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ABSTRACT: Whole-exome sequencing (WES) is increas-
ingly applied to research and clinical diagnosis of human
diseases. It typically results in large amounts of genetic
variations. Depending on the mode of inheritance, only
one or two correspond to pathogenic mutations responsible
for the disease and present in affected individuals. There-
fore, it is crucial to filter out nonpathogenic variants and
limit downstream analysis to a handful of candidate mu-
tations. We have developed a new computational combi-
natorial system UMD-Predictor (http://umd-predictor.eu)
to efficiently annotate cDNA substitutions of all human
transcripts for their potential pathogenicity. It combines
biochemical properties, impact on splicing signals, localiza-
tion in protein domains, variation frequency in the global
population, and conservation through the BLOSUM62
global substitution matrix and a protein-specific conserva-
tion among 100 species. We compared its accuracy with
the seven most used and reliable prediction tools, using the
largest reference variation datasets including more than
140,000 annotated variations. This system consistently
demonstrated a better accuracy, specificity, Matthews cor-
relation coefficient, diagnostic odds ratio, speed, and pro-
vided the shortest list of candidate mutations for WES.
Webservices allow its implementation in any bioinfor-
matics pipeline for next-generation sequencing analysis.
It could benefit to a wide range of users and applications
varying from gene discovery to clinical diagnosis.
Hum Mutat 37:439–446, 2016. Published 2016 Wiley Periodi-
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Introduction
The human genome is composed of approximately 3.2 billion

nucleotides and contains at least 25,000 genes. Despite very effi-
cient systems to ensure the accurate replication of this genome, it
has been estimated that the germ-line base substitution rate ranges
from 1.1 to 3 × 10–8 per base per generation [Roach et al., 2010];
therefore, each individual carries at least 10 de novo variations. In
addition, early whole genome sequencing (WGS) experiments have
revealed that every human carries about 3 million single-nucleotide
polymorphisms (SNP) [Levy et al., 2007; Wang et al., 2008; Wheeler
et al., 2008; Pushkarev et al., 2009], these data being consistently con-
firmed. The analysis of the dbSNP build 142 database reveals that
15% of identified SNPs are localized in genes, from which about
86% map to introns and 2.75% to exons. Considering these exonic
variations, more than 50% correspond to missense mutations and
about 37% to synonymous changes. Nevertheless, these data do not
provide information about the potential pathogenicity of these vari-
ations and may thus be biased for nonpathogenic events. However,
the Human Gene Mutation Database [Stenson et al., 2003] indicates
that the vast majority of human pathogenic variations correspond
to missense mutations (50%) corroborating that these mutations
represent a key element in human genetics as their interpretation
is challenging as next-generation sequencing (NGS) technologies
are widely used both for research and clinical diagnosis. Thus, per-
forming a whole-exome sequencing (WES) or a WGS will result in
about 23,000 exonic SNPs with about 11,500 missense variations
and 8,500 synonymous changes from which only one to two mu-
tations, based on the mode of inheritance, are responsible for the
Mendelian genetic disease.

The identification of human disease-causing mutations is critical
in human medicine as more than 7,000 rare human genetic dis-
eases have been characterized [Amberger et al., 2015]. Only 55% of
disease-causing genes have been identified and international initia-
tives are organized to speed up genes identification and drug devel-
opment such as the International Rare Disease Research Consortium
(IRDIRC - http://www.irdirc.org). In parallel, the identification of
disease-causing mutations in known genes is still a challenge in clin-
ical practice as no in vitro functional assay is usually available and
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most families harbor private mutations. This challenge is exempli-
fied in the NGS context and the genetically heterogeneous diseases
where candidate disease-causing mutations are present in various
genes. Currently, bioinformatics pipelines are required to handle
the “data deluge” [Schatz and Langmead, 2013] and facilitate the
identification of pathogenic events. These cascade of tools combine
multiple layers allowing run quality analysis, alignment of filtered
sequences against the human reference genome GRCh37 (hg19),
variant calling, annotation, and filtration [Pabinger et al., 2014]. A
key step of the annotation process is the integration of pathogenic-
ity predictions from various tools, which aim to efficiently predict
substitutions effects on protein structure and function.

