D. A. Brown and E. London, FUNCTIONS OF LIPID RAFTS IN BIOLOGICAL MEMBRANES, Annual Review of Cell and Developmental Biology, vol.14, issue.1
DOI : 10.1146/annurev.cellbio.14.1.111

D. Lingwood and K. Simons, Lipid Rafts As a Membrane-Organizing Principle, Science, vol.5, issue.8, pp.46-50, 2010.
DOI : 10.1038/ncb0803-684

A. Kusumi, C. Nakada, K. Ritchie, K. Murase, K. Suzuki et al., Paradigm Shift of the Plasma Membrane Concept from the Two-Dimensional Continuum Fluid to the Partitioned Fluid: High-Speed Single-Molecule Tracking of Membrane Molecules, Annual Review of Biophysics and Biomolecular Structure, vol.34, issue.1, pp.351-378, 2005.
DOI : 10.1146/annurev.biophys.34.040204.144637

K. Gowrishankar, S. Ghosh, S. C. Saha, R. Mayor, S. Rao et al., Active Remodeling of Cortical Actin Regulates Spatiotemporal Organization of Cell Surface Molecules, Cell, vol.149, issue.6, pp.1353-1367, 2012.
DOI : 10.1016/j.cell.2012.05.008

E. Sezgin, I. Levental, S. Mayor, and C. Eggeling, The mystery of membrane organization: composition, regulation and roles of lipid rafts, Nature Reviews Molecular Cell Biology, vol.4, issue.6, pp.361-374, 2017.
DOI : 10.1074/jbc.M500247200

K. Simons, E. Ikonen, S. Mayor, and M. Rao, Functional rafts in cell membranes, Nature, vol.128, issue.6633, pp.569-576, 1997.
DOI : 10.1083/jcb.128.6.1043

T. S. Van-zanten, A. Cambi, M. Koopman, B. Joosten, C. G. Figdor et al., Hotspots of GPI-Anchored Proteins and Integrin Nanoclusters Function (21), Lipid Rafts: At a Crossroad between Cell Biology and Physics, pp.7-14, 2007.

C. Eggeling, C. Ringemann, R. Medda, G. Schwarzmann, K. Sandhoff et al., Direct observation of the nanoscale dynamics of membrane lipids in a living cell, Nature, vol.3, issue.7233, pp.1159-1162, 2009.
DOI : 10.1038/nature07596

E. Klotzsch and G. J. Schütz, A critical survey of methods to detect plasma membrane rafts, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.30, issue.52, 2013.
DOI : 10.1016/S0091-679X(08)60982-6

S. J. Singer and G. L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes, Science, vol.175, issue.4023, p.720, 1972.
DOI : 10.1126/science.175.4023.720

D. Goswami, K. Gowrishankar, S. Bilgrami, S. Ghosh, R. Raghupathy et al., Nanoclusters of GPI-Anchored Proteins Are Formed by Cortical Actin-Driven Activity, Cell, vol.135, issue.6, pp.1085-1097, 2008.
DOI : 10.1016/j.cell.2008.11.032

T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi, Phospholipids undergo hop diffusion in compartmentalized cell membrane, The Journal of Cell Biology, vol.10, issue.6, pp.1071-1082, 2002.
DOI : 10.1083/jcb.103.1.215

URL : http://jcb.rupress.org/content/jcb/157/6/1071.full.pdf

P. Lajoie, J. G. Goetz, J. W. Dennis, and I. R. Nabi, Lattices, rafts, and scaffolds: domain regulation of receptor signaling at the plasma membrane, The Journal of Cell Biology, vol.185, issue.3, pp.381-385, 2009.
DOI : 10.1074/jbc.M800015200

A. B. Subramaniam, G. Guidotti, V. N. Manoharan, and H. A. Stone, Glycans pattern the phase behaviour of lipid membranes, Nature Materials, vol.132, issue.2, pp.128-133, 2012.
DOI : 10.1021/ja100294k

