised by Kuwada in [17,
Remark 4.4], and that we reproduce at page 2 after Theorem 1.1. Before we
reach this question let us start with some background and a few definitions. All
remaining material will be introduced later in the paper. In the literature, L∞-
Wasserstein control for a diffusion has been used to deduce L1-gradient estimates of
its associated semigroup (see for instance [25] and the references therein). Kuwada
extends this result to Lp-Wasserstein control and Lq-gradient estimates for all
p, q ≥ 1 with 1

p
+ 1

q
= 1 and, using Kantorovich duality, proves that, conversely,

Lq-gradient estimates allow one to obtain Lp-Wasserstein control for the diffusion.
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We recall that, on a metric space (M, d), for p ∈ (0,∞], the Lp-Wasserstein
distance between two probability measures µ and ν is given by

Wp(µ, ν) =

(

inf
π∈Π(µ,ν)

∫∫

d(x, y)pdπ(x, y)

)1/p

= inf
X∼µ, Y∼ν

‖dH(X, Y )‖p. (1)

Here Π(µ, ν) is the set of probability measures on M ×M with marginals µ and ν.
For p = ∞ the first expression is replaced by the essential supremum of d. Note
that Wp is a distance only for p ≥ 1. For 0 < p < 1, it is only a quasidistance, in
the sense that the triangle inequality only holds up to a multiplicative constant.
Using Hölder inequality, it is clear that Wp(µ, ν) ≤ Wq(µ, ν) if 0 < p ≤ q.

On the Heisenberg group H, the following L1-gradient bound was established
by H.Q. Li [19] (see also [1]) generalising [8]

∀f ∈ C∞
c (H1), ∀t ≥ 0, ∀a ∈ H, |∇hPtf(a)| ≤ CPt(|∇hf |)(a),

where C > 1 is constant, Pt denotes the heat semigroup associated to half the
sub-Laplacian and ∇h the horizontal gradient (see Section 2.1 for the definitions).
Consequently, Kuwada’s result implies that the heat diffusion of the Heisenberg
group possesses a L∞-Wasserstein control for its diffusion:

Theorem 1.1 (H.Q. Li, Kuwada). There exists C > 0 such that for every t ≥ 0
and a, a′ ∈ H

W∞(µat , µ
a′

t ) ≤ CdH(a, a′), (2)

where µat = Law(Ba
t ) and µa

′

t = Law(Ba′

t ) and (Ba
s)s≥0, (B

a′

s )s≥0 are two Heisenberg
Brownian motions, starting respectively in a, a′. Moreover,

Wp(µ
a
t , µ

a′

t ) ≤ CdH(a, a′) (3)

holds for every p < ∞.

In other words, for each a, a′ ∈ H and each t ≥ 0, there exists a coupling
(Ba

s ,B
a′

s )s≥0 of the two Heisenberg Brownian motions such that

dH(Ba
t ,B

a′

t ) ≤ CdH(a, a′) almost surely. (4)

Please note: Firstly the time t ≥ 0 is fixed; secondly Ba
t and Ba′

t are conveniently
defined on the same probability space (and the remaining random variables (Ba

s)s 6=t
and (Ba′

s )s 6=t of the Heisenberg Brownian motions are defined without paying at-
tention to their correlation). Kuwada’s problem is precisely on inverting the quan-
tifiers ∀ and ∃, namely, he asks whether it is possible to define a coupling of the
two Heisenberg Brownian motions (Ba

t )t≥0 and (Ba′

t )t≥0 such that (4) holds for all
t ≥ 0.

In this paper we answer negatively and show that (4) can not hold for all t ≥ 0 for
co-adapted couplings (see Definition 2.1), probably the most usual couplings in the
literature for our type of problem, (see, e.g. [4, 13, 14, 15, 6, 23, 18, 21]). Informally,
a coupling of two processes (Bt) and (B′

t) is said co-adapted if the interaction in the
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coupling only depends on the common past of the process (Bt,B
′
t). See Definition

2.1 fo the rigorous definition.
Our results hold for the Heisenberg groups of higher dimension, as explained in

Section 6, but we only prove them thoroughly in the first Heisenberg group where
all the significative ideas are present and the notation is lighter.

Theorem 1.2. For every T > 0 and every C > 0 there exists two points a, a′ ∈ H

with a 6= a′ such that for every co-adapted coupling (Ba
t ,B

a′

t )0≤t≤T , there exists
t ≤ T such that

essup(Ω,P) dH(Ba
t ,B

a′

t ) > CdH(a, a′).

Remark 1.3. Another way to state Theorem 1.2 is as follows: Let T > 0, then

sup
a6=a′∈H

inf
A(a,a′)

T

sup
0≤t≤T

essup(Ω,P)dH(Ba
t ,B

a′

t )

dH(a, a′)
= +∞

where A(a,a′)
T denotes the set of all co-adapted couplings (Ba

t ,B
a′

t )0≤t≤T of two
Heisenberg Brownian motions starting respectively in a and a′.

The proof will be based on the following result and the use of homogeneous
dilations (defined in Section 2.1):

Theorem 1.4. Let (Bt)t and (B′
t)t be any two co-adapted Heisenberg Brownian

motions starting respectively in a = (x, y, z) and a′ = (x′, y′, z′) with (x′ − x)2 +
(y′ − y)2 > 0. Then, for every C > 0,

P (∀t ≥ 0, dH(Bt,B
′
t) ≤ C) 6= 1.

1.2. Comparison with the Riemannian case. These results show a significa-
tive difference with the Riemannian case. Indeed, on a Riemannian manifold M ,
it is well known (see e.g. [25] and [24]) that if the Ricci curvature is bounded from
below by k ∈ R, there exists a Markovian coupling of two Brownian motions such
that almost surely

d(Ba
t ,B

a′

t ) ≤ e−(k/2)td(a, a′) for all t ≥ 0, a ∈ M, a′ ∈ M. (5)

Here we call Brownian motions the diffusion processes starting at a and a′ respec-
tively, having generator half the Laplace–Beltrami operator. We make clear that
Markovian coupling is a type of co-adapted coupling. Note moreover that the mo-
tivation for proving (5) is exactly to provide estimates on the heat semi-group (see,
e.g. [6, 7]), so that the historical Lp-Wasserstein controls have been established
for co-adaptive processes whereas Lp-Wasserstein controls at fixed time may first
appear unusual from a stochastic perspective.

We note further that

• the Heisenberg group can be thought as the first sub-elliptic model space
of curvature 0 (e.g. [20]) but, its behaviour with respect to couplings of co-
adapted Brownian motions is therefore completely different from the case
of Riemannian manifolds with curvature bounded from below by k = 0.
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• the Heisenberg group is also classically presented as the limit space for a
sequence of Riemannian metrics on the Lie group, the optimal lower bound
on the Ricci curvature of which tends to −∞. On this topic see [11, 3].
This fact is coherent with the interpretation of Theorem 1.4 as a special
case of (5) where the best bound for the L∞ control is C = e−kt with
k = −∞: There is no possible control for t > 0.

1.3. Lp control for 0 < p < ∞. To go further, given two diffusion processes
(Bt)t≥0 and (B′

t)t≥0 on a metric space (M, d), we shall consider the function

t ∈ [0,∞) → E [d(Bt,B
′
t)
p]

1
p ∈ [0,∞].

and try to bound it from above uniformly in time for some well-chosen co-adapted
coupling. If we denote by µt and νt the law of the processes (Bt)t≥0 and (B′

t)t≥0,
we clearly have for each t ≥ 0:

E [d(Bt,B
′
t)
p]

1
p ≥ Wp(µt, νt).

On the Heisenberg group, we will prove the result stronger than Theorem 1.2
that any co-adapted coupling (Bt)t and (B′

t)t of Brownian motions do not stay
bounded in L2:

Theorem 1.5. Let p ≥ 2. For every T > 0 and every C > 0 there exists two points
a, a′ ∈ H with a 6= a′ such that for every co-adapted coupling (Ba

t ,B
a′

t )0≤t≤T , there
exists t ≤ T such that

E

[

dpH(Ba
t ,B

a′

t )
]

> CdH(a, a′)p.

Remark 1.6. Equivalently Theorem 1.5 can be stated as follows: Let p ≥ 2. Let
T > 0, then

sup
a6=a′∈H

inf
A(a,a′)

T

sup
0≤t≤T

E[dp
H

(Ba
t ,B

a′

t )]
1
p

dH(a, a′)
= +∞

where A(a,a′)
T denotes the set of all co-adapted coupling (Ba

t ,B
a′

t )0≤t≤T of two Heisen-
berg Brownian motions starting respectively in a and a′.

As for p = ∞, the proof will be based on the following result and the use of
dilations.

Theorem 1.7. Let (Bt)t≥0 and (B′
t)t≥0 be any two co-adapted Heisenberg Brow-

nian motion starting respectively in a = (x, y, z) and a′ = (x′, y′, z′) such that
(x′ − x)2 + (y′ − y)2 > 0. Then,

lim sup
t→+∞

E

[

dH(Bt,B
′
t)

2
]

→ +∞.