Multiple tools have been designed using three main approaches:
sequence and evolutionary conservation-based methods, protein
sequence and structure-based methods, and supervised-learning
methods. The first approach relies on the observation that disease-
causing missense mutations mainly occur at evolutionarily con-
served positions that have an essential role in the structure and/or
function of the encoded protein. The most widely used systems of
this type are SIFT and Mutations assessor [Reva et al., 2011; Sim
et al., 2012]. The second approach takes into account the degree
of similarity between amino acids as well as physical disruption of
protein domains. Archetypes for this approach are the Polyphen-2,
and SNPeffect systems [Adzhubei et al., 2010; De Baets et al., 2012].
The third approach includes various semisupervised learning meth-
ods trained with positive (disease-causing mutations) and negative
(nonpathogenic mutations) datasets from which rules have been es-
tablished based on various features. The most widely used systems
of this type are MutationTaster2, SNAP, and CADD [Bromberg and
Rost, 2007; Kircher et al., 2014; Schwarz et al., 2014]. Nevertheless,
none of these approaches could be considered as a gold standard
as they have limitations: a high sensitivity to multiple sequence
alignments that could drastically alter predictions for the first type;
availability of 3D structures that are not accessible for many proteins
or only partially available for parts of a given-protein for the second
type, and the requirement of very large experimentally validated
datasets to train systems of the third type. To solve these issues,
PON-P and CONDEL have been developed as metapredictors as
they combine predictions from other tools to build consensus scores
[González-Pérez and López-Bigas, 2011; Olatubosun et al., 2012].
If they give very good results for a subset of variations, they have
limitations, especially for situations where individual systems give
conflicting results. Unfortunately, it corresponds to variations diffi-
cult to evaluate and for which predictions are very helpful. Finally,
a combinatorial approach has been proposed. It is based on the as-
sumption that single-nucleotide variations could not only alter the
protein sequence but also impact mRNA [Frédéric et al., 2009]. In
fact, coding-sequence mutations could affect splicing signals such
as donor and acceptor splice sites or auxiliary sequences such as
exonic splicing enhancers and exonic splicing silencers. Thus, mu-
tations affecting the ultimate base of exons are now well recognized
to affect the donor splice site while often resulting in a synony-
mous change [Desmet et al., 2009]. The purpose of this work was
to develop this combinatorial approach through the addition of
new elements such as the conservation over 100 species and the
variation frequency in the general population. In addition, as WES
and WGS experiments result in annotated variations at the nu-
cleotide level, this system was designed to handle large datasets,
to predict the pathogenicity of missense and synonymous changes
and make it available through Webservices allowing integration in
any bioinformatics pipeline. To evaluate its efficiency, we compared
our system with the seven most used and reliable prediction tools:
SIFT 5.1.1 [Sim et al., 2012], Polyphen 2.2.2 [Adzhubei et al., 2010],

Provean 1.1.3 [Choi et al., 2012], Mutation Assessor 2 [Reva et al.,
2011], CONDEL 1.5 [González-Pérez and López-Bigas, 2011], Mu-
tationTaster 2 [Schwarz et al., 2014], and CADD [Kircher et al.,
2014]. To avoid any bias linked to a specific dataset or mutation
type, we selected four widely used different datasets containing
pathogenic and nonpathogenic variations: Varibench [Sasidharan
Nair and Vihinen, 2013] combined with dbSNP [Sherry et al., 2001]
(19,335 pathogenic, 7,897 nonpathogenic), Uniprot [UniProt Con-
sortium, 2014] (20,821 pathogenic, 36,825 nonpathogenic), Clinvar
[Landrum et al., 2014] (10,669 pathogenic, 1,817 nonpathogenic),
and PredictSNP [Bendl et al., 2014] (24,082 pathogenic, 19,800
nonpathogenic).

Materials and Methods

UMD-Predictor Ecosystem

We designed the UMD-Predictor ecosystem as a stand-alone
platform that contains all predictions for all substitutions from
any human transcript. It was conceptualized as a three-tier archi-
tecture. The Presentation Tier was developed in PHP, javascript,
and html. This interface integrates the d3.js (http://d3js.org/) and
jquery (http://jquery.com/) libraries to ensure easy access to the
system (http://umd-predictor.eu). The Application Tier integrates
the prediction algorithm itself and the data-tier integrates the En-
sembl v71 human genome reference sequence and transcripts. All
theoretical substitutions of protein-coding transcripts (280,315,899
mutations) have then been modeled, computed, and stored in a
PostgreSQL (http://www.postgresql.org/) database allowing rapid
analysis of large datasets.

To facilitate integration into bioinformatics pipelines, we devel-
oped a Webservice to access UMD-Predictor database. Various pa-
rameters can be used to search for a single or multiple mutations,
all mutations from a specific gene, transcript, or chromosome and
a full VCF file. Additionally, the Website provides educational ma-
terials (tutorials, help sections, and screencasts) to facilitate user
experience.

Combinatorial Pathogenicity Prediction Algorithm

The new combinatorial algorithm was derived from the previ-
ously described one [Frédéric et al., 2009]. Three major modifica-
tions have been made, notably the replacement of the amino acids
conservation previously extracted from the SIFT system by a new
conservation score; the automatic extraction of key residues in-
formation from Swissprot to replace manual annotation, and the
addition of variation frequency in the general population.

