D. R. Macfarlane, N. Tachikawa, M. Forsyth, J. M. Pringle, P. C. Howlett et al., Energy applications of ionic liquids, Energy Environ. Sci., vol.415, issue.1, pp.232-250, 2014.
DOI : 10.1016/j.memsci.2012.05.072

URL : https://hal.archives-ouvertes.fr/hal-00979082

E. I. Rogers, B. Sljukic, C. Hardacre, and R. G. Compton, Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes, Journal of Chemical & Engineering Data, vol.54, issue.7, pp.2049-2053, 2009.
DOI : 10.1021/je800898z

L. Grande, E. Paillard, G. Kim, S. Monaco, and S. Passerini, Ionic Liquid Electrolytes for Li???Air Batteries: Lithium Metal Cycling, International Journal of Molecular Sciences, vol.40, issue.98, pp.15-8122, 2014.
DOI : 10.3390/ijms150814868

URL : http://www.mdpi.com/1422-0067/15/5/8122/pdf

A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, and H. Ohno, LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries, Journal of Power Sources, vol.174, issue.1, pp.342-348, 2007.
DOI : 10.1016/j.jpowsour.2007.09.013

H. Yoon, P. C. Howlett, A. S. Best, M. Forsyth, and D. R. Macfarlane, Fast Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte, Journal of the Electrochemical Society, vol.160, issue.10, pp.160-1629, 2013.
DOI : 10.1149/2.022310jes

J. Li, S. Jeong, R. Kloepsch, M. Winter, and S. Passerini, Improved electrochemical performance of LiMO2 (M=Mn, Ni, Co)???Li2MnO3 cathode materials in ionic liquid-based electrolyte, Journal of Power Sources, vol.239, pp.490-495, 2013.
DOI : 10.1016/j.jpowsour.2013.04.015

L. Xue, K. Ueno, S. Lee, and C. A. Angell, Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode, Journal of Power Sources, vol.262, issue.236, pp.123-128, 2013.
DOI : 10.1016/j.jpowsour.2014.03.099

X. Cheng, R. Zhang, C. Zhao, F. Wei, J. Zhang et al., A Review of Solid Electrolyte Interphases on Lithium Metal Anode, Advanced Science, vol.51, issue.98, pp.1500213-1500233, 2015.
DOI : 10.1016/j.elecom.2014.12.008

D. R. Macfarlane, J. M. Pringle, P. C. Howlett, and M. Forsyth, Ionic liquids and reactions at the electrochemical interface, Physical Chemistry Chemical Physics, vol.21, issue.136, pp.1659-1669, 2010.
DOI : 10.1039/b806996b

P. C. Howlett, N. Brack, A. F. Hollenkamp, M. Forsyth, and D. R. Macfarlane, Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes, Journal of The Electrochemical Society, vol.219, issue.98, p.595, 2006.
DOI : 10.1149/1.1609997

F. Endres, S. Z. Abedin, and N. Borissenko, Scanning Tunneling Microscopy, Zeitschrift f??r Physikalische Chemie, vol.17, issue.10, pp.1377-1394, 2006.
DOI : 10.1524/zpch.2006.220.10.1439

S. Randström, M. Montanino, G. B. Appetecchi, C. Lagergren, A. Moreno et al., Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide, Electrochimica Acta, vol.53, issue.22, pp.6397-6401, 2008.
DOI : 10.1016/j.electacta.2008.04.058

J. Vatamanu, L. Xing, W. Li, and D. Bedrov, Influence of temperature on the capacitance of ionic liquid electrolytes on charged surfaces, Physical Chemistry Chemical Physics, vol.154, issue.11, pp.5174-5182, 2014.
DOI : 10.1039/C1FD00088H

M. V. Fedorov and A. A. Kornyshev, Ionic Liquids at Electrified Interfaces, Ionic liquids at electrified interfaces, pp.2978-3036, 2014.
DOI : 10.1021/cr400374x

R. Atkin, N. Borisenko, M. Drüschler, S. Zein-el-abedin, F. Endres et al., An in situ STM/AFM and impedance spectroscopy study of the extremely pure 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate/Au(111) interface: potential dependent solvation layers and the herringbone reconstruction, Physical Chemistry Chemical Physics, vol.132, issue.15, pp.6849-6857, 2011.
DOI : 10.1021/ja104273r