L
p

COUPLING OF TWO BROWNIAN MOTIONS AND THEIR LÉVY AREA 5

1.4. Two positive results. To complete the picture, we provide two positive
results. We first show that the coupling by reflection on the Heisenberg group
stays bounded in Lp for 0 < p < 1. We recall that for 0 < p < 1, the quantity

E [dp(Bt,B
′
t)]

1
p is not a distance, but only a quasidistance, in the sense that the

triangle inequality only holds up to a multiplicative constant.

Theorem 1.8. Let (Bt)t≥0 and (B′
t)t≥0 be a coupling by reflection of two Heisen-

berg Brownian motions starting in (x, y, z) and (x′, y′, z′). Then, for every p ∈
(0, 1),

sup
t≥0

E [dH(Bt,B
′
t)
p] < +∞. (6)

Moreover, for the coupling by reflection, for every p ∈ (0, 1), we also have:

sup
a6=a′∈H

sup
t≥0

E[dH(Ba
t ,B

a′

t )p]

dH(a, a′)p
< +∞ (7)

Unfortunately, the above result is false for the reflection coupling for p ≥ 1 (as
a close look at Proposition 4.1 shows).

In the general context of co-adapted coupling, we were not able to obtain any
results for p ∈ [1, 2): we ignore whether there exist co-adapted couplings satisfying
(6) or (7), or not, for p ∈ [1, 2). One difficulty in this study is to obtain estimates for
the expectation of nonnegative (nonconvex) functionals of martingales as typically
x 7→ |x|1/2, see Remark 3.3.

The next remark recalls the situation of Lp-Wasserstein control in the case of
Riemannian manifolds.

Remark 1.9. On a Riemannian manifold M , for p ≥ 1, the Lp version of the L∞

control (2), namely

Wp(µ
a
t , µ

a′

t ) ≤ e−kt/2d(a, a′) for all t ≥ 0, a ∈ M, a′ ∈ M ;

is satisfied if and only if the Ricci curvature is bounded from below by k (see [24] and
[17, Remark 2.3]). Therefore all the above Lp-Wasserstein controls, for p ∈ [1,∞]
are equivalent and only depend on the Ricci curvature lower bound. Moreover in
this situation, as said before, one has the existence of some appropriate Markovian
coupling such that almost surely:

d(Ba
t , B

a′

t ) ≤ e−kt/2d(a, a′) for all t ≥ 0, a ∈ M, a′ ∈ M.

We now turn to the second positive result. We propose an explicit coupling of
the laws µat = Law(Ba

t ) and µa
′

t = Law(Ba′

t ). This coupling is not at all dynamical
and is made at a given fixed time t. This coupling has thus no interpretation in
terms of co-adapted coupling. It provides a new proof of the case p = 1 in Theorem
1.1. This is the weakest result in the spectrum of Lp-Wasserstein controls ; the
strongest result is for p = ∞. However, we stress that, apparently, our static
coupling provides the first direct proof (that is, not obtained by duality) of the
case p = 1.
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Theorem 1.10. There exists C > 0 such that for every t ≥ 0 and a = (x, y, z), a′ =
(x′, y′, z′) ∈ H, there is a random vector (X, Y, Z,X ′, Y ′, Z ′) of marginals µat =
Law(Ba

t ) = Law(X, Y, Z) and µa
′

t = Law(Ba′

t ) = Law(X ′, Y ′, Z ′) such that

W1(µat , µ
a′

t ) ≤ E(dH((X, Y, Z), (X ′, Y ′, Z ′))) ≤ CdH(a, a′)

and

{
X ′ = X + (x′ − x) almost surely,

Y ′ = Y + (y′ − y) almost surely.

The idea of the coupling is the following. The goal is to construct a random
vector ((X, Y, Z); (X ′, Y ′, Z ′)) of marginals µat and µa

′

t . First we perform a cou-
pling of the horizontal parts (X, Y ) and (X ′, Y ′) of the two Brownian laws by a
simple translation. It appears that the conditional laws of the last coordinates
L(Z|(X, Y )) and L(Z ′|(X ′, Y ′)) differ also only by a translation; but which de-
pends on the value of (X, Y ). Eventually, we use a coupling of the last coordinates

which is well adapted to optimal transport for the cost (z, z′) 7→
√

|z − z′| on the
real line, and is better than the simple translation. Note that our proof requires
at the end an analytic estimate on the heat kernel, see (38).

We mention the interesting recent work by S. Banerjee, M. Gordina and P.
Mariano [2] where the authors also use non co-adapted couplings to study the
decay in total variation for the laws of Heisenberg Brownian motions and obtain
gradient estimates for harmonic functions. This work and our work seems to
deliver a common message namely that co-adapted couplings are not the unique
relevant couplings, what concerns obtaining gradient estimates.

The paper is organised as follows. In Section 2.1, we recall the notion of co-
adapted coupling and describe quickly the geometry of the Heisenberg group, its
associated Brownian motions and their coupling. We also discuss some classical
couplings. The proofs of the main theorems on the non-existence of co-adapted
Heisenberg Brownian motions which stay at bounded distance are given Section
3. The reflection coupling on H is studied in Section 4. The construction of the
static coupling between the Brownian laws is given in Section 5. The results are
then generalised to the Heisenberg groups of higher dimension in the final section.

2. Co-adapted couplings on the Heisenberg group

2.1. The Heisenberg group. The Heisenberg group can be identified with R3

equipped with the law:

(x, y, z) · (x′, y′, z′) =
(

x+ x′, y + y′, z + z′ +
1

2
(xy′ − yx′)

)

.
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The left invariant vector fields are given by






X(f)(x, y, z) = d
dt |t=0

f((x, y, z) · (t, 0, 0)) =
(

∂x − y
2
∂z
)

f(x, y, z)

Y (f)(x, y, z) = d
dt |t=0

f((x, y, z) · (0, t, 0)) =
(

∂y + x
2
∂z
)

f(x, y, z)

Z(f)(x, y, z) = d
dt |t=0

f((x, y, z) · (0, 0, t)) = ∂zf(x, y, z).

Note that [X, Y ] = Z and that Z commutes with X and Y .
We are interested in half the sub-Laplacian L = 1

2
(X2 + Y 2). This is a diffusion

operator that satisfies the Hörmander bracket condition and thus the associated
heat semigroup Pt = etL admits a C∞ positive kernel pt.

From a probabilistic point of view, L is the generator of the following stochastic
process starting in (x, y, z):

B
(x,y,z)
t := (x, y, z) ·

(

B1
t , B

2
t ,

1

2

(∫ t

0
B1
sdB

2
s −

∫ t

0
B2
sdB

1
s

))

where (B1
t )t≥0 and (B2

t )t≥0 are two standard independent 1-dimensional Brownian
motions. The quantity

∫ t
0 B

1
sdB

2
s − ∫ t

0 B
2
sdB

1
s that we denote by At is one of the

first stochastic integrals ever considered. It is the Lévy area of the 2-dimensional
Brownian motion (Bt)t≥0 := (B1

t , B
2
t )t≥0.

It is easily seen that (Bt)t≥0 is a continuous process with independent and sta-
tionary increments. We simply call it the Heisenberg Brownian motion.

The sub-Laplacian L is strongly related to the following subRiemmanian dis-
tance (also called Carnot-Carathéodory) on H:

dH(a, a′) = inf
γ

∫ 1

0
|γ̇(t)|hdt

where γ ranges over the horizontal curves connecting γ(0) = a and γ(1) = a′.
We remind the reader of the fact that a curve is said horizontal if it is absolutely
continuous and γ̇(t) ∈ Vect(X(γ(t)), Y (γ(t))) almost surely holds. The horizontal
norm | · |h is a Euclidean norm on Vect(X, Y ) obtained by asserting that (X, Y )
is an orthonormal basis of Vect(X(a), Y (a)) at each point a ∈ H. Finally the
horizontal gradient ∇hf is (Xf)X + (Y f)Y .

The Heisenberg group admits homogeneous dilations adapted both to the dis-
tance and the group structure. They are given by

dilλ(x, y, z) = (λx, λy, λ2z)

for λ > 0. They satisfy dH(dilλ(a), dilλ(a
′)) = λdH(a, a′) and, in law:

dil 1√
t

(

B1
t , B

2
t ,

1

2

(∫ t

0
B1
sdB

2
s −

∫ t

0
B2
sdB

1
s

))
Law
=
(

B1
1 , B

2
1 ,

1

2

(∫ 1

0
B1
sdB

2
s −

∫ 1

0
B2
sdB

1
s

))

.

The distance is clearly left-invariant so that transp : q ∈ H 7→ p.q is an isometry
for every p ∈ H. In particular

dH(a, a) = dH(e, a−1a′)
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with e = (0, 0, 0). Another isometry is the rotation rotθ : (x + iy, z) ∈ C × R ≡
H 7→ (eiθ(x+ iy), z), for every θ ∈ R. Since the explicit expression of dH is not so
easy, it is often simpler to work with a homogenous quasinorm (still in the sense
that the triangle inequality only holds up to a multiplicative constant). We will
use

H : a = (x, y, z) ∈ H 7→
√

x2 + y2 + |z| ∈ R,

and the attached homogeneous quasidistance dH(a, a′) = H(a−1a′). It satisfies

c−1dH(a, a′) ≤ dH(a, a′) ≤ cdH(a, a′) (8)

for some constant c > 1. We finally mention dH((0, 0, 0), (x, y, 0)) =
√
x2 + y2 and

dH((x, y, z), (x, y, z + h)) = 2
√

π|h|.