The new UMD-Predictor algorithm combines the following fea-
tures: Blosum62 conservation matrix, the Yu’s biochemical sub-
stitution matrix, protein key residues, impact on splicing signals
(splice sites and auxiliary sequences), the variation frequency at the
population level, and the conservation score in 100 species with
Grantham’s substitution matrix. To normalize the predictions on a
scale from 0 to 100, the formula also includes a ‘‘C’’ constant value.
The pathogenicity of a given variation is thus given by the formula:

UMDscore = C +

7∑

i =1

X(i, j )

X(i, j) refers to a matrix table with ‘‘i’’ corresponding to the feature
and ‘‘j’’ to the UMD-Predictor value associated with the original el-
ement’s value. For example, BLOSUM62 original values range from
‘‘–4’’ to ‘‘11.’’ The X(i, j) for original value ‘‘–4’’ is ‘‘–15,’’ whereas
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the X(i, j) value for ‘‘11’’ is ‘‘+15.” Value range for each element has
been determined based on expert knowledge to avoid any bias in-
duced by a trial and error approach using limited sets of data. Thus,
the conservation among species was given the strongest impact (–40
to +60) on prediction followed by the annotation of protein key
residues that reflect either key structural or functional elements
(+30) and the potential activation of cryptic splice sites (+30). Other
features have been given a lower value as they either correspond to
more general information such as the Yu’s biochemical substitution
matrix (–20 to +20), the BLOSUM62 matrix (–15 to +15), or either
to more difficult to interpret data such as the effect on auxiliary
splicing sequences (0 to +10). The variation frequency in the gen-
eral population, which could be considered as a conservation score
among humans, was used to penalize frequent events most probably
associated to polymorphisms (–50 to 0). Finally, when a wild-type
splice site is abolished, the value is set to +90 to significantly im-
pact the prediction. As for the original UMD-Predictor algorithm
[Frédéric et al., 2009], score ranges from 0 to 100 and is divided
into four classes: (i) <50 polymorphism; (ii) 50–64 probable poly-
morphism; (iii) 65–74 probably pathogenic mutation; and (iv) >74
pathogenic mutation.

Conservation Score from 100 Species

The conservation is a critical element to assess pathogenicity
of mutations. We therefore built a new feature able to quantify
the impact of a given amino acid substitution based on conser-
vation. We used the Vertebrate Multiz Alignment & Conservation
(phastCons100way) data from UCSC [Rosenbloom et al., 2015]. We
clustered the species into five groups: primates; Euarchontoglires;
Laurasiatheria, Afrotheria, and mammals; birds and Sarcopterygii;
and Fish. The conservation of a specific residue was assessed using
a window of ±3 residues. All species with more than one substitu-
tion were excluded for the score computation. For each position, we
counted the number of alternative residues present in each group
and a conservation score was then computed depending on the
residue position and the group. It was subsequently normalized for
the number of selected species in each group. For each mutation, we
compared the Grantham score of the mutation itself and the highest
Grantham score of natural variants of each group. If this variation is
positive, the conservation score increases, otherwise it is decreased.
The conservation score is thus translated into a new matrix ranging
from –40 to +60.

For example, if we consider a Glutamic acid residue (Glu)
at position 1,003 of the FBN1 gene (ENSEMBL gene transcript
ENST00000316623), the conservation displayed a natural variation
to an Alanine residue (Ala - Grantham score of 107) in the Ar-
madillo species (Supp. Fig. S1). A Glu>Lys mutation will result in
a conservation score of 66.8 as the Grantham score of the mutant
residue is lower than the Grantham score of the natural variant. A
Glu>Val mutation will result in a conservation score of 73.3 as the
Grantham score of the mutant residue is higher than the Grantham
score of the natural variant.

Automatic Extraction of Key Residues Information from
Swissprot

In the original combinatorial algorithm, each database curator
manually annotated a key residue parameter accounting for a 3D
structure key element (Proline-induced hinges) or a functional key
element (glycosylation site or disulfide bound). With the devel-
opment of a global system, an automatic annotation system was
required. We therefore used Uniprot/SwissProt data for the follow-

ing terms: "CARBOHYD," "DISULFID," "ZN FNG," "MOD RES,"
"TRANSMEM," "CA BIND," "DNA BIND," "NP BIND," "MOTIF,"
"ACT SITE," "METAL," "BINDING," "SITE," "SE CYS," "LIPID,"
and "CROSSLNK."