T. Carstens, R. Hayes, S. Zein-el-abedin, B. Corr, G. B. Webber et al., In situ STM, AFM and DTS study of the interface 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate/Au(111), Electrochimica Acta, vol.82, issue.111, pp.48-59, 2012.
DOI : 10.1016/j.electacta.2012.01.111

S. Baldelli, Surface Structure at the Ionic Liquid???Electrified Metal Interface, Accounts of Chemical Research, vol.41, issue.3, pp.421-431, 2008.
DOI : 10.1021/ar700185h

J. Vatamanu, O. Borodin, and G. D. Smith, Molecular Insights into the Potential and Temperature Dependences of the Differential Capacitance of a Room-Temperature Ionic Liquid at Graphite Electrodes, Journal of the American Chemical Society, vol.132, issue.42, pp.132-14825, 2010.
DOI : 10.1021/ja104273r

E. Paek, A. J. Pak, and G. S. Hwang, A Computational Study of the Interfacial Structure and Capacitance of Graphene in [BMIM][PF6] Ionic Liquid, Journal of the Electrochemical Society, vol.160, issue.1, pp.160-161, 2013.
DOI : 10.1149/2.019301jes

J. Vatamanu, O. Borodin, D. Bedrov, and G. D. Smith, mim][TFSI] Ionic Liquids at Graphite Electrodes, The Journal of Physical Chemistry C, vol.116, issue.14, pp.7940-7951, 2012.
DOI : 10.1021/jp301399b

M. Yamagata, N. Nishigaki, S. Nishishita, Y. Matsui, T. Sugimoto et al., Charge???discharge behavior of graphite negative electrodes in bis(fluorosulfonyl)imide-based ionic liquid and structural aspects of their electrode/electrolyte interfaces, Electrochimica Acta, vol.110, pp.181-190, 2013.
DOI : 10.1016/j.electacta.2013.03.018

C. T. Lee, W. T. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2, pp.785-789, 1988.
DOI : 10.1103/PhysRevA.20.397

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.98-5648, 1993.
DOI : 10.1063/1.460205

V. Barone and M. Cossi, Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, The Journal of Physical Chemistry A, vol.102, issue.11, 1995.
DOI : 10.1021/jp9716997

M. Cossi, N. Rega, G. Scalmani, and V. Barone, Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, Journal of Computational Chemistry, vol.24, issue.6, pp.24-669, 2003.
DOI : 10.1002/jcc.10189

L. H. Gasparotto, N. Borisenko, N. Bocchi, S. Zein-el-abedin, and F. Endres, In situ STM investigation of the lithium underpotential deposition on Au(111) in the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide, Physical Chemistry Chemical Physics, vol.475, issue.82, p.11140, 2009.
DOI : 10.1524/zpch.218.2.255.25920

E. Paillard, Q. Zhou, W. A. Henderson, G. B. Appetecchi, M. Montanino et al., Electrochemical and Physicochemical Properties of PY[sub 14]FSI-Based Electrolytes with LiFSI, Journal of The Electrochemical Society, vol.2004, issue.7, pp.156-891, 2009.
DOI : 10.1021/jo701318n

G. B. Appetecchi, M. Montanino, A. Balducci, S. F. Lux, M. Winterb et al., Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytesI. Electrochemical characterization of the electrolytes, Journal of Power Sources, vol.192, issue.2, pp.599-605, 2009.
DOI : 10.1016/j.jpowsour.2008.12.095

G. Sauerbrey, Verwendung von Schwingquarzen zur W???gung d???nner Schichten und zur Mikrow???gung, Zeitschrift f???r Physik, vol.155, issue.2, pp.206-222, 1959.
DOI : 10.1007/BF01337937

S. H. Park, J. Winnick, and P. A. Kohl, Investigation of the Lithium Couple on Pt, Al, and Hg Electrodes in Lithium Imide-Ethyl Methyl Sulfone, Journal of The Electrochemical Society, vol.143, issue.98, pp.149-1196, 2002.
DOI : 10.1149/1.1497979