J. Groves, Cell membranes: Glycans' imprints, Nature Materials, vol.12, issue.2, pp.96-97, 2013.
DOI : 10.1021/la060390o

M. F. Garcia-parajo, A. Cambi, J. A. Torreno-pina, N. Thompson, and K. Jacobson, Nanoclustering as a dominant feature of plasma membrane organization, Journal of Cell Science, vol.127, issue.23, pp.4995-5005, 2014.
DOI : 10.1242/jcs.146340

C. M. Blouin, Y. Hamon, P. Gonnord, C. Boularan, J. Kagan et al., Glycosylation-Dependent IFN-??R Partitioning in Lipid and Actin Nanodomains Is Critical for JAK Activation, Cell, vol.166, issue.4, pp.920-934
DOI : 10.1016/j.cell.2016.07.003

URL : https://hal.archives-ouvertes.fr/hal-01438171

C. Dietrich, L. A. Bagatolli, Z. N. Volovyk, N. L. Thompson, M. Levi et al., Lipid Rafts Reconstituted in Model Membranes, Lipid Rafts Reconstituted in Model Membranes, pp.1417-1428, 2001.
DOI : 10.1016/S0006-3495(01)76114-0

URL : https://doi.org/10.1016/s0006-3495(01)76114-0

S. L. Veatch and S. L. Keller, Organization in Lipid Membranes Containing Cholesterol, Physical Review Letters, vol.40, issue.26, 2002.
DOI : 10.1016/0962-8924(96)20016-9

N. Kahya, D. Scherfeld, K. Bacia, B. Poolman, and P. Schwille, Probing Lipid Mobility of Raft-exhibiting Model Membranes by Fluorescence Correlation Spectroscopy, Journal of Biological Chemistry, vol.80, issue.30
DOI : 10.1146/annurev.biophys.32.110601.141704

S. Chiantia, J. Ries, N. Kahya, and P. Schwille, Combined AFM and Two-Focus SFCS Study of Raft-Exhibiting Model Membranes, ChemPhysChem, vol.10, issue.11, pp.2409-2418, 2006.
DOI : 10.1146/annurev.bi.64.070195.003023

K. Simons and W. L. Vaz, Model Systems, Lipid Rafts, and Cell Membranes, Annual Review of Biophysics and Biomolecular Structure, vol.33, issue.1, pp.269-295, 2004.
DOI : 10.1146/annurev.biophys.32.110601.141803

L. K. Tamm and H. M. Mcconnell, Supported phospholipid bilayers, Biophysical Journal, vol.47, issue.1, pp.105-113, 1985.
DOI : 10.1016/S0006-3495(85)83882-0

URL : https://doi.org/10.1016/s0006-3495(85)83882-0

E. Sezgin, H. Kaiser, T. Baumgart, P. Schwille, and K. Simons, Elucidating membrane structure and protein behavior using giant plasma membrane vesicles, Nature Protocols, vol.259, issue.6, pp.1042-1051, 2012.
DOI : 10.1529/biophysj.104.040519

T. Baumgart, A. T. Hammond, P. Sengupta, S. T. Hess, D. A. Holowka et al., Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles, Proc. Natl. Acad. Sci, pp.3165-3170, 2007.
DOI : 10.1146/annurev.biophys.32.110601.141803

D. Lingwood, J. Ries, P. Schwille, and K. Simons, Plasma membranes are poised for activation of raft phase coalescence at physiological temperature, Proc. Natl. Acad
DOI : 10.1083/jcb.140.6.1357

A. T. Hammond, F. A. Heberle, T. Baumgart, D. Holowka, B. Baird et al., Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes, Proc. Natl. Acad. Sci. U
DOI : 10.1016/S0092-8674(03)00882-1

A. K. Kenworthy, T. J. Mcintosh, and . Ed, Fluorescence Recovery After Photobleaching Studies of Lipid Rafts In Lipid Rafts, pp.179-192, 2007.