2.2. Co-adapted couplings. We first recall the notion of co-adapted coupling
of two processes. Indeed, in this study, we only want to consider couplings built
solely knowing the past of the two processes. The definition below is taken from
[15, Definition 1.1.].

Definition 2.1. Given two continuous-time Markov processes (X
(1)
t )t≥0 , (X

(2)
t )t≥0,

we say that (X̃
(1)
t , X̃

(2)
t )t≥0 is a co-adapted coupling of (X

(1)
t )t≥0 and (X

(2)
t )t≥0 if

X̃(1) and X̃(2) are defined on the same filtered probability space (Ω, (Ft)t≥0,P),

satisfy Law(X
(i)
t )t≥0 = Law(X̃

(i)
t )t≥0 for i = 1, 2, and

P̃
(i)
t f : z 7→ E

[

f(X̃
(i)
t+s)| Fs, X̃

(i)
s = z

]

equals

P
(i)
t f : z 7→ E

[

f(X
(i)
t+s)|X(i)

s = z
]

, Law(X(i)
s )-almost surely

for i = 1, 2, for each bounded measurable function f , each z, each s, t ≥ 0.

If we moreover assume that the full process (X̃
(1)
t , X̃

(2)
t )t≥0 is Markovian, we say

that the co-adapted coupling is Markovian.
The next lemma describes more explicitly co-adapted couplings in the case of

Brownian motion in R
2 (see [14, Lemma 6]).

Lemma 2.2. Let (Bt)t and (B′
t)t be two co-adapted Brownian motions on R2 ×

R2 defined on some filtered probability space (Ω, (Ft)t≥0,P). Then, enriching the

filtration if necessary, there exists a Brownian motion (B̂t)t≥0 defined on the same
filtration (Ft)t≥0 and independent of (Bt)t≥0 such that

dB′(t) = J(t)dBt + Ĵ(t)dB̂t (9)

where (Jt)t≥0 = ((J i,jt )1≤i,j≤2)t≥0 and Ĵ are matrices satisfying

JJT + Ĵ ĴT = I2 (10)

and J(t), Ĵ(t) ∈ Ft.
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In the following ‖ · ‖ may denote the operator norm of a matrix attached to the
Euclidean norm, or the Euclidean norm of a vector.

Lemma 2.3. Let J be a 2 × 2 real matrix J = ( a bc d ). Then

0 ≤ JTJ ≤ I2 ⇐⇒ ‖J‖ ≤ 1 ⇐⇒ 0 ≤ JJT ≤ I2,

where ≤ is the ordering of symmetric matrices. In particular

• a2 + b2, a2 + c2, c2 + d2 and b2 + d2 are smaller or equal to 1,
• all the four entries of J are in [−1, 1].

Proof. Let S1 = {(cos(θ), sin(θ)) ∈ R2 : θ ∈ R} be the Euclidean sphere of R2 and
Q : x ∈ S1 7→ (x, JTJx) = ‖Jx‖2. Therefore, Q is bounded by 1 if and only if
‖Jx‖ ≤ 1, for all x ∈ S

1. The bound 0 ≤ JTJ is trivially satisfied. The proof is
completed by ‖J‖ = supx,y∈S1(Jx, y) = ‖JT‖. �

Remark 2.4. A necessary and sufficient condition can be found considering λ,
the greatest eigenvalue of JTJ . It writes

2λ = (a2 + b2 + c2 + d2) +
√

(a2 + b2 + c2 + d2)2 − 4(bc − ad)2 ≤ 2 × 1.

Paradoxically, it not easy to deduce |a|, |b|, |c|, |d| ≤ 1 from this condition.

2.3. Co-adapted couplings on H. We now describe co-adapted Heisenberg Brow-
nian motions. As seen before, a Brownian motion B is entirely determined by its
two first coordinates (Bt)t = (B1

t , B
2
t )t; the third one being (At)t the Lévy area

swept by this 2-dimensional process (Bt)t.
Thus two Heisenberg Brownian motions (Bt)t = (B1

t , B
2
t , At)t and (B′

t)t =
(B′1

t , B
′2
t , A

′
t)t on H are co-adapted if and only if B = (B1

t , B
2
t )t and B′ = (B′1

t , B
′2
t )t

are two co-adapted Brownian motions on R2 and if moreover their third coordi-
nates satisfy

dAt =
1

2

(

B1
t dB

2
t −B2

t dB
1
t

)

and

dA′
t =

1

2

(

B′1
t dB

′2
t − B′2

t dB
′1
t ).

For the following, we denote by J and Ĵ the matrices appearing in Lemma 2.2.
A computation gives:

B′−1
t Bt =

(

B1
t − B′1

t , B
2
t −B′2

t , B
3
t − B′3

t − 1

2

(

B1
tB

′2
t − B2

tB
′1
t

))

and thus:

d(B′−1
t Bt) =







dB1
t − dB′1

t

dB2
t − dB′2

t

(B1
t − B′1

t )
(
dB′2

t +dB2
t

2

)

− (B2
t −B′2

t )
(
dB′1

t +dB1
t

2

)

− 1
2
(d〈B1

t , B
′2
t 〉 − d〈B2

t , B
′1
t 〉)






,
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where we used:

d(XtYt) = XtdYt + YtdXt + d〈Xt, Yt〉.
We denote by Rt the horizontal distance between the two Brownian motions Bt

and B′
t in R2, that is R2

t = (B1
t −B′1

t )2 +(B2
t −B′2

t )2 and by Zt the third coordinate,
the relative Lévy area. Hence Zt = (B′−1

t Bt)3.
The homogeneous distance dH(Bt,B

′
t) is thus given by

√

R2
t + |Zt|.

In the following, when Rt > 0, we choose to work in the direct orthonormal
(random moving) frame (v1, v2) defined by taking v1(t) the normalised vector of
R2 directed by Bt−B′

t. Let Qt be the matrix whose columns are respectively v1(t)
and v2(t). In this new basis, for (α, β) ∈ R2 and (· | ·) the usual scalar product on
R2, we have:

(αv1 + βv2 | dB′
t) =

(

Qt

(

α
β

)

| JtdBt + ĴtdB̂t

)

=

((

α
β

)

| (QT
t JtQt)Q

T
t dBt + (QT

t ĴtQt)Q
T
t dB̂t

)

=

((

α
β

)

| KtdWt + K̂tdŴt

)

for Kt = QT
t JtQt and K̂t = QT

t ĴtQt, and where W and Ŵ are the two standard
independent 2-dimensional Brownian motions defined by

dWt = QT
t dBt, dŴt = QT

t dB̂t.

This can be summed up as follows:

QT
t dB

′
t = (QT

t JtQt)
︸ ︷︷ ︸

Kt

QT
t dBt + (QT

t ĴtQt)
︸ ︷︷ ︸

K̂t

QT
t dB̂t.

The next easy lemma describes the relation between the matrices J and K.

Lemma 2.5. With the above notation, when Rt > 0,

• Equation (10) is satisfied for (K, K̂) if and only if it is satisfied for (J, Ĵ).
• trK = tr J .
• K1,2 −K2,1 = J1,2 − J2,1.

Proof. The first two relations follow from the fact that Q is an orthogonal matrix.
For the last relation, one can note that J1,2 − J2,1 = tr(JM) = tr(KQTMQ) with
M the matrix ( 0 −1

1 0 ). Now a computation gives QTMQ = (detQ)M and the last
relation follows from the fact Q is actually a rotation matrix. �
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The stochastic processes R2
t and Zt are semimartingales defined for all time

t ≥ 0. In the next statement, we provide stochastic differential equations for their
evolution.

Lemma 2.6. With the above notation, when Rt 6= 0, the processes R2
t and Zt solve

the stochastic differential equation:






d(R2
t ) = 2Rt

√

2(1 −K1,1) dCt +
(

2(1 −K1,1) + 2(1 −K2,2)
)

dt

dZt =
Rt

2

√

2(1 +K2,2) dC̃t +
1

2
(K1,2 −K2,1)dt

where (Ct)t≥0 and (C̃t)t≥0 are some 1-dimensional Brownian motions whose co-
variation satisfies:

〈
√

2(1 −K1,1)dCt,
√

2(1 +K2,2)dC̃t〉 = (K1,2 −K2,1)dt. (11)

Remark 2.7. Actually the stochastic process (R2
t , Zt)t≥0 is perfectly defined for all

t ≥ 0 (even when Rt = 0). The technical problem in Lemma 2.6 is that the matrix
Qt and thus the matrix Kt are only defined for Rt 6= 0. However, the matrix Jt is
defined for every value of Rt and we have:







d(R2
t ) = σR(Bt, B

′
t, Jt) dCt +

(

2(1 − J1,1) + 2(1 − J2,2)
)

dt

dZt = σZ(Bt, B
′
t, Jt) dC̃t +

1

2
(J1,2 − J2,1)dt

where σR and σZ are defined by:

σR(Bt, B
′
t, Jt) =

{
0 if Bt = B′

t

2Rt

√

2(1 − (QT
t JtQt)1,1) if Bt 6= B′

t

and

σZ(Bt, B
′
t, Jt) =

{
0 if Bt = B′

t
Rt

2

√

2(1 + (QT
t JtQt)2,2) if Bt 6= B′

t.