R. Atkin, S. Z. Abedin, R. Hayes, L. H. Gasparotto, N. Borisenko et al., AFM and STM Studies on the Surface Interaction of [BMP]TFSA and [EMIm]TFSA Ionic Liquids with Au(111), AFM and STM studies on the surface interaction of [BMP]TFSA and [EMIm]TFSA Iionic liquids with Au, pp.13266-13272, 2009.
DOI : 10.1021/jp9026755

R. Hayes, N. Borisenko, M. K. Tam, P. C. Howlett, F. Endres et al., Double Layer Structure of Ionic Liquids at the Au(111) Electrode Interface: An Atomic Force Microscopy Investigation, The Journal of Physical Chemistry C, vol.115, issue.14, pp.6855-6863, 2011.
DOI : 10.1021/jp200544b

A. Lahiri, T. Carstens, R. Atkin, N. Borisenko, and F. Endres, Ion Concentration on the Au(111)/IL Interface, The Journal of Physical Chemistry C, vol.119, issue.29, pp.16734-16742, 2015.
DOI : 10.1021/acs.jpcc.5b04562

J. Lassègues, J. Grondin, C. Aupetit, and P. Johansson, Spectroscopic Identification of the Lithium Ion Transporting Species in LiTFSI-Doped Ionic Liquids, The Journal of Physical Chemistry A, vol.113, issue.1, pp.305-314, 2009.
DOI : 10.1021/jp806124w

Z. Z. Hu, J. Vatamanu, O. Borodin, and D. Bedrov, A comparative study of alkylimidazolium room temperature ionic liquids with FSI and TFSI anions near charged electrodes, Electrochimica Acta, vol.145, pp.40-52, 2014.
DOI : 10.1016/j.electacta.2014.08.072

Y. Pan, G. Wang, and B. L. Lucht, Cycling performance and surface analysis of Lithium bis(trifluoromethanesulfonyl)imide in propylene carbonate with graphite, Electrochimica Acta, vol.217, pp.269-273, 2016.
DOI : 10.1016/j.electacta.2016.09.080

L. Suo, Y. Hu, H. Li, M. Armand, and L. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries, Nature Communications, vol.120, p.1481, 2013.
DOI : 10.1149/1.2403248

Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi et al., Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries, Journal of the American Chemical Society, vol.136, issue.13, pp.136-5039, 2014.
DOI : 10.1021/ja412807w

X. Liu, L. Wang, L. Wan, and D. Wang, In Situ Observation of Electrolyte-Concentration-Dependent Solid Electrolyte Interphase on Graphite in Dimethyl Sulfoxide, ACS Applied Materials & Interfaces, vol.7, issue.18, pp.9573-9580, 2015.
DOI : 10.1021/acsami.5b01024

Y. Yamada and A. Yamada, Review???Superconcentrated Electrolytes for Lithium Batteries, Journal of The Electrochemical Society, vol.162, issue.14, pp.2406-2423, 2015.
DOI : 10.1149/2.0041514jes

URL : http://jes.ecsdl.org/content/162/14/A2406.full.pdf

K. Fujii, H. Wakamatsu, Y. Todorov, N. Yoshimoto, and M. Morita, -Dimethylformamide, The Journal of Physical Chemistry C, vol.120, issue.31, pp.17196-17204, 2016.
DOI : 10.1021/acs.jpcc.6b04542

M. L. He, K. Chun, X. Ren, N. Xiao, W. D. Mcculloch et al., Concentrated electrolyte for the sodium?oxygen battery: solvation structure and improved cycle life, Angew. Chem. Int. Ed, pp.55-15310, 2016.
DOI : 10.1002/anie.201608607

L. E. Camacho-forero, T. W. Smith, and P. B. Balbuena, Effects of High and Low Salt Concentration in Electrolytes at Lithium???Metal Anode Surfaces, The Journal of Physical Chemistry C, vol.121, issue.1, pp.182-194, 2017.
DOI : 10.1021/acs.jpcc.6b10774

K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, and Y. Tateyama, Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-Salt Electrolyte, The Journal of Physical Chemistry C, vol.118, issue.26, pp.14091-14097, 2014.
DOI : 10.1021/jp501178n