Variation Frequency in the General Population

As Mendelian-inherited human genetic diseases are considered
rare, a high frequency of a specific variation in the human popula-
tion is indicative of a nonpathogenic mutation also named polymor-
phism. Thus, we collected frequency information from the Ensembl
database [Cunningham et al., 2015], which include dbSNP data
(build 139) [NCBI Resource Coordinators, 2015]. If a variation fre-
quency is available, a penalty score ranging from –50 to 0 was used
for mutations with frequencies above 0.001 with –50 for frequency
above 0.05.

Prediction Assessment

Each predictor system was run using subsets of known variants as
input and predictions were assessed in terms of true positive (TP),
true negative (TN), false positive (FP), and false negative (FN). The
sensitivity (TPR), specificity (TNR), Matthews correlation coeffi-
cient (MCC) [Matthews, 1975], and diagnostics odds ratio (DOR)
[Glas et al., 2003] were calculated.

TPR =
TP

TP + FN

TNR =
TN

FP + TN

MCC

=
TP × TN – FP × FN√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

DOR =
TPR × TNR

(1 – TPR) × (1 – TNR)

The MCC scores range from +1 (a perfect prediction) to –1 (an in-
verse prediction) where 0 represents an average random prediction.
MCC interpretation can be done using the following classes: MCC
= +0.70 or higher, very strong positive relationship; MCC = +0.40 to
+0.69, strong positive relationship; MCC = +0.30 to +0.39, moderate
positive relationship; MCC = +0.20 to +0.29, weak positive relation-
ship; MCC = +0.01 to +0.19, no or negligible relationship; MCC =

–0.01 to –0.19, no or negligible relationship; MCC = –0.20 to –0.29,
weak negative relationship; MCC = –0.30 to –0.39, moderate nega-
tive relationship; MCC = –0.40 to –0.69, strong negative relationship;
and MCC = –0.70 or lower, very strong negative relationship. This
measurement has been favored over “accuracy,” as it is less sensitive
to the different numbers of pathogenic and nonpathogenic variant
classes in each gene.

The DOR ranges from zero to infinity. A higher DOR value in-
dicates a better test performance. The log(DOR) is used to evaluate
the trade-off between sensitivity and specificity and ranges from –10
to 10. A color-coded graph is usually used to display the efficiency
of various tests.

Evaluation Datasets and Systems

To allow unbiased comparison of tools, we selected large
available datasets that contain annotated pathogenic and non-
pathogenic mutations. These datasets are freely available and have
already been used for tools evaluation. Note that only pathogenic
mutations have been selected from the Varibench dataset and
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combined to the dbSNP dataset in order to reach a significant num-
ber of both mutation types. We therefore used the four following
datasets: Varibench [Sasidharan Nair and Vihinen, 2013] with db-
SNP [Sherry et al., 2001] (19,335 pathogenic, 7,897 nonpathogenic);
Uniprot [UniProt Consortium, 2014] (20,821 pathogenic, 36,825
nonpathogenic); Clinvar [Landrum et al., 2014] (10,669 pathogenic,
1,817 nonpathogenic); and PredictSNP [Bendl et al., 2014] (24,082
pathogenic, 19,800 nonpathogenic). Due to discrepancies in datasets
genomic variations description (genomic or protein coordinates),
not all predictors were able to perform analysis for all variants;
therefore, accuracy was evaluated both on the overall dataset and on
a common dataset corresponding to mutations for which all tools
were able to perform predictions.

The seven most used and reliable prediction tools were used for
comparison: SIFT 5.1.1 [Sim et al., 2012], Polyphen 2.2.2 [Adzhubei
et al., 2010], Provean 1.1.3 [Choi et al., 2012], Mutation Assessor 2
[Reva et al., 2011], CONDEL 1.5 [González-Pérez and López-Bigas,
2011], MutationTaster 2 [Schwarz et al., 2014], and CADD [Kircher
et al., 2014]. For each system, the most recent version was used with
default parameters.

Other Comparison Assessment Parameters

The efficiency of prediction systems is mainly based on the predic-
tion themselves but other parameters were also taken into account.
They include: the time required for NGS datasets annotation; the
ability to identify true pathogenic mutations; and the number of
predicted pathogenic mutations. These parameters were evaluated
using three clinical WES datasets from unrelated patients provided
by the molecular genetics laboratory of the “La Timone Children
Hospital” (Marseille, France). The molecular diagnostic of reces-
sive diseases was confirmed by Sanger sequencing and family study
for each proband (data not shown). The WES datasets contained
58,145, 54,006, and 57,936 variants. The assessment was performed
using the on-line version of each system and the Webservices of the
UMD-Predictor system.