Note finally that the fact that σR and σZ vanish for Rt = 0 is rather clear from
their expressions in Lemma 2.6.

Proof of Lemma 2.6. The computations are done in [13] but we repeat them for
the sake of completeness.

First by Itô formula and with the previous notation:

dR2
t = d

(

(B1
t − B′1

t )2 + (B2
t −B′2

t )2
)

= 2Rt (v1 | (dBt − dB′
t)) + d〈(B1

t − B′1
t ), (B1

t −B′1
t )〉 + d〈(B2

t − B′2
t ), (B2

t −B′2
t )〉.

We turn to the martingale part and write

(v1 | (dBt − dB′
t)) =

(

(K1,1 − 1)dW 1
t +K1,2dW 2

t + K̂1,1dŴ 1
t + K̂1,2dŴ 2

t

)

=
√

2(1 −K1,1)dCt



12 MICHEL BONNEFONT AND NICOLAS JUILLET

for some 1-dimensional Brownian motion (Ct)t where we used Lemma 2.5 for

(K1,1)2 + (K1,2)2 + (K̂1,1)2 + (K̂1,2)2 = 1.

The quadratic variation writes

d〈(B1
t − B′1

t ), (B1
t − B′1

t )〉〉 = (J1,1 − 1)2 + (J1,2)2 + (Ĵ1,1)2 + (Ĵ1,2)2 = 2 − 2J1,1

and similarly

d〈(B2
t −B′2

t ), (B2
t − B′2

t )〉〉 = (J2,1)2 + (J2,2 − 1)2 + (Ĵ2,1)2 + (Ĵ2,2)2 = 2 − 2J2,2,

thus

d〈(B1
t −B′1

t ), (B1
t − B′1

t )〉 + d〈(B2
t −B′2

t ), (B2
t − B′2

t )〉 = 2tr(I − J) = 2tr(I −K).

We turn now to Zt. Using the basis (v1, v2), we can rewrite

dZt =
Rt

2
(v2 | (dB′

t + dBt)) − 1

2
(d〈B1

t , B
′2
t 〉 − d〈B2

t , B
′1
t 〉).

As before, we get:

(v2 | (dB′
t + dBt)) = K2,1dW 1

t + (K2,2 + 1)dW 2
t + K̂2,1dŴ 1

t + K̂2,2dŴ 2
t

=
√

2(1 +K2,2)dC̃t

for some 1-dimensional Brownian motion (C̃t)t. Moreover:

d〈B1
t , B

′2
t 〉 − d〈B2

t , B
′1
t 〉 = (J2,1 − J1,2)dt = (K2,1 −K1,2)dt.

The equation on the covariation (11) follows since by (10) and Lemma 2.5,

K1,1K2,1 +K1,2K2,2 + K̂1,1K̂2,1 + K̂1,2K̂2,2 = 0.

�

Remark 2.8. Since we will use them in the following we also write stochastic
differential equations satisfied by Rt, R

4
t and Z2

t , obtained for Rt 6= 0 using Itô’s
formula in Lemma 2.6:







dRt =
√

2(1 −K1,1) dCt +
1 −K2,2

Rt

dt,

dR4
t = 4R3

t

√

2(1 −K1,1) dCt + (4R2
t (1 −K2,2))dt+ 12R2

t (1 −K1,1)dt,

d(Z2
t ) = ZtRt

√

2(1 + K2,2) dC̃t +

(

Zt(K
1,2 −K2,1) +

R2
t

2
(1 +K2,2)

)

dt.

As in Remark 2.7, an expression for dZ2
t is possible in the canonical basis with

the matrix J in place of K. According to Lemma 2.5, K1,2 − K2,1 is replaced
by J1,2 − J2,1 and the factor Rt make the undefined terms vanish when Rt = 0.
The same holds for the semimartingale (R4

t )t≥0. On the contrary Rt is not a
semimartingale, but only locally when Rt > 0.
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2.4. Description of some couplings. In this section, we describe some inter-
esting couplings.

2.4.1. The synchronous coupling (K1,1 = 1, K2,2 = 1, K1,2 = K2,1 = 0.) The
coupling is called synchronous because the planar trajectories (Bt)t≥0 and (B′

t)t≥0

are parallel. Here Rt ≡ R0 and Zt = Z0 +WR0t with W a Brownian motion.

2.4.2. The reflection coupling (K1,1 = −1 K2,2 = 1, K1,2 = K2,1 = 0.) For the
reflection coupling the planar trajectories of (Bt)t≥0 and (B′

t)t≥0 evolve symmetri-
cally with respect to the bisector of line segment [B0, B

′
0]. We stop the coupling

when Rt hits 0 and continue synchronously with J1,1 = J2,2 = 1. Denote by τ this
hitting time. One thus has

Rt = R0 + 2Ct∧τ and Zt = Z0 +
∫ t∧τ

0
(R0 + 2Cs∧τ)dC̃s

where (Cs)s and (C̃s)s are two independent Brownian motions (starting in 0) and
with τ = inf{s ≥ 0, 2Cs = −R0}. This coupling is studied in Section 4. On
Euclidean and Riemannian manifolds, the efficiency of reflection coupling has been
studied in [10, 16].

2.4.3. Kendall’s coupling: (K1,1 = ±1, K1,2 = K2,1 = 0 and K2,2 = 1). In [13],
Kendall describes a coupling which alternates between synchronous coupling and
reflection coupling. In order to avoid the use of local times the strategy of Kendall
is defined with hysteresis. The regime swaps when the process (Rt, |Zt|) hits a
certain parabola {8Z2

t = κ2R4
t } or {8Z2

t = (κ − ε)2R4
t } (see [13, Theorem 4]),

depending for the synchronous or the reflection coupling. Thus the process is not
Markovian, but it is co-adapted. The author proves that this coupling is successful:
this means T := inf{s ≥ 0,Bs = B′

s} is almost surely finite, or, equivalently, the
process (Rt, Zt) hits almost surely (0, 0) in finite time.

2.4.4. The perverse coupling: K1,1 = 1, K2,2 = −1, K1,2 = K2,1 = 0. We assume
R0 > 0. It satisfies,

dR(t) =
2

Rt
dt and dZt = 0.

Thus the distance Rt and Zt are deterministic and given by:

Rt =
√

R2
0 + 4t and Zt = Z0.

The name perverse coupling is given by Kendall in [14] as a generic name for a
repulsive coupling. Here, the planar components of (Bt)t and (B′

t)t are coupled in
a perverse way. This particular method to produce a perverse coupling appears in
[21, Section 5] in a Riemannian setting.
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3. Non-existence of co-adapted Heisenberg Brownian motions at

bounded distance.

We now turn to the proofs of Theorems 1.4 and 1.7.

3.1. Proof of Theorem 1.4. Theorem 1.4 is clearly a corollary of Theorem 1.7
but we can prove it more easily and it already shows a clear difference with the
Riemannian case. Hence, we first present a proof of this result.

Proof of Theorem 1.4. Assume that (Bt)t and (B′
t)t are two co-adapted Heisen-

berg Brownian motions starting in a = (x, y, z) and a′ = (x′, y′, z′) with R0 =
√

(x′ − x)2 + (y′ − y)2 > 0. Striving for a contradiction we suppose that t 7→
dH(Bt,B

′
t) is almost surely and uniformly bounded. More precisely for some C > 0

we assume |Rt| + |Zt|1/2 ≤ C for every t ≥ 0.
Using Lemmas 2.5 and 2.6 (or simply Remark 2.7), we have

E[R2
t ] = R2

0 + E

[

2
∫ T

0
(1 − J1,1(s)) + (1 − J2,2(s))ds

]

and Rt ≤ C gives E[R2
t ] ≤ C2 and

E

[

2
∫ t

0
(1 − J1,1(s)) + (1 − J2,2(s))ds

]

≤ C2. (12)

Recall from Lemma 2.5 that K1,1 + K2,2 = J1,1 + J2,2 and from Lemma 2.3 that
the matrix entries are ≥ −1. Therefore

max
i∈{1,2}

E

[∫ t

0

(

(1 −Ki,i(s))
)

1{Rs>0}ds
]

≤ C2/2 (13)

and Rt ≤ C, again, gives

E

[
∫ t

0
(1 −K2,2(s))

R2
s

2
ds

]

≤ C4/4. (14)