Y. Chen, B. C. Lagerholm, B. Yang, and K. Jacobson, Methods to measure the lateral diffusion of membrane lipids and proteins, Methods, vol.39, issue.2
DOI : 10.1016/j.ymeth.2006.05.008

. Organ, Protein-Lipid Interact, pp.147-153, 2006.

C. Dietrich, B. Yang, T. Fujiwara, A. Kusumi, and K. Jacobson, Relationship of Lipid Rafts to Transient Confinement Zones Detected by Single Particle Tracking, Biophysical Journal, vol.82, issue.1
DOI : 10.1016/S0006-3495(02)75393-9

K. Bacia, S. A. Kim, and P. Schwille, Fluorescence cross-correlation spectroscopy in living cells, Nature Methods, vol.72, issue.2, pp.83-89, 2006.
DOI : 10.1038/nmeth822

H. He and D. Marguet, Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy, Annual Review of Physical Chemistry, vol.62, issue.1, pp.417-436, 2011.
DOI : 10.1146/annurev-physchem-032210-103402

URL : https://hal.archives-ouvertes.fr/hal-00609599

S. Maiti, U. Haupts, and W. W. Webb, Fluorescence correlation spectroscopy: Diagnostics for sparse molecules, Proc. Natl. Acad. Sci, pp.11753-11757, 1997.
DOI : 10.1016/S0006-3495(95)80230-4

URL : http://www.pnas.org/content/94/22/11753.full.pdf

L. Wawrezinieck, H. Rigneault, D. Marguet, and P. Lenne, Fluorescence Correlation Spectroscopy Diffusion Laws to Probe the Submicron Cell Membrane Organization, Biophysical Journal, vol.89, issue.6, pp.4029-4042, 2005.
DOI : 10.1529/biophysj.105.067959

URL : https://hal.archives-ouvertes.fr/hal-00078613

V. Ruprecht, S. Wieser, D. Marguet, and G. J. Schütz, Spot Variation Fluorescence Correlation Spectroscopy Allows for Superresolution Chronoscopy of Confinement Times in Membranes, Biophysical Journal, vol.100, issue.11, pp.2839-2845, 2011.
DOI : 10.1016/j.bpj.2011.04.035

URL : https://hal.archives-ouvertes.fr/hal-00611626

S. M. Soudja, P. Lenne, H. Rigneault, and D. Olive, Raft Nanodomains Contribute to Akt/PKB Plasma Membrane Recruitment and Activation, pp.4-538, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00318983

K. Simons and M. J. Gerl, Revitalizing membrane rafts: new tools and insights, Nature Reviews Molecular Cell Biology, vol.74, issue.10, pp.688-699, 2010.
DOI : 10.1091/mbc.10.4.1043

S. T. Hess, T. P. Girirajan, and M. D. Mason, Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy, Biophysical Journal, vol.91, issue.11, pp.4258-4272, 2006.
DOI : 10.1529/biophysj.106.091116

URL : https://doi.org/10.1529/biophysj.106.091116

M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nature Methods, vol.127, issue.10, pp.793-796, 2006.
DOI : 10.1038/nmeth929

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2700296/pdf

S. W. Hell and J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Optics Letters, vol.19, issue.11, pp.780-782, 1994.
DOI : 10.1364/OL.19.000780

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad
DOI : 10.1126/science.7770772

URL : http://www.pnas.org/content/97/15/8206.full.pdf

J. Hwang, L. A. Gheber, L. Margolis, and M. Edidin, Domains in Cell Plasma Membranes Investigated by Near-Field Scanning Optical Microscopy, Biophysical Journal, vol.74, issue.5, pp.2184-2190, 1998.
DOI : 10.1016/S0006-3495(98)77927-5

URL : https://doi.org/10.1016/s0006-3495(98)77927-5

D. Lange, F. Cambi, A. Huijbens, R. De-bakker, B. Rensen et al., Cell Biology beyond the Diffraction Limit: Near-Field Scanning Optical Microscopy, J. Cell Sci, vol.114, pp.4153-4160, 2001.