Results

UMD-Predictor Ecosystem

The UMD-Predictor was designed as a stand-alone platform
that contains all predictions for single-nucleotide substitutions
(280,315,899) of human transcripts from the human reference
genome GRCh37. It is freely available for noncommercial use at

http://umd-predictor.eu. It can be queried either directly on-line
through a user-friendly Web interface or through Webservices to
facilitate its integration in any bioinformatics pipeline. The Web in-
terface allows: (i) single analysis of all mutations from a gene selected
by gene symbol, Ensembl gene ID, Ensembl transcript ID, RefSeq
peptide ID, or Uniprot ID; (ii) multiple analysis of mutations from
different loci or chromosomal positions; or (iii) a VCF file analysis.
A predictions table containing advanced filtration and sorting op-
tions allow rapid access to single predictions. It contains prediction
values and color-coded classes (from green for polymorphisms to
red for pathogenic mutations). A distribution graph is displayed for
each transcript for single analysis. Additionally, all results can be
exported into xml, csv, tsv, or json formats.

Pathogenicity Predictions Evaluation

To assess the pathogenicity predictions of the UMD-Predictor
system, we collected data from 141,246 annotated variations, ei-
ther pathogenic or nonpathogenic, using four reference datasets:
Varibench [Sasidharan Nair and Vihinen, 2013] with dbSNP [Sherry
et al., 2001] (19,335 pathogenic, 7,897 nonpathogenic); Uniprot
[UniProt Consortium, 2014] (20,821 pathogenic, 36,825 non-
pathogenic); Clinvar [Landrum et al., 2014] (10,669 pathogenic,
1,817 nonpathogenic), and PredictSNP [Bendl et al., 2014] (24,082
pathogenic, 19,800 nonpathogenic). These datasets were then used
for prediction assessment using the seven most used and reliable pre-
diction tools: SIFT 5.1.1 [Sim et al., 2012], Polyphen 2.2.2 [Adzhubei
et al., 2010], Provean 1.1.3 [Choi et al., 2012], Mutation Assessor 2
[Reva et al., 2011], CONDEL 1.5 [González-Pérez and López-Bigas,
2011], MutationTaster 2 [Schwarz et al., 2014], and CADD [Kircher
et al., 2014]. For each tool, default parameters were used. While the
UMD-Predictor results are divided into four classes, for this evalua-
tion, data were combined in two classes only: “polymorphism” and
“probable polymorphism” were combined in a “nonpathogenic”
class, whereas “probably pathogenic” mutations and “pathogenic”
mutations were combined in a “pathogenic” class. For tools com-
parisons, we used statistical measures of the performance of a binary
classification test: sensitivity (true-positive rate), specificity (true-
negative rate), positive predictive value (PPV), negative predictive
value (NPV), accuracy, MCC, DOR, and its logarithm, log(DOR),
to study the trade-off between sensitivity and specificity.

Data from the Varibench/dbSNP dataset are presented in Table 1,
whereas data from other datasets are available in the Supporting
Information (Supp. Figs. S2–S15; Supp. Tables S1–S14). As shown
for this dataset, UMD-Predictor provided with more accurate results

Table 1. Comparison Between UMD-Predictor and Other Predictors Using the Varibench–dbSNP [Sherry et al., 2001; Sasidharan Nair
and Vihinen, 2013] Dataset (n = 17,329)

SIFT PPH2 Provean Mutation assessor CONDEL MutationTaster CADD UMD-Predictor

TP 9,596 10,290 9,638 9,775 8,797 11,174 10,182 10,727
TN 2,805 3,045 3,088 3,162 3,287 2,937 3,214 4,024
FP 1,229 1,189 1,147 1,073 948 1,298 1,021 211
FN 3,498 2,803 3,456 3,319 4,297 1,920 2,912 2,367
PPV 0.89 0.90 0.89 0.90 0.90 0.90 0.91 0.98
NPV 0.45 0.52 0.47 0.49 0.43 0.60 0.52 0.63
Sensitivity 0.73 0.79 0.74 0.75 0.67 0.85 0.78 0.82
Specificity 0.70 0.72 0.73 0.75 0.78 0.69 0.76 0.95
Accuracy 0.72 0.77 0.73 0.75 0.70 0.81 0.77 0.85
MCC 0.38 0.46 0.41 0.44 0.39 0.52 0.48 0.69
DOR 6.3 9.7 7.7 9.0 7.2 12.6 11.2 86.6
log(DOR) 1.84 2.27 2.04 2.20 1.97 2.53 2.42 4.46

TP, true positives; TN, true negatives; FP, false positives; FN, false negatives; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient;
DOR, diagnostic odds ratio.
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Figure 1. log(DOR) comparison between predictors using the Varibench–dbSNP [Sherry et al., 2001; Sasidharan Nair and Vihinen, 2013] dataset
(n = 17,329). X-axis, sensitivity; Y-axis, specificity; color-coded scale, log(DOR).

for PPV, NPV, sensitivity, and MCC, whereas MutationTaster 2 was
more sensitive. The DOR and log(DOR) data also demonstrated
a better efficiency for UMD-Predictor with a DOR of 86.6 versus
12.6 for the second most efficient predictor system. The log(DOR)
measures consistently demonstrated an almost 2-logs improvement
compared with other predictors as exemplified for this dataset (4.46
vs. 2.53). As shown in Figure 1, this high difference is driven by a
strong improvement in specificity with a very good sensitivity. It
is important to note that MutationTaster2 automatically annotates
variations as disease causing when marked as pathogenic in ClinVar.
Even in the situation of the ClinVar dataset, MutationTaster2 did
not perform better than UMD-Predictor (Supp. Figs. S8–S11; Supp.
Tables S7–S10).