Until now we have used E(R2
t ) ≤ C2 and Rt ≤ C. We turn to exploit E(Z2

t ) ≤ C4.
Lemma 2.5 and Remark 2.8 give

E[Z2
t ] = Z2

0 + E

[

2
∫ t

0
Zs(J

1,2(s) − J2,1(s))ds+
∫ t

0

R2
s

2
(1 +K2,2(s))ds

]

(15)

Adding (14) and (15), and using E(Z2
t ) ≤ C4, we obtain

E

[

2
∫ t

0
Zt(J

1,2(s) − J2,1(s))ds+
∫ t

0
R2
sds

]

≤ (1 + 1/4)C4. (16)

Next, we aim to compare E

[

2
∫ t

0 Zs(J
1,2(s) − J2,1(s))ds

]

with E

[∫ t
0 R

2
sds

]

that

both appear in (16). On the one hand, since Zt stays bounded E[Z2
t ] is also
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bounded. Hence by Cauchy-Schwarz inequality (for the product measure on Ω ×
[0, t]):

∣
∣
∣
∣E

[∫ t

0
Zs(J

1,2(s) − J2,1(s))ds
]∣
∣
∣
∣ ≤

( ∫ t

0
E[Z2

t ]ds
)1/2 (∫ t

0
E(J1,2 − J2,1)2ds

)1/2

≤
( ∫ t

0
E[Z2

t ]ds
)1/2 (

2
∫ t

0
E((J1,2)2 + (J2,1)2)ds

)1/2

≤
√
C4t

(

2
∫ t

0
E(J1,2)2 + E(J2,1)2ds

)1/2

≤
√
C4t ·

√
2C2 = C3

√
2t. (17)

The last estimate follows from Lemma 2.3 (the rows and columns of J have
L2-norm smaller than 1), 1 − J2

i,i ≤ (1 − Ji,i)(1 + Ji,i) and (12):

∫ t

0
E(J1,2)2 + E(J2,1)2ds ≤

∫ t

0
E[(1 − (J1,1)2) + (1 − (J2,2)2)]ds

≤
∫ t

0
2E[(1 − J1,1) + (1 − J2,2)]ds ≤ C2.

On the other hand, since (R2
t )t≥0 is a submartingale, E[R2

s ] ≥ R2
0 and

∫ t

0
E[R2

s ]ds ≥ R2
0t. (18)

Since R0 > 0, (17) and (18) provide a contradiction in (16) as t goes to infinity. �

Remark 3.1. The proof of Theorem 1.4 can be improved to show that any co-
adapted Heisenberg Brownian motions can not stay bounded in L4. In this proof,
the only place where we fully use the fact that Rt is uniformly bounded almost surely
is (14). At the other places we merely need that E[R2

t ] and E[Z2
t ] are bounded. But

E[R4
t ] ≤ C4 for every t ≥ 0 is a sufficient assumption for (14) and, hence, for the

proof.
Indeed, by Lemma 2.8 one has

E[R4
t ] = R4

0 + E

[∫ t

0
12R2

s(1 −K1,1(s)) + 4R2
s(1 −K2,2(s))ds

]

.

This quantity is uniformly bounded by C4 for every t ≥ 0 so that (14) holds. (the
bound in (14) can even be divided by two: C4/8 in place of C4/4).

3.2. Proof of Theorem 1.7. To go beyond Theorem 1.4, we conduct a precise
study of the expected total variation (or length in L1) of the martingale part and
of the drift part of (Zt)t≥0, the relative Lévy area. As before, the proof will be by
contradiction. The principle is the following. We derive an upper bound for the
drift part of Zt similar to (17) from the proof of Theorem 1.4; and using Lemma
3.2 below, we provide a lower bound for the martingale part of Zt.
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Lemma 3.2. Let (Nt)t≥0 be a continuous martingale with N0 = 0 and p be in
]0, 1[. Then there exists ap > 0 such that for every positive real numbers β and h,
the estimate

P (〈N〉h ≥ β) ≥ p

implies

E[|Nh|] ≥ ap
√

β.

The proof of Lemma 3.2 is postponed at the end of the section.

Proof of Theorem 1.7. Let C be supt≥0

√

max(E(R2
t ),E(|Zt|)) and as before, as-

sume C < +∞ by contradiction. First recall

E

(

R2
t

)

= R2
0 + E

(∫ t

0
2[(1 − J1,1) + (1 − J2,2)]ds

)

≥ 0,

which gives

E

(∫ +∞

0
[(1 − J1,1) + (1 − J2,2)]ds

)

≤ C2

2
< +∞. (19)

Let T := inf{t ≥ 0, Rt = R0

2
} be the hitting time of R0

2
. We show that we can

assume P(T = +∞) > 0. Suppose for the rest of this paragraph P(T < +∞) = 1
and let S the finite random variable defined by

S =
∫ T

0
2(1 −K1,1)ds.

Because of the non-negative drift in the stochastic differential equation of Rt,
using the Dambins-Dubins-Schwarz theorem (see e.g. [22]), the random variable
S is greater in stochastic order than the hitting time of R0

2
for a Brownian motion

starting in R0. This hitting time is almost surely finite but nonintegrable.
Thus E(S) = +∞ which contradicts (19) (Recall from Lemma 2.5 that J1,1 +

J2,2 = K1,1 +K2,2 and from Lemma 2.3 that these quantities are ≥ −1).
Now, let us decompose the semimartingale (Zt)t = Mt − At into its martingale

Mt and its bounded variation part −At. From Lemma 2.6, we recall:

−At =
1

2

∫ t

0
(J1,2 − J2,1)ds. (20)

Applying Cauchy–Schwarz inequality and following the same track as for (17)
we obtain

E

∫ t

0
|J1,2 − J2,1|ds ≤

√
t

√

E

∫ t

0
(J1,2 − J2,1)2ds ≤

√
t
√

2C2. (21)

Remark now that the quantity on the left hand side is two times the expected
total variation of At on [0, t].
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We postpone the proof of the following result until the end of the (present)
proof. It occurs as an application of Lemma 3.2: there exists h > 0 such that for
every t > 0,

E(|Mt+h −Mt|) ≥ 10C2. (22)

Since, we have assumed E(|Mt−At|) ≤ C2 for every t ≥ 0, the triangle inequality
implies E(|At+h − At|) ≥ 8C2 for every t ≥ 0. The control of the expected total
variation of (At) expressed in (21) and the lower estimate just proved give

8C2n ≤
n∑

k=1

E(|Akh − A(k−1)h|) ≤ 1

2
E

∫ nh

0
|J1,2 − J2,1|ds ≤

√

C2hn

2
, (23)

which, as n tends to ∞, provides a contradiction with our initial assumption

that was supt≥0

√

max(E(R2
t ),E(|Zt|)) ≤ C. We are left with the proof of (22)

(under the assumption of the L2 boundedness).
Recall T = inf{t ≥ 0 : Rt = R0

2
} and set q = P(T = +∞). We have already

proved q > 0. We shall show further that for h ≥ 5C2

q
,

P

(

〈M〉t+h − 〈M〉t ≥ R2
0h

8

)

≥ q − C2

2h
≥ 9q

10
. (24)

We hence obtain (22) taking h large enough in (24) and applying Lemma 3.2 to
(Mt+h −Mt)h≥0.

Proof of (24): considering only the event {T = +∞} for the martingale part of
Zt described in Lemma 2.6, one has

〈M〉t+h − 〈M〉t ≥ 1{T=+∞}

(
R0

2

)2 ∫ t+h

t

1 +K2,2

2
ds. (25)

Now, since by (19) it holds

E

[
∫ t+h

t
1{T=+∞}

1 −K2,2

2
ds

]

≤ C2/4,

taking the complementary set of {∫ t+ht
1+K2,2

2
ds ≥ h

2
} in {T = +∞} and using

Markov inequality, one obtains:

P

(

1{T=+∞}

∫ t+h

t

1 +K2,2

2
ds ≥ h

2

)

=q − P

(

1{T=+∞}

∫ t+h

t

1 −K2,2

2
ds >

h

2

)

≥ q − C2

4
· 2

h
. (26)

Hence, in (25) we consider the probability that the right-hand side is greater
than (R0/2)2 · (h/2), which, with (26), gives the wanted estimate (24) for every

h ≥ 5C2

q
. �
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Proof of Lemma 3.2. Let φ be the quadratic variation of N

φ(t) = 〈N〉t,
and consider the hitting time τ = inf{t ≥ 0 : φ(t) ≥ β}. Set ψ(t) = φ(t) ∧ β. The
Dambins theorem shows that there exists a standard Brownian motion (Wt)t≥0

such that for every t ≥ 0,

E [|Nt|] ≥ E [|Nt∧τ |] = E

[

|Wψ(t)|
]

. (27)

Let now A be the event {ω ∈ Ω : φ(h) ≥ β} and recall the assumption P(A) ≥ p.
One has

E

[

|Wψ(h)|
]

≥ E

[

|Wψ(h)| · 1A
]

= E [|Wβ| · 1A] ≥ ap
√

β (28)

where the constant ap is given by

ap = E

[

|G| 1{|G|≤Φ−1( 1+p
2

)}

]

=
∫ Φ−1( 1+p

2
)

Φ−1( 1−p
2

)
|x|e

−x2/2

√
2π

dx.

with G a standard normal random variable and Φ its cumulative distribution
function. The lower bound in (28) is obtained for P(A) = p and the normal random
variable Wβ of variance β concentrated as much as possible close to zero on event
A. Equation (27) for t = h and (28) finally provide the wanted estimate. �

Remark 3.3. The major constraint for generalising Theorem 1.7 and its proof to
a Lp-Wasserstein control for p < 2 is that E(|Zt|) is replaced by E(|Zt|p/2). Here
x 7→ |x|p/2 is not convex when p < 2 and Jensen’s inequality does not apply.