T. S. Van-zanten, A. Cambi, and M. F. Garcia-parajo, A nanometer scale optical view on the compartmentalization of cell membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.4, pp.1798-777, 2010.
DOI : 10.1016/j.bbamem.2009.09.012

M. Leutenegger, S. Polyakova, V. N. Belov, S. W. Hell, and C. Eggeling, STED Nanoscopy Reveals Molecular Details of Cholesterol-and Cytoskeleton-Modulated Lipid Interactions in Living Cells, Biophys. J, vol.101, pp.1651-1660, 2011.

A. Honigmann, V. Mueller, S. W. Hell, and C. Eggeling, STED microscopy detects and quantifies liquid phase separation in lipid membranes using a new far-red emitting fluorescent phosphoglycerolipid analogue, Faraday Discuss., vol.134, pp.77-89, 2013.
DOI : 10.1016/S0030-4018(96)00384-7

A. Honigmann, V. Mueller, H. Ta, A. Schoenle, E. Sezgin et al., Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells, Nature Communications, vol.591, pp.2014-5412
DOI : 10.1038/nprot.2012.059

C. Manzo and M. F. Garcia-parajo, A review of progress in single particle tracking: from methods to biophysical insights, Reports on Progress in Physics, vol.78, issue.12, p.78, 2015.
DOI : 10.1088/0034-4885/78/12/124601

J. Ortega-arroyo and P. Kukura, Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy, Physical Chemistry Chemical Physics, vol.98, issue.45
DOI : 10.1016/j.bpj.2010.01.011

E. Garanger, S. Lecommandoux, and I. D. Alves, Visualization of Lipids and Proteins at High Spatial and Temporal Resolution via Interferometric Scattering (iSCAT) Microscopy, J. Phys. Appl. Phys, pp.49-274002, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01372499

H. Wu, Y. Lin, T. Yen, and C. Hsieh, Nanoscopic Substructures of Raft- Mimetic Liquid-Ordered Membrane Domains Revealed by High-Speed Single- Particle Tracking. Sci, 2016.

P. Holzmeister, G. P. Acuna, D. Grohmann, and P. Tinnefeld, Breaking the concentration limit of optical single-molecule detection, Chem. Soc. Rev., vol.7, issue.4, pp.1014-1028, 2014.
DOI : 10.1021/nl071855d

J. Wenger, Plasmonic Antennas and Zero-Mode Waveguides to Enhance Single Molecule Fluorescence Detection and Fluorescence Correlation Spectroscopy toward Physiological Concentrations, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2014, vol.6, pp.268-282
URL : https://hal.archives-ouvertes.fr/hal-01009138

J. Wenger and H. Rigneault, Photonic Methods to Enhance Fluorescence Correlation Spectroscopy and Single Molecule Fluorescence Detection, International Journal of Molecular Sciences, vol.323, issue.1, pp.206-221, 2010.
DOI : 10.1126/science.1162986

URL : https://hal.archives-ouvertes.fr/hal-00447146

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead et al., Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations, Science, vol.299, issue.5607, p.682, 2003.
DOI : 10.1126/science.1079700

C. Genet and T. W. Ebbesen, Light in tiny holes, Nature, vol.95, issue.7123, pp.39-46, 2007.
DOI : 10.1103/PhysRevLett.95.170406

J. M. Moran-mirabal and H. G. Craighead, Zero-mode waveguides: Sub-wavelength nanostructures for single molecule studies at high concentrations, Methods, vol.46, issue.1
DOI : 10.1016/j.ymeth.2008.05.010

K. T. Samiee, J. M. Moran-mirabal, Y. K. Cheung, and H. G. Craighead, Zero Mode Waveguides for Single-Molecule Spectroscopy on Lipid Membranes, Biophysical Journal, vol.90, issue.9, pp.3288-3299, 2006.
DOI : 10.1529/biophysj.105.072819

URL : https://doi.org/10.1529/biophysj.105.072819

J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. Lenne, Single-Fluorophore Diffusion in a Lipid Membrane over a Subwavelength Aperture, Journal of Biological Physics, vol.175, issue.1, pp.1-4, 2006.
DOI : 10.1007/s10867-006-2909-x

