A comparison of methods for delineation of wave boundaries in 12 Lead ECG
Pauline Guyot, Pascal Voiriot, Stéphane Papelier, Levy Batista, Thierry Bastogne

To cite this version:

HAL Id: hal-01669454
https://hal.archives-ouvertes.fr/hal-01669454
Submitted on 20 Dec 2017
A comparison of methods for delineation of wave boundaries in 12 Lead ECG
Pauline Guyot1,3, Pascal Voiriot4, Stéphane Papelier1, Levy Batista1,3, Thierry Bastogne1,2,3
1CRAN, 2INRIA BIGS, 3CYBERnano, 4Banook CARDIABASE

Objective: In the diagnosis of cardiac diseases, the delineation of electrocardiogram is crucial in order to efficiently classify cardiac events. Delineation consists in detecting the different peaks and boundaries of the QRS-complex, P-wave and T-wave. Several techniques have been proposed to face this issue. The objective is to assess the detection performances of a recent approach (non-negative matrix factorization) that has never been applied to ECG delineation and to compare its results with three known methods: morphological approach, discrete wavelet transform and difference operation method.

Database
The data are composed of 516 original 12 Lead ECGs of 10 seconds coming from Banook database. All signals have been reviewed and annotated by cardiologists. The dataset combines normal cardiac activity but also a variety of cardiac arrhythmia.

Methods & results
The three known methods proceede the same way:
(i) Mathematical transformation (with morphological computing, DWT transform or difference operation),
(ii) Dynamic or static thresholding for each waves
(iii) Check with a-priori information

Non-negative matrix factorization is a method of blind source separation (BSS) which allow to recover source signals from signal mixture without any information on the model. The only constraint is the non-negativity of the signals. In our case, we use the spectral information.

First source concentrates only R-peaks whereas second source focuses on P and T-waves and a part of QRS complexes. As the spectral density of QRS complexes and other waves overlap, it is normal not to exactly separate QRS and non-QRS parts.

<table>
<thead>
<tr>
<th>Methods</th>
<th>P-wave onset</th>
<th>T-wave offset</th>
<th>QRS onset</th>
<th>R peak</th>
<th>QRS offset</th>
<th>Time of execution</th>
<th>QT interval</th>
<th>QRS interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological approach</td>
<td>0.082 ± 6.178</td>
<td>-0.104 ± 11.092</td>
<td>-0.550 ± 4.856</td>
<td>0.416 ± 1.824</td>
<td>-0.078 ± 7.278</td>
<td>0.2677 (seconds)</td>
<td>0.446 ± 12.10</td>
<td>-0.472 ± 8.749</td>
</tr>
<tr>
<td>DWT approach</td>
<td>1.688 ± 7.556</td>
<td>0.674 ± 17.008</td>
<td>0.612 ± 4.260</td>
<td>0.568 ± 2.018</td>
<td>0.704 ± 6.886</td>
<td>0.1257 (seconds)</td>
<td>0.062 ± 17.53</td>
<td>-0.092 ± 8.097</td>
</tr>
<tr>
<td>Difference operation method</td>
<td>-</td>
<td>-</td>
<td>0.108 ± 4.665</td>
<td>0.636 ± 5.998</td>
<td>0.724 ± 7.060</td>
<td>0.3967 (seconds)</td>
<td>-</td>
<td>-0.616 ± 8.462</td>
</tr>
<tr>
<td>NMF</td>
<td>0.522 ± 36.12</td>
<td>0.298 ± 29.06</td>
<td>0.825 ± 11.916</td>
<td>0.016 ± 1.247</td>
<td>-1.084 ± 21.20</td>
<td>2.5518 (seconds)</td>
<td>-0.527 ± 31.40</td>
<td>1.909 ± 24.31</td>
</tr>
</tbody>
</table>

Tab. 1: Error between cardiologists annotations and algorithms’ results (in milliseconds) and time of execution (in Matlab R2017a)

Main issues with NMF:
• Nonuniqueness property of NMF (reconstructed signals can vary significantly)
• Time consuming
• Blind source separator (can separate R peaks from non-QRS parts but also noise from meaningful signal, necessity of a supervisor)

Conclusion
Delineation of R-peaks is the easiest target to be accomplished, whereas the delineation of non-QRS parts (P-wave and T-wave fiducial points) is the most challenging issue for all methods. Improved techniques of NMF have to be investigated but first results show the feasibility of this method.