3.3. Proof of Theorems 1.2 and 1.5. As said before, Theorems 1.2 and 1.5 are
deduced from Theorems 1.4 and 1.7 and the use of the homogeneous dilations.

For a fixed time T > 0 and p ∈ (0,∞], we introduce CT,p to be the constant:

CT,p := sup
a6=a′∈H

inf
A(a,a′)

T

sup
0≤t≤T

E[dpH(Ba
t ,B

a′

t )]
1
p

dH(a, a′)
∈ [0,+∞];

where, as before in Remarks 1.3 and 1.6, A(a,a′)
T denotes the set of co-adpated

couplings of (Ba
t )0≤t≤T and (Ba′

t )0≤t≤T , starting respectively in a and a′. When
p = +∞, the numerator is essup(Ω,P)dH(Ba

t ,B
a′

t ). As noticed in these remarks we
aim at proving CT,p = +∞ for p ≥ 2.

The first key point is to show that, using dilations, this constant does not depend
on T . For this, let S > 0 be another fixed time. The point is that if (Ba

t ,B
a′

t )0≤t≤T
is a co-adapted coupling of two Heisenberg Brownian motions on [0, T ] starting
respectively in a and a′; setting for b ∈ {a, a′}:

B̃b̃
s := dil√ S

T

(

Bb
sT
S

)

, for 0 ≤ s ≤ S;
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then, (B̃ã
s , B̃

ã′

s )0≤s≤S is a co-adapted coupling of two Heisenberg Brownian motions
on [0, S] starting respectively in ã = dil√ S

T

(a) and ã′ = dil√ S
T

(a′), Moreover,

dH(B̃ã
s , B̃

ã′

s ) =

√

S

T
dH

(

Ba
sT
S
,Ba′

sT
S

)

and

dH(ã, ã′) =

√

S

T
dH(a, a′).

This easily gives CS,p ≤ CT,p and by symmetry of S and T : CS,p = CT,p.
We can now turn to the proof of Theorems 1.2 and 1.5. Since the proofs are

similar and the case p = +∞ is easier, we only treat the case p = 2.

Proof of Theorem 1.5. Suppose by contradiction that CT0,2 < +∞ for some T0 > 0.
The above discussion implies that CT,2 < +∞ for each fixed time T > 0. Let
a = (0, 0, 0) and a′ = (x′, 0, 0) with x′ 6= 0. Thus, there exists a constant C (one
can take C = CT0,2 dH(a, a′)) such that for each time T0 > 0, there is a co-adapted
coupling satisfying E[d2

H
(Ba

t , B
a′

t )] ≤ C for t ∈ [0, T0].
Now with the same notation as in the proof of Theorem 1.7 and denoting

qT0 = P(∀0 ≤ s ≤ T0, Rs ≥ R0

2
); one has qT0 ≥ q and as before, there exists h

(independent of T0) such that for all 0 ≤ t ≤ T0 − h,

E[|Mt+h −Mt|] ≥ 10C2.

Of course this gives: E[|At+h − At|] ≥ 8C2 for every 0 ≤ t ≤ T0 − h. Therefore
equation (23) still holds if nh ≤ T0. Since the constants C and h are independent of
T0, letting T0 and n tend to infinity gives the contradiction. Thus CT0,2 = +∞. �

4. Coupling by reflection

In this section, we study precisely the coupling by reflection. We recall that
(Bt)t≥0 and (B′

t)t≥0 are two Heisenberg Brownian motions coupled by reflection if
and only if their horizontal parts (Bt)t≥0 and (B′

t)t≥0 are two Brownian motions
on R2 coupled by reflection. This means that the coupling matrices are given by
K1,1 = −1, K2,2 = 1, K1,2 = K2,1 = 0 for t < τ and by the matrix J = Id2 for
t ≥ τ where τ = inf{s ≥ 0 : Rs = 0} is the hitting time of 0 for (Rt)t≥0. We recall

Rt = R0 + 2Ct∧τ and Zt = Z0 +
∫ t∧τ

0
(R0 + 2Cs∧τ)dC̃s

where (Cs)s and (C̃s)s are two independent Brownian motions (starting in 0) and
with τ = inf{s ≥ 0 : Cs = −R0/2}.

For simplicity, in the following we only consider the case R0 > 0 and Z0 = 0.

Proposition 4.1. With the above notation, assume R0 > 0 and Z0 = 0, Let p > 0,
then there exists some constants Cp, C

′
p, C

′′
p > 0 such that

E[Rt] = R0
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and






E[|Zt|p] ∼t→∞ CpR0t
p− 1

2 if p > 1
2

E[|Zt|p] ∼t→∞ C ′
pR0 ln t if p = 1

2

E[|Zt|p] →t→+∞ C ′′
pR

2p
0 if 0 < p < 1

2
.

Remark 4.2. In particular for 0 < α < 1, the upper bound

sup
t≥0

E [dH(Bt,B
′
t)
α] < +∞

is satisfied by the coupling by reflection. This is obtained by recalling that dH(Bt,B
′
t)

is equivalent to the homogeneous distance
√

R2
t + |Zt| using Proposition 4.1 for

p = α/2, (a+ b)p ≤ ap + bp, and Jensen’s inequality [E(Rt)
α] ≤ [E(Rt)]

α.

Proof. We assume R0 = 1. Let t > 0 be fixed. By the Dambins-Dunford-Schwarz
theorem, Z is a changed time Brownian motion:

Zt = WT (t) with T (t) =
∫ t

0
R2
sds

with W a Brownian motion independent of (Rt)t≥0. Set τ = inf{s ≥ 0 : Rs = 0}.
As (Rs/2)s≥0 is a Brownian motion starting in R0/2 and stopped in 0, it is known
that τ is almost surely finite and that its density fτ is given by

fτ (u) =
R0/2√
2πu3/2

e− R2
0

4u , u ≥ 0. (29)

Using τ , we compute

E [|Zt|p] = E(|WT (t)|p) (30)

=
∫ +∞

0
E(|WT (t)|p|τ = u)fτ (u)du

=
∫ t

0
E(|WT (t)|p|τ = u)fτ(u)du

︸ ︷︷ ︸

h1(t)

+
∫ +∞

t
E(|WT (t)|p|τ = u)fτ (u)du

︸ ︷︷ ︸

h2(t)

.

In the last line, we split the integral between the trajectories of R that have hit 0
before t and those which will hit 0 after t.

Let us estimate h1(t), the first integral in the decomposition (30). Hence we set
u ≤ t. Since W and R are independent, with cp = E(|W1|p), one has:

E(|WT (t)|p|τ = u) = cpE(|T (t)|p/2|τ = u) (31)

= cpE

((∫ u

0
R2
sds

)p/2

|τ = u

)

= cp2
pupE

[(∫ 1

0
R̃2
λdλ

)p/2

|τ = u

]
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where we have introduced the normalised process (R̃λ)λ∈[0,1] (defined almost surely,
since the hitting time τ is almost surely finite) in such a way it hits 0 at time 1:

R̃λ =
1

2
√
τ
Rτλ, λ ∈ [0, 1].

Note that R̃0 = R0

2
√
τ
.

It is then well-known that, conditioned on τ = u, the entire process (R̃λ)λ∈[0,1]

converges in law when u → ∞ to a normal positive Brownian excursion (Xs)s∈[0,1].
Moreover, as proven in Lemma 4.3, when u → ∞,

E

[(∫ 1

0
R̃2
λdλ

)p/2

|τ = u

]

→ E

[(∫ 1

0
X2
sds

)p/2
]

. (32)

Finally with (31) denoting the limit in (32) by Ep, the first integral in (30)
satisfies the following equivalence:

h1(t) =
∫ t

0
E(|WT (t)|p|τ = u)fτ (u)du ∼t→∞ 2p cpEp

∫ t

0
upfτ (u)du

From the density estimate of fτ in (29) we have upfτ (u) ∼+∞
R0

2
√

2π
up−3/2. There-

fore:

• If p > 1/2, the function h1(t) is equivalent to 2p−3/2 R0 cpEp

(p−1/2)
√
π u3/2 t

p−1/2 at +∞,

• if p = 1/2, it is equivalent to R0cpEp

2
√
π u3/2 ln t,

• if 0 < p < 1/2, it converges to a positive constant.