In parallel with global statistical parameters, we evaluated the
sensitivity of the various methods to distinguish pathogenic and
nonpathogenic mutations using the receiver operating characteristic
(ROC) curve that represents the sensitivity as a function of false-
positive rate. As shown in Figure 2 and Table 2, the UMD-Predictor
ROC-AUC (area under curve) shows a significant improvement
compared with other systems (0.954 vs. 0.834 for the second most
efficient tool).

Impact of Mutations Frequency in the General Population

As indicated in Material and Methods section, the new UMD-
Predictor algorithm integrates a penalty score when a mutation
has been described at a high frequency in the human population.
Such information has already been used by other systems such as

MutationTaster, which automatically annotates mutations as poly-
morphisms if they have been reported more than four times at a
homozygous state in the 1000 genomes or HapMap projects. To as-
sess the benefit of this new parameter, we removed its value from the

Figure 2. Sensitivity of methods in distinguishing pathogenic and non-
pathogenic variants. Receiver operating characteristics (ROCs) curves
including AUC for seven predictors using the Varibench–dbSNP [Sherry
et al., 2001; Sasidharan Nair and Vihinen, 2013] dataset (n = 17,329).
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Table 2. Receiver Operating Characteristics (ROCs) Area for
Seven Predictors Using the Varibench–dbSNP [Sherry et al., 2001;
Sasidharan Nair and Vihinen, 2013] Dataset (n = 17,329)

Confidence
ROC
area

Standard
error

Min ROC
area

Max ROC
area

UMD-Predictor 0.95 0.954 0.002 0.950 0.957
SIFT 0.95 0.784 0.005 0.774 0.794
PPH2 VAR 0.95 0.826 0.004 0.819 0.834
PROVEAN 0.95 0.789 0.004 0.781 0.797
CONDEL 0.95 0.778 0.004 0.771 0.786
MUT-ASS 0.95 0.813 0.004 0.806 0.820
CADD 0.95 0.834 0.004 0.827 0.841

Min ROC area, lower bound for the confidence interval of a vector of length two;
Max ROC area, upper bound for the confidence interval of a vector of length two.
All data were generated using the “ci.cvAUC” function of the “cvAUC” package
(https://github.com/ledell/cvAUC) for the ROCR R-package [Sing et al., 2005].

Table 3. Receiver Operating Characteristics (ROCs) Area for
Seven Predictors Using the Varibench–dbSNP [Sherry et al., 2001;
Sasidharan Nair and Vihinen, 2013] Dataset (n = 17,329)

Confidence
ROC
area

Standard
error

Min ROC
area

ax ROC
area

UMD-Predictor 0.95 0.828 0.004 0.821 0.836
SIFT 0.95 0.784 0.005 0.774 0.794
PPH2 VAR 0.95 0.826 0.004 0.819 0.834
PROVEAN 0.95 0.789 0.004 0.781 0.797
CONDEL 0.95 0.778 0.004 0.771 0.786
MUT-ASS 0.95 0.813 0.004 0.806 0.820
CADD 0.95 0.834 0.004 0.827 0.841

Min ROC area, lower bound for the confidence interval of a vector of length two;
Max ROC area, upper bound for the confidence interval of a vector of length two.
All data were generated using the “ci.cvAUC” function of the “cvAUC” package
(https://github.com/ledell/cvAUC) for the ROCR R-package [Sing et al., 2005]. UMD-
Predictor values were obtained without the mutations’ frequency information.

algorithm and compared the sensitivity of methods in distinguishing
pathogenic and nonpathogenic variants. Even without adjustment
of the other parameters, the UMD-Predictor still gives the most ac-
curate predictions (0.79 vs. 0.77 for PPH2 and CADD), whereas it
is outscored by CADD for AUC of 0.828 vs. 0.834 (Fig. 3; Table 3).

