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Abstract

In this paper, I propose a simple ordered model for categoriza-

tion theory. When a concept is grasped through an auxiliary set of

features, stemming from a description of the concept or from a resem-

blance to some typical exemplars, categorial membership, typicality

and resemblance can be accounted for by means of weak order rela-

tions. These orders render precise the notion of an object ‘falling more’

than another under this concept, being ‘a more typical exemplar’ or

‘resembling more’ this concept. The membership and typicality orders

can be naturally extended to compound concepts, without the draw-

backs that are classically encountered in conjunction theory. More-

over, these orders reveal themselves to be a particularly adequate tool

for the resolution of problems linked with category-based induction.

Keywords categorization, prototype theory, categorial membership, typi-
cality, deep learning, category-based induction, resemblance theory.

1 Introduction

How do we form concepts ? What makes us decide that di↵erent objects
may be gathered under a common label ? And once this label has been
set, how do we account for its adequacy for new items ? These questions
stand at the root of all problems concerning the categorization process. Sev-
eral models has been proposed since the primitive formalism of Frege (Frege,
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1879) in which concepts were assimilated with simple one-place predicates.
Apart from letting aside the problem of typicality, this view reduced cate-
gorization to an all-or-nothing process that only two-valued truth functions
could account for. After the work of Eleanor Rosch however, it appeared
that categorial membership and typicality should be evaluated by more so-
phisticated tools: degrees functions (Rosch, 1975), membership functions
(Zadeh, 1965), geometrical measures (Gärdenfors, 2000), or quantum me-
chanics (Aerts, 2009). In this perspective several models were proposed, all
aiming at a unified quantitative theory for categorization.

My approach di↵ers from the preceding ones, in that I consider categorial
membership and typicality as comparative notions. As I argued in (Freund,
2008) and (Freund, 2014), the relative strength with which a concept applies
to an object is best accounted for by a (pre)order relation among the objects
of the universe. To take an example, an agent may be unable to assign a
precise birdhood degree to a bat or to a tortoise, while ready to attribute
more birdhood to one of these items than to the other. Similarly, one may
consider the duck as a more typical exemplar of a bird than the penguin,
without having an idea of what their typical degree could be.

In this framework, every concept endows the agent’s universe of discourse
with a couple of conceptual orders. The first one, the membership order,
compares the strength with which a concept applies to the objects of the
universe. It may be seen as a way of comparing objects that do not necessar-
ily fall under the concept. The second one, the typicality order, is meant to
compare the relative typicality of the exemplars of the concept. The knowl-
edge of these two orders is equivalent to that of the associated concept: two
concepts agree if and only if they have same membership order and same
typicality order. hotel plein ciel

The determination of the conceptual orders is not always possible. In
(Freund, 2008) and (Freund, 2009), an explicit construction was proposed
for concepts that belonged to a specific class - the family of constructible
concepts. However, this construction su↵ered from two drawbacks: first,
the set of constructible concepts is di�cult to circumscribe, as it rests on
the di↵erence between sharp and vague concepts. Second, the construction
of the membership and the typicality orders required the use of recursively
defined degree functions, thus contradicting the philosophy of a supposedly
purely comparative theory. The aim of the present paper is to remedy these
failures and propose, for a su�ciently large family of concepts, a coherent
and general theory based on natural conceptual orders, su�ciently robust to
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address the principal problems encountered in categorization theory.
This paper is organized as follows: in Section 2, the di↵erence between

concepts and features is evoked and discussed. This leads to the notion
of featured concepts, which is central in this paper. A construction of the
membership order, based on the defining feature set for simple concepts, is
then developed in Section 3. This order gives rise to an auxiliary definition
of membership degree. Membership orders and degrees can be extended to
the class of compound concepts obtained through the determination operator;
this provides an interesting framework for the study of the conjunction e↵ect.
Section 4 deals with typicality for simple and compound concepts, while
questions linked with resemblance theory are discussed in Section 5. All these
notions being settled, it is then possible to tackle some classical problems
linked with category-based induction: this is the object of Section 6.