We now turn to h2. As before,

h2(t) =
∫ +∞

t
E(|WT (t)|p|τ = u)fτ (u)du

= cp

∫ +∞

t
E

((∫ t

0
R2
sds

)p/2

|τ = u

)

fτ (u)du

= 2p cp

∫ +∞

t
upE





(
∫ t

u

0
R̃2
λdλ

)p/2

|τ = u



 fτ (u)du

= 2p cp t
p+1

∫ +∞

1
vpE





(
∫ 1

v

0
R̃2
λdλ

)p/2

|τ = tv



 fτ (tv)dv

=
2p−3/2 cpR0 t

p−3/2

√
π

∫ +∞

1
vp−3/2

E





(
∫ 1

v

0
R̃2
λdλ

)p/2

|τ = tv



 e− R2
0

tv dv
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where, as above, s = uλ and R̃λ = Rτλ/
√
τ and where we set the change of variable

u = tv in the next to last line.
Now, Lemma 4.3 and the dominated convergence, which is completely justified

by Lemma 4.4, give as t → +∞,

∫ +∞

1
vp−3/2

E





(
∫ 1

v

0
R̃2
λdλ

)p/2

|τ = tv



 e− R2
0

4tv dv →
∫ +∞

1
vp−3/2

E





(
∫ 1

v

0
X2
sds

)p/2


 dv.

As a consequence, denoting by Ip the last integral,

h2(t) ∼t→∞
2p−3/2 cpR0√

π
tp−1/2Ip.

This with the treatment of h1 above gives the complete result in case R0 = 1.
Next, if R0 > 0 one infers ER0 [|Zt|p] = R2p

0 E{R0=1}[|Zt/R2
0
|p] from the classical

dilations of Subsection 2.1, so that the general case follows. �

The two next lemmas complete the proof of Proposition 4.1.

Lemma 4.3. Let (R̃t)t∈[0,1] be a Brownian motion starting in r0 > 0 conditioned
to hit 0 for the first time at time 1. Let α ∈ [0, 1] and p be positive. As r0 → 0,

E

[(∫ α

0
R̃2
λdλ

)p/2
]

→ E

[(∫ α

0
X2
s ds

)p/2
]

(33)

where (Xs)s∈[0,1] is a Brownian excursion.

Proof. The process (R̃t)t∈[0,1] converges in law to the Brownian excursion (Xs)s∈[0,1].

To obtain the convergence of the moments of
∫ α

0 R̃
2
λdλ, we use a uniform integra-

bility property. Let 0≤ α ≤ 1. We bound

P

((∫ α

0
R̃2
λdλ

)

≥ y| τ = u
)

≤ P

(

sup
0≤s≤1

Ws ≥ √
y| T0 = 1

)

where (Ws)s≥0 is a Brownian motion starting in r0 and T0 its hitting time of 0.
Next, by [5, Formula 2.1.4 (1) p.198], still for W starting in r0, we have for every
t > 0

P

(

sup
0≤s≤T0

Ws < y| T0 = t

)

=
+∞∑

k=−∞

(r0 + 2ky)√
2πt3/2

exp

(

−(r0 + 2ky)2

2t

) √
2πt3/2

r0

exp

(

r2
0

2t

)

,

In particular, reorganising the terms,

P

(

sup
0≤s≤1

Ws < y| T0 = 1

)

= 1 − 2
+∞∑

k=1

(

4k2y2 sinh(2kyr0)

2kyr0

− cosh(2kyr0)

)

exp
(

−2k2y2
)

,
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and, since for u ≥ 0, sinhu
u

≤ eu, uniformly on 0 < r0 ≤ 1 and y ≥ 1,

P

(

sup
0≤s≤1

Ws ≥ y| T0 = 1

)

≤ 8
+∞∑

k=1

k2y2 exp(2ky) exp
(

−2k2y2
)

≤ a exp(−by2)

for some a, b > 0.

Thus, for all 0 < r0 ≤ 1, the random variables
(∫ α

0 R̃
2
λdλ

)

r0≤1
admit some

uniformly bounded exponential moment. As a consequence, the corresponding
(∫ α

0 R̃
2
λdλ

)p
2 are uniformly integrable and the desired convergence follows. �

Lemma 4.4. With the above notation, there exists a coupling of (R̃t)t∈[0,1] and of
a 3-Bessel process (Vt)t∈[0,1] on the same probability space such that both start in
r0 ≥ 0 and such almost surely:

R̃t ≤ Vt, for all 0 ≤ t ≤ 1.

In particular, for R0 fixed and p > 0 there exists a constant Dp > 0 such that for
all v ≥ 1 and r0 ≤ R0√

v
it holds

vpE





(
∫ 1

v

0
R̃2
λdλ

)p/2


 ≤ Dp

where the process R̃λ starts in r0.

Proof. The process R̃t can be thought as a Bessel bridge (see e.g. [22, Chapter
XIII]) and thus satisfies

dR̃t = dWt +

(

1

R̃t

− R̃t

1 − t

)

dt

for some Brownian motion (Wt)t∈[0,1]. The coupling is obtained by considering the
same Brownian motion in the stochastic differential equation defining (Vt)t∈[0,1]:

dVt = dWt +
1

Vt
dt

The other conclusion follows since the 3-Bessel process shares the same scaling
property as the Brownian motion: (Vλt/

√
λ)t has the same law as the 3-Bessel

process starting in r0/
√
λ. �

5. The static coupling, a transport problem

In this section, we turn to the proof of Theorem 1.10. Recall that it gives a
direct proof of the following L1-Wasserstein control: There exists C > 0 such that
for every t ≥ 0, and every a, a′ ∈ H,

W1(µat , µ
a′

t ) ≤ CdH(a, a′)

where µat = Law(Ba
t ) and µa

′

t = Law(Ba′

t ).
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Proof of Theorem 1.10 . Reduction of the problem: Let us first see how, using the
symmetries of H presented in Subsection 2.1, the proof can be reduced to t = 1,
a = (0, 0, 0) and a′ = (x′, 0, 0). First, the isometries of H induced isometries for
W1. In particular (transp)# and (rotθ)# are isometries for W1, for every p ∈ H

and θ ∈ R, that stabilise the family {µat }a∈H.

W1(µat , µ
a′

t ) = W1((transp)#µ
a
t , (transp)#µ

a′

t ) = W1(µp.at , µp.a
′

t ).

Hence, we can assume a = (0, 0, 0). Using rotθ we can moreover assume a′ =

(x′, 0, z′). As moreover dilλ, defined in Subsection 2.1 satisfies (dilλ)#µ
a
t = µ

dilλ(a)
λ2t

we can assume t = 1. Finally

W1(µ0
1, µ

(x′,0,z′)
1 ) ≤ W1(µ

0
1, µ

(x′,0,0)
1 ) + W1(µ

(x′,0,0)
1 , µ

(x′,0,z′)
1 )

≤ W1(µ
0
1, µ

(x′,0,0)
1 ) + W1(µ0

1, µ
(0,0,z′)
1 )

≤ W1(µ
0
1, µ

(x′,0,0)
1 ) + dH((0, 0, 0), (0, 0, z′)).

The estimate W1(µ0
1, µ

(0,0,z′)
1 ) ≤ dH((0, 0, 0), (0, 0, z′)) = 2

√

π|z′| comes from the
fact that trans(0,0,z′) is not only the left-translation but also the right-translation

of vector (0, 0, z′). If (X, Y, Z) ∼ µ0
1, then (X, Y, Z).(0, 0, z′) ∼ µ

(0,0,z′)
1 so that

dH((X, Y, Z).(0, 0, z′), (X, Y, Z)) = dH((0, 0, 0), (0, 0, z′)).

If we can prove W1(µ0
1, µ

(x′,0,0)
1 ) ≤ C ′dH((0, 0, 0), (x′, 0, 0)) = C ′|x′| for some C ′ ≥ 1,

we have finally

W1(µ0
1, µ

(x′,0,z′)
1 ) ≤ CdH((0, 0, 0), (x′, 0, 0)) + dH((0, 0, 0), (0, 0, z′))

= C ′|x′| + 2
√

π|z′| ≤ max(C ′,
√

2π)
√

(x′)2 + |z′|
≤ CdH((0, 0, 0), (x′, 0, z′)),

with C = c · max(C ′,
√

2π) with c defined as in (8). Finally the proof amounts to
the case t = 1, a = (0, 0, 0) and a′ = (x′, 0, 0), as we announced.

Main body of the proof: We set

µ = µ0
1 = Law(X, Y, Z) (34)

ν = µ
(x′,0,0)
1 = Law [(x′, 0, 0).(X, Y, Z)] = Law(X + x′, Y, Z + (1/2)x′Y ) (35)

µ̃ = Law [(x′, 0, 0).(X, Y, Z).(−x′, 0, 0)] = Law(X, Y, Z + x′Y ) (36)

We want to estimate W1(µ, ν) from above and start with

W1(µ, ν) ≤ W1(µ, µ̃) +W1(µ̃, ν)
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The coupling in (35) and (36) yields W1(µ̃, ν) ≤ |x′| = dH((0, 0, 0), (x′, 0, 0)). The
coupling suggested in (34) and (36) yields

W1(µ, µ̃) ≤ E [E [dH((X, Y, Z), (X, Y, Z + x′Y ))|(X, Y )]] (37)

≤ E [E [dH((0, 0, 0), (0, 0, x′Y ))|(X, Y )]]

≤ E

[

2
√

π|Y x′|
]

=
√

|x′| × [2
√
πE(

√

|Y |)]

The order
√

|x′| is such that
√

|x′|/dH((x′, 0, 0), (0, 0, 0)) = |x′|−1/2 → ∞ as x′ goes
to zero.