WES Annotation

One of the main applications of global pathogenicity prediction
systems is the annotation of NGS data, either WES or WGS. To
assess the ability of the various systems in this context, we used data
from three clinical diagnostic exomes. Three criteria were analyzed:

Figure 3. Sensitivity of methods in distinguishing pathogenic and
nonpathogenic variants. Receiver operating characteristics (ROCs) are
shown discriminating pathogenic mutations from nonpathogenic mu-
tations defined by Varibench–dbSNP [Sherry et al., 2001; Sasidharan
Nair and Vihinen, 2013] dataset (n = 17,329). UMD-Predictor values were
obtained without the mutations’ frequency information.

the annotation processing-time (PT), the correct annotation of
disease-causing mutations, and the number of annotated potential
pathogenic variations (NV).

As shown in Table 4, the UMD-Predictor system was able to
process a VCF file of about 56,700 variations in 180 sec (from 93
to 240 sec), whereas other systems did it on average in 2,991 sec
(from 240 to 11,160sec). SIFT 5.1.1, Polyphen 2.2.2, Provean 1.1.3,
CONDEL 1.5, and CADD required a preprocessing of the VCF file
that was not taken into account in this evaluation. The availability
of Webservices reduced the analysis time to 69 sec (± 4 sec) for
UMD-Predictor when annotating extracted SNPs from VCF files,
and allowed batch submission of variants including direct analysis
of a full VCF file. In this condition, three VCF files were annotated
in 66, 68, and 74 sec.

All systems have successfully annotated six disease-causing mu-
tations found in the three patients. Nevertheless, they provided a
wide range of candidate pathogenic mutations from 540 to 3,401.
The UMD-Predictor system gave for each case the shortest list
with an average of 739 variations (from 540 to 871), whereas other

Table 4. Comparison Between UMD-Predictor and Other Prediction Tools for VCF Processing Using Three Files That Contained 58,145,
54,006, and 57,936 Variants, Respectively

SIFTa PPH2a Proveana Mutation assessora,b CONDELa,c Mutation Taster CADDa UMD-Predictor

PT1 (s) 1,200 420 3,240 540 3,000 2,100 8,700 93
PT2 (s) 240 420 8,100 960 1,500 2,340 9,360 206
PT3 (s) 540 420 4,140 600 1,500 2,340 11,160 240
NV1 1,958 2,881 1,540 1,339 1,376 2,677 3,241 871
NV2 1,341 2,350 1,332 1,049 1,111 2,437 2,555 540
NV3 1,842 2,781 1,542 1,350 1,376 3,401 3,098 807

All tests have been performed using the Web interface of each system. PT1-3, processing time in seconds for VCF files 1–3; NV1-3, number of variants predicted to be pathogenic
for VCF files 1–3.
aA preprocessing of the VCF file is required before analysis (this time has not been included in the tests).
bVCF analysis was not possible on-line; therefore, data have been generated through downloaded data.
cVCF files cannot include more than 1,000 rows; therefore, the original VCF files have been split (this time has not been included in the tests).
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predictors gave an average of 2,027 variations (from 1,049 to 3,401).
This corresponds to a reduction of 63.5% of candidate variations.

Discussion
The now widely used WES and WGS technologies produce huge

amount of variations from which only a handful are useful for ge-
netic counseling or gene discovery. Therefore, it is critical to access
variant annotations to select candidate pathogenic mutations. Un-
fortunately, this cannot be achieved through variants annotations
from central- or locus-specific databases as their content is still
limited and of heterogeneous quality. In addition, disease-causing
mutations are often private and therefore not reported. In this sit-
uation, it is necessary to rely on bioinformatics prediction systems
to annotate all variants and facilitate the critical filtration process
that should ideally result in a limited set of candidate pathogenic
mutations, as they need to be individually validated through familial
segregation and in vitro or animal models.

The UMD-Predictor system was developed to predict the
pathogenicity of all cDNA substitutions from human genes (hu-
man reference genome GRCh37), therefore allowing the pathogenic-
ity assessment of missense and synonymous mutations. To do so,
we developed a combinatorial approach that pools information at
the nucleotide level (conservation, variation frequency in the gen-
eral population), at the protein level (physicochemical properties,
global BLOSUM62 substitution matrix, conservation of the specific
residue over 100 species, and involvement in functional or struc-
tural domains), and at the mRNA level (disruption or creation of
splicing signals). This system was optimized to handle large sets of
variations resulting from NGS studies thanks to Webservices that
could be accessed in any NGS bioinformatics pipeline. It can also be
used for any variant evaluation through a user-friendly interface at
http://umd-predictor.eu.

To improve the predictions accuracy, we developed three new
features. The first one is able to quantify the impact of a given
amino acid substitution based on conservation between 100 species.
To do so, it clusters species into five groups and the conservation of a
specific residue is assessed using a window of ±3 residues. The second
one corresponds to an automatic key residue annotation system able
to extract relevant information from the Uniprot/SwissProt dataset.
Finally, the third one takes into account the frequency information
from the dbSNP data (build 138) (NCBI Resource Coordinators,
2015).

