Curvature-Free Margulis Lemma for Gromov-Hyperbolic Spaces

Abstract : We prove curvature-free versions of the celebrated Margulis Lemma. We are interested by both the algebraic aspects and the geometric ones, with however an emphasis on the second and we aim at giving quantitative (computable) estimates of some important invariants. Our goal is to get rid of the pointwise curvature assumptions in order to extend the results to more general spaces such as certain metric spaces. Essentially the upper bound on the curvature is replaced by the assumption that the space is _ $\delta$-hyperbolic in the sense of Gromov and the lower bound of the curvature by an upper bound on the entropy which we recall the definition.
Type de document :
Pré-publication, Document de travail
IF_PREPUB. 2017
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01671256
Contributeur : Gérard Besson <>
Soumis le : vendredi 22 décembre 2017 - 10:15:00
Dernière modification le : jeudi 11 janvier 2018 - 06:25:48

Fichiers

BCGS-14:12:17.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01671256, version 1

Collections

Citation

Gérard Besson, Gilles Courtois, Sylvestre Gallot, Andrea Sambusetti. Curvature-Free Margulis Lemma for Gromov-Hyperbolic Spaces. IF_PREPUB. 2017. 〈hal-01671256〉

Partager

Métriques

Consultations de la notice

25

Téléchargements de fichiers

12