. Hz, 1 Hz94 (d, 1H, 3 J H 5' -H 6' = 8.4 Hz, H 5' ), 5.46 (d, 2H, 3 J H a -F = 49.2 Hz91 (s, 3H, H c ), 3.08 (m, 1H, H d ), 1.23 (m, 2H, H e or H e' ), 0.83 (m, 2H, H e or H e' ); 13 C NMR (CDCl 3 , 100 MHz) ? 155, pp.131-137

1. Hzm, 34 (s, 3H, H a ), 1.25 (m, 2H, H e or H e' ), 0.86 (m, 2H, H e or H e' ); 13 C NMR (CDCl 3 , 100 MHz) ? 162, pp.4-0317

N. Hz, 48 (d, 1H, 3 J H 5 -H 7 or H 7 -H 5 = 1.8 Hz

8. Mmol, R f (SiO 2 , cyclohexane/ethyl acetate, pp.179-181

. Hz, 95 (s, 2H, H a ), 3.76 (s, 3H, H b ), 3.31 (m, 1H10 (m, 2H, H d or H d' ), 0.88 (m, 2H, H d or H d' ); 13 C NMR (CDCl 3 , 100 MHz) ? 153, pp.147-154

1. Hzm and 3. , 77 (d, 1H, 3 J H 5' -H 6' = 8.4 Hz40 (d, 1H, 3 J H a -H b = 13.1 Hz, 2H, H k or H k' ); 13 C NMR (CDCl 3, pp.6602-6606

. Hz, 06 (dd, 1H, 3 J H 6' -H 5' = 8.4 Hz, 4 J H 6' -H 2' = 2.1 Hz, pp.6-26

H. Hz, 2. , and 2. , 84 (s, 3H, H i ), 3.82 (s, 3H, 4.81 (d, 1H, 2 J H d -H d' = 14.2 Hz, H d ), pp.4-4

. Hz, 01 (d, 1H, 4 J H 2' -H 6' = 2.1 Hz77 (d, 1H, 3 J H 5' -H 6' = 8.4 Hz, H 5' ), 6.26 (d, 1H, 3 J H b -H a = 7.1 Hz, 4.98 (m, 2H, H f ), pp.4-4785812736

. Allyl, -oxoethyl)quinoline- 4-yl]carbamate (20a) A mixture of 19a (170 mg, 0.34 mmol, 1.0 eq.) in formic acid (10 mL) was stirred at 50 o C for 20 hours After cooling to rt, the solvent was evaporated under reduced pressure. The residue was dissolved in ethyl acetate (20 mL) before addition of a saturated aqueous sodium carbonate solution (25 mL) After decantation, the aqueous layer was then extracted with ethyl acetate (2 × 20 mL). The combined organic layers were washed with brine (60 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography, p.20

H. Hz, 89 (m, 1H, H 6'(B) ), 6.80 (d, 1H, 3 J H 5'(A) -H 6'(A) = 8.4 Hz, p.78

. Hz, 80 (t, 2H, 3 J H a -H b = 5.8 Hz, H a ), 1.15 (m, 2H, H f or H f' ), 0.77 (m, 2H, H f or H f' ); 13 C NMR (CDCl 3 , 100 MHz) ? 154, = 5.8 Hz, H b ), 2.92 (m, 1H, H e ), pp.4-4883

. Hz, 1H, 3 J H 6' -H 5' = 8.4 Hz, 4 J H 6' -H 2' = 2.1 Hz, H 6' ), 6.88 (d, 1H, 3 J H 5' -H 6' = 8.4 Hz, H 5' ), 4.49 (s, 2H

H. Hz, 1.33 (t, 3H, 3 J H f -H e = 7.5 Hz, H f ); 13 C NMR (CDCl 3 , 100 MHz) ? 154, pp.82-148

. Hz, 15 (dd, 1H, 3 J H 6' -H 5' = 8.5 Hz, 4 J H 6' -H 2' = 2.2 Hz, H 6' ), 7.09 (d, 1H91 (d, 1H, 3 J H 5' -H 6' = 8.5 Hz, H 5' ), 4.78 (s, 2H, pp.3192-3192

. Hz, 32 (d, 1H, 4 J H 2' -H 6' = 2.1 Hz, pp.7-15

H. Nmr, The combined organic layers were washed with brine (2 × 40 mL), dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. The crude product was purified by column chromatography (SiO 2 v/v) to give the desired product 24b (80 mg, 0.19 mmol, 29%) as a yellow solid R f (SiO 2 , cyclohexane/ethyl acetate, 6/4, v/v): 0.51; Mp: 149-151 °C; IR (cm -1 ): 2229 (? C?N ), 1505 (? C=C, °C for 30 hours. After cooling to rt, a saturated aqueous sodium hydrogen carbonate solution 7.59 (m, 1H, H 7 ), 7.34 (d, 1H, 4 J H 2' -H 6' = 2.2 Hz, pp.1260-1104, 2002.