URL : https://hal.archives-ouvertes.fr/hal-00079116

J. B. Edel, M. Wu, B. Baird, and H. G. Craighead, High Spatial Resolution Observation of Single-Molecule Dynamics in Living Cell Membranes, Biophysical Journal, vol.88, issue.6, pp.43-45, 2005.
DOI : 10.1529/biophysj.105.061937

M. Jose, A. J. Moran-mirabal, K. T. Torres, . Samiee, A. Barbara et al., Cell Investigation of Nanostructures: Zero-Mode Waveguides for Plasma Membrane Studies with Single Molecule Resolution, Nanotechnology, vol.18, 2007.

C. I. Richards, K. Luong, R. Srinivasan, S. W. Turner, D. A. Dougherty et al., Live-Cell Imaging of Single Receptor Composition Using Zero-Mode Waveguide Nanostructures, Nano Letters, vol.12, issue.7, pp.3690-3694, 2012.
DOI : 10.1021/nl301480h

H. Rigneault, D. Marguet, and P. Lenne, Diffusion Analysis within Single Nanometric Apertures Reveals the Ultrafine Cell Membrane Organization, Biophys. J, vol.92, pp.913-919, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00124704

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault et al., Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals, Physical Review B, vol.24, issue.4, p.45413, 2008.
DOI : 10.1007/s11468-007-9041-z

C. V. Kelly, B. A. Baird, and H. G. Craighead, An Array of Planar Apertures for Near-Field Fluorescence Correlation Spectroscopy, Biophysical Journal, vol.100, issue.7, pp.34-36, 2011.
DOI : 10.1016/j.bpj.2011.02.034

C. V. Kelly, D. L. Wakefield, D. A. Holowka, H. G. Craighead, and B. A. Baird, Near-Field Fluorescence Cross-Correlation Spectroscopy on Planar Membranes, ACS Nano, vol.8, issue.7, pp.7392-7404, 2014.
DOI : 10.1021/nn502593k

URL : http://doi.org/10.1021/nn502593k

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White et al., Plasmonics for extreme light concentration and manipulation, Nature Materials, vol.91, issue.3, pp.193-204, 2010.
DOI : 10.1080/09500349608232782

L. Novotny and N. Van-hulst, Antennas for light, Nature Photonics, vol.4, issue.2, pp.83-90, 2011.
DOI : 10.1038/nphoton.2010.90

P. Biagioni, J. Huang, and B. Hecht, Nanoantennas for visible and infrared radiation, Reports on Progress in Physics, vol.75, issue.2, pp.75-024402, 2012.
DOI : 10.1088/0034-4885/75/2/024402

URL : http://arxiv.org/pdf/1103.1568

N. J. Halas, S. Lal, W. Chang, S. Link, and P. Nordlander, Plasmons in Strongly Coupled Metallic Nanostructures, Plasmons in Strongly Coupled Metallic Nanostructures, pp.3913-3961, 2011.
DOI : 10.1021/cr200061k

A. Koenderink, Single-Photon Nanoantennas, ACS Photonics, vol.4, issue.4, pp.710-722, 2017.
DOI : 10.1021/acsphotonics.7b00061

URL : http://doi.org/10.1021/acsphotonics.7b00061

G. P. Acuna, F. M. Moller, P. Holzmeister, S. Beater, B. Lalkens et al., Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas, Science, vol.106, issue.20, pp.506-510, 2012.
DOI : 10.1073/pnas.0811875106

P. Tinnefeld, DNA Origami Nanoantennas with over 5000-Fold Fluorescence Enhancement and Single-Molecule Detection at 25 ?M, Nano Lett. 2015, vol.15, pp.8354-8359

H. Yuan, S. Khatua, and P. Zijlstra, Thousand-Fold Enhancement of Single-Molecule Fluorescence Near a Single Gold Nanorod