To evaluate the efficiency of this new pathogenicity prediction
system, we collected data from 141,246 annotated variations, ei-
ther pathogenic or nonpathogenic, using four reference datasets.
These datasets were then used for prediction assessment using the
seven most used and reliable prediction tools: SIFT 5.1.1 [Sim
et al., 2012], Polyphen 2.2.2 [Adzhubei et al., 2010], Provean 1.1.3
[Choi et al., 2012], Mutation Assessor 2 [Reva et al., 2011], CON-
DEL 1.5 [González-Pérez and López-Bigas, 2011], MutationTaster 2
[Schwarz et al., 2014], and CADD [Kircher et al., 2014]. All these pre-
dictors are considered as standards in silico predictive algorithms for
missense predictions by the American College of Medical Genetics
and Genomics [Richards et al., 2015]. All evaluations demonstrate
better accuracy (0.85), specificity (0.95), Matthews’ correlation co-
efficient (0.69), and DOR (86.6) for the UMD-Predictor system. If
it is well accepted that conservation between species is an important
element to highlight key residues, we believe that allele frequency
among humans could be considered as a complementary “conserva-
tion score” in a specific species. The simple removal of this criterion
demonstrates that, even if UMD-Predictor still ranks among the

best systems, this parameter is important as it may account for
up to 7% of the accuracy (0.79 vs. 0.85). This underlines that fre-
quency information in humans should be considered to improve
other pathogenicity predictions systems as already done for Muta-
tion Taster. We also believe that allele frequency in other species
might be important information to consider in the future when it
will be available.

In order for prediction systems to be efficiently integrated into
bioinformatics pipelines [Sherry et al., 2001; Pabinger et al., 2014],
they need to include the following features: compliant with the
variant call format (VCF), as accurate as possible, rapid, and pro-
grammatically accessible. To evaluate the ability of the various pre-
dictors to match these criteria, we used VCF datasets resulting
from three WES performed in a clinical diagnostic context and
for which pathogenic mutations have been confirmed. We demon-
strated that all systems were able to accurately annotate the identified
pathogenic mutations as candidate pathogenic mutations. Never-
theless, these pathogenic mutations were always part of a list of
candidate pathogenic mutations that ranged from 540 to 3,401. In
each situation, UMD-Predictor provided the shortest list of can-
didate mutations, therefore being the most accurate. These results
impacted the downstream filtration and validation processes that
were reduced by approximately 64%.

Overall, we demonstrated that a single system, using a combina-
torial prediction algorithm, could perform better than other predic-
tion systems. This pinpoints that it is not required to develop expert
systems aggregating predictions [González-Pérez and López-Bigas,
2011; Olatubosun et al., 2012] from various primary tools to im-
prove efficiency. In addition, machine-learning systems also prove
to be limited, most probably because of the current training datasets
quality/completeness. Moreover, we believe that such combinatorial
approach could be applied for the prediction of mutations impact on
other signals such as transcription factors binding sites, enhancers,
miRNA, or ultraconserved regions.

As underlined by Pabinger et al. (2014], legal issues might arise
when annotating lists of variants through on-line systems as they
do not guarantee data confidentiality. To solve this issue, once batch
analyses have been performed, corresponding files are automatically
deleted from the UMD-Predictor system and no data is stored.

As described by the American College of Medical Genetics and
Genomics [Richards et al., 2015], bioinformatics pipelines play a
pivotal role in NGS analysis. They include a multistep processing
that could result from many different programs and databases com-
binations and involves handling large amounts of data. They typi-
cally include mapping and assembly, sequence alignments, and vari-
ant calling (including SNV, structural variations, and copy-number
variations). Once SNVs have been identified, a second layer of mul-
tistep processing is initiated to annotate each variant and use several
filtration processes depending on the mode of inheritance, the dis-
ease frequency, the phenotype, and the related tissue expression
pattern. A key element of this layer is the pathogenicity prediction
step that could be obtained from different systems. UMD-Predictor
is now one of them and could rapidly become a reference system
according to its efficiency, rapidity, and easy implementation in
existing NGS pipelines through Webservices.

UMD-Predictor only predicts pathogenicity for coding SNVs. It
would be of interest to develop pathogenicity predictions for in-
frame deletions and insertions. Nevertheless, because of the paucity
of data, this remains a challenge. For exhaustive pathogenicity pre-
diction of all variation types, UMD-Predictor should be combined
with other specific systems such as the Human Splicing Finder (HSF
– http://www.umd.be/HSF3/) [Desmet et al., 2009] that is able to
predict the pathogenicity of intronic variants.
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