C. Nmr, CDCl 3 , 100 MHz) ? 154, p.145

G. Cornutiu, The Epidemiological Scale of Alzheimer???s Disease, Journal of Clinical Medicine Research, vol.7, issue.9, pp.657-666, 2015.
DOI : 10.14740/jocmr2106w

H. W. Klafki, M. Staufenbiel, J. Kornhuber, and J. Wiltfang, Therapeutic approaches to Alzheimer's disease, Brain, vol.129, issue.11, pp.2840-2855, 2006.
DOI : 10.1093/brain/awl280

N. Ullah, N. Muhammad-khan, and W. Ullah, Alzheimer's disease, Epidemiology, causes, diagnosis and novel treatments: A review, Int. J. Basic Med. Sci. Pharmacy, vol.5, pp.50-56, 2015.

. Scazufca, Alzheimer's Disease International, Global prevalence of dementia: a Delphi consensus study, Lancet, vol.366, pp.2112-2117, 2005.

S. Weintraub, A. H. Wicklund, and D. P. Salmon, The neuropsychological profile of Alzheimer disease, Cold Spring Harb, Perspect. Med, vol.2, p.6171, 2012.

D. H. Maurice, H. Ke, F. Ahmad, Y. Wang, J. Chung et al., Advances in targeting cyclic nucleotide phosphodiesterases, Nature Reviews Drug Discovery, vol.173, issue.4, pp.13-290, 2014.
DOI : 10.1073/pnas.0407649101

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4155750/pdf

C. A. Peixoto, A. K. Santana-nunes, and A. Garcia-osta, Phosphodiesterase-5 Inhibitors: Action on the Signaling Pathways of Neuroinflammation, Neurodegeneration, and Cognition, Mediators of Inflammation, vol.35, issue.1???3, pp.10-1155, 2015.
DOI : 10.1016/j.mad.2015.07.002

J. Kotera, K. Fujishige, and K. Omori, Immunohistochemical Localization of cGMP-binding cGMP-specific Phosphodiesterase (PDE5) in Rat Tissues, Journal of Histochemistry & Cytochemistry, vol.255, issue.5, pp.48-685, 2000.
DOI : 10.1046/j.1432-1327.1998.2550391.x

M. F. Repaske, J. Goy, K. Kotera, J. A. Omori, and J. Beavo, De Vente, mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain, J. Comp. Neurol, pp.467-566, 2003.

A. Saavedra, H. Giralt, J. Arumi, E. Alberch, and . Perez-navarro, Regulation of Hippocampal cGMP Levels as a Candidate to Treat Cognitive Deficits in Huntington???s Disease, PLoS ONE, vol.23, issue.9, p.73664, 2013.
DOI : 10.1371/journal.pone.0073664.g004

A. Garcia-osta, M. Cuadrado-tejedor, C. Garcia-barroso, J. Oyarzabal, and R. Franco, Phosphodiesterases as Therapeutic Targets for Alzheimer's Disease, ACS Chemical Neuroscience, vol.3, issue.11
DOI : 10.1021/cn3000907

S. X. Thakkar, D. W. Deng, O. Landry, and . Arancio, Synthesis of quinoline derivatives: discovery of a potent and selective phosphodiesterase 5 inhibitor for the treatment of

K. U. Domek-?opaci?ska and J. B. Strosznajder, Cyclic GMP and Nitric Oxide Synthase in Aging and Alzheimer's Disease, Molecular Neurobiology, vol.291, issue.1, pp.41-129, 2010.
DOI : 10.1172/JCI29877

O. Arancio, E. R. Kandel, and R. D. Hawkins, Activity-dependent long-term enhancement of transmitter release by presynaptic 3???,5???-cyclic GMP in cultured hippocampal neurons, Nature, vol.376, issue.6535, pp.376-74, 1995.
DOI : 10.1038/376074a0

D. Puzzo, O. Vitolo, F. Trinchesse, J. P. Jacob, A. Palmeri et al., Amyloidbeta peptide inhibits activation of the nitric oxide/cGMP/cAMP-responsive elementbinding protein pathway during hippocampal synaptic plasticity, J. Neurosci, pp.25-6887, 2005.

O. V. Vitolo, A. Sant-'angelo, V. Costanzo, F. Battaglia, O. Arancio et al., Amyloid beta -peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling, Proc. Natl. Acad. Sci. USA 99, pp.13217-13221, 2002.