S. Khatua, P. M. Paulo, H. Yuan, A. Gupta, P. Zijlstra et al., Resonant Plasmonic Enhancement of Single-Molecule Fluorescence by Individual Gold Nanorods, ACS Nano, vol.8, issue.5, pp.4440-4449, 2014.
DOI : 10.1021/nn406434y

T. Lohmüller, L. Iversen, M. Schmidt, C. Rhodes, H. Tu et al., Single Molecule Tracking on Supported Membranes with Arrays of Optical Nanoantennas, Nano Letters, vol.12, issue.3, pp.1717-1721, 2012.
DOI : 10.1021/nl300294b

J. Brugger, Large-Scale Arrays of Bowtie Nanoaperture Antennas for Nanoscale Dynamics in Living Cell Membranes, Nano Lett, vol.2015, issue.15, pp.4176-4182

J. D. Flynn, B. L. Haas, and J. S. Biteen, Plasmon-Enhanced Fluorescence from Single Proteins in Living Bacteria, The Journal of Physical Chemistry C, vol.120, issue.37, pp.20512-20517, 2016.
DOI : 10.1021/acs.jpcc.5b08049

M. West, S. Cabrini, M. Fleischer, and N. F. Van-hulst, Roadmap on Biosensing and Photonics with Advanced Nano-Optical Methods, J. Opt, vol.18, p.63003, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01314274

L. Tallerico, R. Valpapuram, I. Tirinato, L. Das, and G. , Microfluidic Device for Continuous Single Cells Analysis via Raman Spectroscopy Enhanced by Integrated Plasmonic Nanodimers, Opt. Express, vol.24, pp.180-190, 2016.

G. Perozziello, R. Proietti-zaccaria, J. S. Gongora, and S. Alrasheed, Detection of Single Amino Acid Mutation in Human Breast Cancer by Disordered Plasmonic Self-Similar Chain. Sci, 2015.

L. Langguth and A. Koenderink, Simple model for plasmon enhanced fluorescence correlation spectroscopy, Optics Express, vol.22, issue.13, pp.15397-15409, 2014.
DOI : 10.1364/OE.22.015397

L. C. Estrada, P. F. Aramendía, and O. Martínez, 10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas, Optics Express, vol.16, issue.25, pp.20597-20602, 2008.
DOI : 10.1364/OE.16.020597

C. A. Marquette and P. Perriat, Fluorescence Correlation Spectroscopy near Individual Gold Nanoparticle, Chem. Phys. Lett, vol.503, pp.256-261, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00673913

G. Lu, J. Liu, T. Zhang, W. Li, L. Hou et al., Plasmonic near-field in the vicinity of a single gold nanoparticle investigated with fluorescence correlation spectroscopy, Nanoscale, vol.90, issue.11, pp.3359-3364, 2012.
DOI : 10.1529/biophysj.105.079442

D. Punj, J. De-torres, H. Rigneault, and J. Wenger, Gold nanoparticles for enhanced single molecule fluorescence analysis at micromolar concentration, Optics Express, vol.21, issue.22, p.27338, 2013.
DOI : 10.1364/OE.21.027338

URL : https://hal.archives-ouvertes.fr/hal-00881706

S. Khatua, H. Yuan, and M. Orrit, Enhanced-fluorescence correlation spectroscopy at micro-molar dye concentration around a single gold nanorod, Physical Chemistry Chemical Physics, vol.93, issue.33, pp.21127-21132, 2015.
DOI : 10.1021/cr00017a018

. Spectrosc and . Curr, Status Perspect, pp.3-8, 2012.