Remark 5.1. Note that the coupling in (37) is exactly the synchronous coupling
of subsection 2.4.1 evaluated at time t = 1. The estimate from above can easily be
checked with Lemma 2.6.

We modify the computation above just a little based on the knowledge that the
translation is not the optimal transport plan on the real line when considering
costs that are increasing concave functions of the distance.

The following lemma will be in order:

Lemma 5.2. If η is a probability measure on R with rapidly decreasing and smooth
density f , then

inf
π∈Π(η,(transRt )#η)

∫∫ √

|y − x| dπ ≤ |t| ×
(∫

|f ′(x)|
√

|x| dx
)

Proof. The left-hand side is the 1-Wasserstein distance WR
1 (η, (transRt )#η) on R

for the distance (x, y) 7→
√

|y − x|. This is also the Kantorovich norm ‖η −
(transRt )#η)‖1, in the sense of [12]. Recall that the Kantorovich norm of a signed
Radon measure σ = σ+ − σ− of mass zero is

‖σ‖1 = WR

1 (σ+, σ−) = inf
π∈Π(σ+,σ−)

∫∫ √

|y − x|dπ(x, y)

where the mass of σ+ can be different from 1. Let σ = η − (transRt )#η) and for
the computation of ‖σ‖1 assume without loss of generality that t ≥ 0. We have
σ =

∫ t
0(transRu)#γ du where γ is the Radon measure of density f ′. Therefore

‖σ‖1 =

∥
∥
∥
∥

∫ t

0
(transRu)#γ du

∥
∥
∥
∥ ≤

∫ t

0
‖(transRu)#γ‖1 du

=
∫ t

0
‖γ‖1 du = t‖γ‖1

≤ t×
(∫

|f ′(x)|
√

|x| dx
)

.

Note that for the last inequality, we use the triangle inequality by transporting
γ+, of density f ′

+, to the atomic measure (
∫

f ′
+)δ0 and then from this measure to

γ−, of density f ′
−. �
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We can now conclude by coupling Z and Z ′, conditionally on (X, Y ). From (37):

E [dH((X, Y, Z), (X, Y, Z + x′Y ))|(X, Y )] ≤ 2
√
π|x′Y | ×

(

2
∫

|f ′
Z|X,Y (z)|

√

|z| dz
)

where fZ|x,y is the density of Law(Z|X = x, Y = y). Finally,

E [dH((X, Y, Z), (X, Y, Z + x′Y ))]

≤ |x′|
∫∫

fX,Y (x, y)2
√
π|y| ×

(∫

|f ′
Z|x,y(z)|

√

|z| dz
)

dx dy

≤ |x′|
∫∫∫

2
√
π|y|

√

|z|
(

|∂zfX,Y,Z(x, y, z)|
fX,Y,Z(x, y, z)

)

fX,Y,Z(x, y, z) dx dy dz.

Here fX,Y,Z is the density of µ = Law(X, Y, Z) with respect to the Lebesgue mea-
sure and fX,Y is the density of (X, Y ). Note that we have fZ|x,y(z) = fX,Y,Z(x, y, z)/fX,Y (x, y).

Since fX,Y,Z is the density of the heat kernel, it is well known (see [19] and [1]
equation (14) ) that there exists a constant C > 0 such that for all (x, y, z) ∈ H,

∣
∣
∣
∣
∣

∂zfX,Y,Z(x, y, z)

fX,Y,Z(x, y, z)

∣
∣
∣
∣
∣
≤ C. (38)

The proof of this fact is analytic and is based on the explicit representation of the
heat kernel as an oscillatory intergal.

The proof of Theorem 1.10 is then finished since the quantity |y|
√

|z| is clearly
integrable with respect to the heat kernel fX,Y,Z .

�

6. Generalisation to the Heisenberg groups of higher dimension.

In this section, we prove that Theorems 1.2, 1.4, 1.5, 1.7, 1.8 and 1.10 also hold
in the case of the Heisenberg groups of higher dimension. For n ≥ 1 the Heisenberg
group Hn can be identified with R2n+1 equipped with the law:

((xi, yi)
n
i=1, z) · ((x′

i, y
′
i)
n
i=1, z

′) =

(

(xi + x′
i, yi + y′

i)
n
i=1, z + z′ +

1

2

n∑

i=1

(xiy
′
i − yix

′
i)

)

.

The corresponding Brownian motion starting from 0R2n+1 is given by:

B0
t :=

(
(

B1
t,i, B

2
t,i

)

i=1,...,n
,
1

2

n∑

i=1

(∫ t

0
B1
s,idB

2
s,i −

∫ t

0
B2
s,idB

1
s,i

))

where Bt :=
(

B1
t,i, B

2
t,i

)

i=1,...,n
is a 2n-dimensional standard Brownian motion. As

before, we denote by (Ba
t )t≥0 the Brownian motion starting in a ∈ Hn. It can be

represented as a · B0
t and we write µat for its law at time t.

Lemma 2.2 can directly be generalised for describing co-adapted Heisenberg
Brownian motions (Bt,B

′
t) but with matrices J, Ĵ ∈ M2n(R). As above, we denote



L
p

COUPLING OF TWO BROWNIAN MOTIONS AND THEIR LÉVY AREA 27

by Rt the Euclidean norm of B′
t−Bt ∈ R2n and by Zt the last coordinate of B′−1

t Bt

that we still call the relative Lévy area. The quantity

dH(Bt,B
′
t) :=

√

R2
t + |Zt|

is still a homogenous distance on Hn and is equivalent to the Carnot-Carathéodory
distance dH.

When Rt > 0 we introduce the following basis: let e1 be 1
Rt

(B′
t − Bt) ∈ R

2n,

write e1 = (a1, . . . an), aj ∈ C = R2, set e2 = (ia1, . . . , ian) and complete (e1, e2)
into a direct orthonormal basis of R2n. This basis is well adapted for studying
couplings in Hn. Indeed, with L and L̂ being the coupling matrices in this new
basis in place of J, Ĵ in the canonical basis, a computation gives:

Lemma 6.1. With the above notation, if Rt > 0, then






d(R2
t ) = 2Rt

√

2(1 − L1,1) dCt + 2 tr (I2n − J) dt

dZt =
1

2
Rt

√

2(1 + L2,2) dC̃t +
1

2

n∑

i=1

(J2i−1,2i − J2i,2i−1)dt

where (Ct)t≥0 and (C̃t)t≥0 are some 1-dimensional (possibly correlated) standard
Brownian motions.

Now, since trL = trJ , and since each |Li,i| ≤ 1 for 1 ≤ i ≤ n,

1 − L2,2 ≤ tr(I − L) = tr(I − J)

and one can directly adapt the proof of Theorems 1.4 and 1.7 to this setting.
Similarly as before, one can deduce that Theorems 1.2 and 1.5 are also satisfied
for higher dimensional Heisenberg groups.

Generalisation of Theorem 1.8: The coupling by reflection can also be done on
Hn. It corresponds to the matrix L defined by







L1,1 = −1
Li,i = 1 for 2 ≤ i ≤ n
Li,j = 0 for i 6= j.

In this case, a computation easily gives that Ct and C̃t are independent. More-
over since L is symmetric, J is also symmetric and

∑n
i=1(J

2i−1,2i − J2i,2i−1) = 0.
As a consequence, R2

t and Zt satisfy the same stochastic differential system as in
the case of H1. Thus Proposition 4.1 holds in Hn with constants Cp, C

′
p and C ′′

p

independent of the dimension and Theorem 1.8 also holds for Hn.

Generalisation of Theorem 1.10: We turn to the static coupling. As before, using
the symmetries and the dilatation of the higher dimensional Heisenberg groups,
it suffices to study the case t = 1 and a = 0, a′ = ((x′, 0), (0, 0), . . . , (0, 0), 0).
If the vector V = ((X1, Y1), . . . (Xd, Yd), Z) has law µ0

1, then the vector a′.V =
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(X1 + x′, Y1), (X2, Y2), . . . (Xd, Yd), Z + 1
2
x′Y2) has law µa

′

1 . An analogue coupling
as the one in Section 5 can be defined. The horizontal part is translated by
((x,′ 0), . . . , (0, 0)) and conditionally on ((X1, Y1), . . . (Xd, Yd)), we perform a cou-
pling between the law of Z and the law of Z + 1

2
x′Y2 as described in Lemma 5.2.

Recall that it is adapted to the non-convex transport cost (z, z′) 7→
√

|z − z′|.
Since the heat kernel estimate corresponding to (38) also holds in higher dimen-

sion (see [9]), the proof finishes analogously to the one in H1. Therefore Theorem
1.10 is satisfied for higher dimensional Heisenberg groups too.
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