. Wang, Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers betaamyloid levels and improves cognitive performance in APP

A. Franco, J. García-osta, and M. Oyarzabal, Cuadrado-Tejedor, Decreased levels of guanosine 3', 5'-monophosphate (cGMP) in cerebrospinal fluid (CSF) are associated with cognitive decline and amyloid pathology in Alzheimer's disease

S. Schröder, B. Wenzel, W. Deuther-conrad, M. Scheunemann, and P. Brust, Novel Radioligands for Cyclic Nucleotide Phosphodiesterase Imaging with Positron Emission Tomography: An Update on Developments Since 2012, Molecules, vol.49, issue.5, pp.650-685, 2012.
DOI : 10.1016/j.nucmedbio.2006.04.006

P. Cumming, A business of some heat: molecular imaging of phosphodiesterase 5, Journal of Neurochemistry, vol.281, issue.2, pp.220-221, 2016.
DOI : 10.1074/jbc.M510372200

S. Jakobsen, G. M. Kodahl, A. K. Olsen, and P. , Cumming, Synthesis, radiolabeling and in vivo evaluation of [ 11 C]RAL-01, a potential phosphodiesterase 5 radioligand, Nucl. Med

A. Janssens, G. Verbruggen, and . Bormans, Evaluation of PET radioligands for in vivo visualization of phosphodiesterase 5 (PDE5), Nucl. Med. Biol, pp.41-155, 2014.

. Franco, Pharmacokinetic investigation of sildenafil using positron emission tomography and determination of its effect on cerebrospinal fluid cGMP levels, J. Neurochem, vol.136, pp.403-415, 2016.

M. J. Palmer, A. S. Bell, D. N. Fox, and D. G. Brown, Design of Second Generation Phosphodiesterase 5 Inhibitors, Current Topics in Medicinal Chemistry, vol.7, issue.4, pp.405-419, 2007.
DOI : 10.2174/156802607779941288

L. Pongrac, B. Seliger, D. He, L. Normandin, J. Adam et al., Substituted Pyrazolopyridines as Potent and Selective PDE5 Inhibitors: Potential Agents for Treatment of Erectile Dysfunction, J. Med. Chem, pp.44-1025, 2001.

H. Ishibashi, K. Ishihara, M. Kodama, M. Nishino, Y. Kakiki et al., 4-(3-Chloro-4- methoxybenzyl)aminophthalazines: Synthesis and Inhibitory Activity toward Phosphodiesterase 5, J. Med. Chem, pp.43-2523, 2000.

G. Yu, H. J. Mason, K. Galdi, X. Wu, L. Cornelius et al., Mono-Chlorination of Electron-Rich Arylalkyl- and Heteroarylalkyl-amines and Amino Acids Using Sulfuryl Chloride, Synthesis, vol.2003, issue.03, pp.403-416, 2003.
DOI : 10.1055/s-2003-37362

Y. Bi, P. Stoy, L. Adam, B. He, J. Krupinski et al., Quinolines as extremely potent and selective PDE5 inhibitors as potential agents for treatment of erectile dysfunction, Bioorg. Med. Chem. Lett, pp.14-1577, 2004.

J. Higashijima, M. Kotera, K. Takagi, K. Kikkawa, and . Omori, Novel, potent, and selective phosphodiesterase 5 inhibitors: synthesis and biological activities of a series of 4-aryl-1- isoquinolinone derivatives, J. Med. Chem, pp.44-2204, 2001.

J. Higashijima, K. Kotera, M. Fujishige, K. Takagi, K. Kikkawa et al., 2,7- naphthyridine derivatives as potent and highly specific PDE5 inhibitors, p.7

M. P. Giovannoni, C. Vergelli, A. Graziano, and V. Piaz, PDE5 Inhibitors and their Applications, PDE5 inhibitors and their applications, pp.2564-2587, 2010.
DOI : 10.2174/092986710791859360

I. A. Moussa, S. D. Banister, C. Beinat, N. Giboureau, A. J. Reynolds et al., Design, synthesis, and structure-affinity relationships of regioisomeric N-benzyl alkyl ether piperazine derivatives as sigma-1 receptor ligands, J. Med. Chem, pp.53-6228, 2010.

S. Conrad, J. M. Schröder, E. Chezal, P. Moreau, and A. Brust, Maisonial-Besset, Development of a New Radiofluorinated Quinoline Analog for PET Imaging of Phosphodiesterase 5 (PDE5) in Brain, Pharmaceuticals, vol.9, p.22, 2016.

M. M. Appleman and W. J. Thompson, Multiple cyclic nucleotide phosphodiesterase activities from rat brain, Biochemistry, vol.10, issue.2, pp.311-316, 1971.
DOI : 10.1021/bi00778a018