). Choudhury, S. Ray, K. Lakowicz, and J. R. , Silver Nanostructures for Fluorescence Correlation Spectroscopy: Reduced Volumes and Increased Signal Intensities, The Journal of Physical Chemistry Letters, vol.3, issue.19
DOI : 10.1021/jz301229m

B. Pradhan, S. Khatua, A. Gupta, T. Aartsma, G. Canters et al., Gold-Nanorod-Enhanced Fluorescence Correlation Spectroscopy of Fluorophores with High Quantum Yield in Lipid Bilayers, The Journal of Physical Chemistry C, vol.120, issue.45, pp.25996-26003, 2016.
DOI : 10.1021/acs.jpcc.6b07875

P. Ghenuche, J. De-torres, S. B. Moparthi, V. Grigoriev, and J. Wenger, Nanophotonic Enhancement of the F??rster Resonance Energy-Transfer Rate with Single Nanoapertures, Nano Letters, vol.14, issue.8, pp.4707-4714, 2014.
DOI : 10.1021/nl5018145

V. Flauraud, R. Regmi, P. M. Winkler, D. T. Alexander, H. Rigneault et al., In-Plane Plasmonic Antenna Arrays with Surface Nanogaps for Giant Fluorescence Enhancement, Nano Letters, vol.17, issue.3, pp.1703-1710
DOI : 10.1021/acs.nanolett.6b04978

URL : https://hal.archives-ouvertes.fr/hal-01490253

M. F. García-parajo, Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas, ACS Nano, vol.11, pp.7241-7250, 2017.

D. A. Brown, Seeing is believing: Visualization of rafts in model membranes, Proc. Natl. Acad. Sci, pp.10517-10518, 2001.
DOI : 10.1016/S0962-8924(98)01495-0

L. A. Bagatolli and E. Gratton, Two Photon Fluorescence Microscopy of Coexisting Lipid Domains in Giant Unilamellar Vesicles of Binary Phospholipid Mixtures, Biophysical Journal, vol.78, issue.1, pp.290-305, 2000.
DOI : 10.1016/S0006-3495(00)76592-1

T. Yasuda, H. Tsuchikawa, M. Murata, and N. Matsumori, Deuterium NMR of Raft Model Membranes Reveals Domain-Specific Order Profiles and Compositional Distribution, Biophysical Journal, vol.108, issue.10, pp.2502-2506, 2015.
DOI : 10.1016/j.bpj.2015.04.008

T. Apajalahti, P. Niemela, P. N. Govindan, M. S. Miettinen, E. Salonen et al., Vattulainen, I. Concerted Diffusion of Lipids in Raft-like Membranes. Faraday Discuss, pp.411-430, 2010.

A. J. Sodt, M. L. Sandar, K. Gawrisch, R. W. Pastor, and E. Lyman, The Molecular Structure of the Liquid-Ordered Phase of Lipid Bilayers, Journal of the American Chemical Society, vol.136, issue.2, pp.725-732, 2014.
DOI : 10.1021/ja4105667

A. J. Sodt, R. W. Pastor, and E. Lyman, Hexagonal Substructure and Hydrogen Bonding in Liquid-Ordered Phases Containing Palmitoyl Sphingomyelin, Biophysical Journal, vol.109, issue.5, pp.948-955, 2015.
DOI : 10.1016/j.bpj.2015.07.036

URL : https://doi.org/10.1016/j.bpj.2015.07.036

J. R. Silvius, Fluorescence Energy Transfer Reveals Microdomain Formation at Physiological Temperatures in Lipid Mixtures Modeling the Outer Leaflet of the Plasma Membrane, Biophysical Journal, vol.85, issue.2, pp.1034-1045, 2003.
DOI : 10.1016/S0006-3495(03)74542-1

R. F. Almeida, L. M. Loura, A. Fedorov, and M. Prieto, Lipid Rafts have Different Sizes Depending on Membrane Composition: A Time-resolved Fluorescence Resonance Energy Transfer Study, Journal of Molecular Biology, vol.346, issue.4, pp.1109-1120, 2005.
DOI : 10.1016/j.jmb.2004.12.026

D. V. Nicolau, K. Burrage, R. G. Parton, and J. Hancock, Identifying Optimal Lipid Raft Characteristics Required To Promote Nanoscale Protein-Protein Interactions on the Plasma Membrane, Molecular and Cellular Biology, vol.26, issue.1, pp.313-323, 2006.
DOI : 10.1128/MCB.26.1.313-323.2006