INTEGRAL follow-up of the gravitational wave events

Abstract : We use observations of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) to search for gamma-ray and hard X-ray emission associated with the gravitational wave events discovered during the first and the second scientific runs of Advanced LIGO and Advanced Virgo. The highly eccentric orbit of INTEGRAL ensures high duty cycle, long-term stable background, and unobstructed view of nearly the entire sky. This enables us to use a combination of INTEGRAL instruments (SPectrometer onboard INTEGRAL - Anti-Coincidence Shield (SPI-ACS), Imager on Board the INTEGRAL Satellite (IBIS), and IBIS/Veto) to search for a hard X-ray electromagnetic signal in the full high-probability sky region for almost every single LIGO trigger. INTEGRAL observations of the binary black hole (BBH) mergers GW150914, LVT151012, GW170104, and GW170814 allowes to constrain the fraction of the energy promptly released in gamma-rays in 75 keV - 2 MeV energy range in the direction of the observer down to as little as one millionth of the gravitational wave energy, in the majority of the localization region. Moreover, in the case of LVT151012 INTEGRAL high-energy imaging instruments, IBIS, SPectrometer onboard INTEGRAL (SPI), and Joint European X-Ray Monitor (JEM-X), provided the unique opportunity to search also for long-lasting electromagnetic counterparts of this event over 3 decades in energy, from 5 keV to 8 MeV. Finally, we discuss the INTEGRAL detection of the short gamma-ray burst GRB 170817A (discovered by Fermi-Gamma-ray Burst Monitor (GBM)) with a signal-to-noise ratio of 4.6, and, for the first time, its association with the gravitational waves (GWs) from binary neutron star (BNS) merging event GW170817 detected by the LIGO and Virgo observatories. The significance of association between the gamma-ray burst observed by INTEGRAL and GW170817 is 3.2 σ, while the association between the Fermi-GBM and INTEGRAL detections is 4.2 σ. GRB 170817A was detected by the SPI-ACS instrument about 2 s after the end of the gravitational wave event. We measure a fluence of 1.4±0.4±0.6×10−7 erg cm−2 (75–2000 keV), where, respectively, the statistical error is given at the 1 σ confidence level, and the systematic error corresponds to the uncertainty in the spectral model and instrument response.
Type de document :
Communication dans un congrès
7th International Fermi Symposium, Oct 2017, Garmisch-Partenkirchen, Germany. PoS, IFS2017, pp.058, 2017, 〈10.22323/1.312.0058〉
Liste complète des métadonnées
Contributeur : Inspire Hep <>
Soumis le : jeudi 21 décembre 2017 - 00:05:17
Dernière modification le : mercredi 3 octobre 2018 - 01:25:47

Lien texte intégral



V. Savchenko, C. Ferrigno, E. Kuulkers, A. Bazzano, E. Bozzo, et al.. INTEGRAL follow-up of the gravitational wave events. 7th International Fermi Symposium, Oct 2017, Garmisch-Partenkirchen, Germany. PoS, IFS2017, pp.058, 2017, 〈10.22323/1.312.0058〉. 〈hal-01669696〉



Consultations de la notice