.

2 Featured concepts

2.1 Back to the attributional theory

The classical theory of categorization viewed concepts as theoretical objects
that could be defined by a certain number of properties: vertebrates that
have beak and feathers were labelled birds, a car could be defined as a road
vehicle powered by an engine able to carry a small number of persons, and
democracy was a system of government by all the eligible members of a state.
In this perspective, where each concept was endowed with a set of attributes,
categorization relative to a concept boiled down to categorization relative to
its features. This attributional view was advocated by some authors in the
late seventies (Smith, Shoben, & Rips, 1974) and (Smith & Medin, 1981).
It gave rise to the so-called binary model, in which two auxiliary sets are
attached to a concept. On the one hand, the defining feature set provided
the conditions that an item should satisfy in order to fall under a given
concept; on the other hand, the characteristic set listed the features that an
object should have to be qualified as a typical instance of this concept. Given
for instance the concept to-be-a-fruit, one may take as defining feature set the
set consisting of the two elements to-be-a-vegetable and to-heave-seeds, while
the characteristic set would include features like to-grow-on-trees, to-be-sweet,
to-be-raw-edible, to-yield-juice.
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The attributional theory was thereafter rejected by most researchers, as
it appeared that concepts defined by a conjunction of features formed an
exceptional subclass. Fodor for instance (Fodor, 1998) argued that there
exists practically no examples of successful definition around. Without being
so radical, it is clear that a great deal of concepts are deprived of any set of
defining features: what list of attributes could be attached for concepts like
to-be-a-citrus fruit, to-be-a-lie, or to-be-a-heap ? However, in spite of this, it
appears that the attributional view is justified for certain well-defined families
of concepts: such is for instance the case for most nominal concepts, i.e.
concepts that are conventionally defined, like to-be-a-mammal, to-be-a-theft
or to-be-a-refugee. In particular, this remains true for scientific concepts, like
to-be-a-vortex or to-be-a-square. Furthermore, it may happen that a concept,
first grasped through its exemplars, is thereafter sharpened with the help of
a set of defining features: thus, the concept to-be-a-bird, a natural kind
concept, was revisited by naturalists and turned into the pseudo-nominal to-
have-feathers + to-have-a-beak + to-have-wings. Note also that even for non-
definable concepts, class membership may still depend on auxiliary features:
this is the case when categorial membership is induced through resemblance
to a prototypical exemplar. Then, it is the features of this prototype that
play the role of defining features.

These considerations show that the family of attributional concepts is
large enough to deserve a treatment of its own. Since attributional concepts
can be studied with the help of quite elementary mathematical tools - con-
trary to the examples evoked in the preceding paragraph - there is no reason
not to devote to them a special study. Such is the aim of the present paper.

It is necessary to emphasize at this point that this study does not aim at
providing an objective model for categorization, even for the restricted area of
attributional concepts. Indeed, the defining feature set and the characteristic
set on which this construction is based are by no means well-defined. They
vary from an agent to another and, for a given agent, they may change with
time. It may even happen that a concept is seen as attributional by an
agent, while deprived of this quality by another one. It should be therefore
understood that the model proposed in this paper is meant to reflect, at a
given precise time, the single point of view of a subjective particular agent.
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2.2 Concepts and features

The terms concept and feature cover di↵erent notions. Formally, concepts are
most often introduced through the auxiliary to-be, followed by a noun: to-be-
a-bird, to-be-a-vector-space, to-be-a-democracy. Features may be presented
through a verb (to-fly), the auxiliary to-have, followed by a noun (to-have-
a-beak), or the auxiliary to-be, followed by an adjective (to-be-tall). While
concepts appear as unary predicates, this condition is no more necessary for
features. Features, like concepts, apply to the objects at hand but, contrary
to concepts, they are context-sensitive: they borrow part of their significance
from the concept they are attached to. Properties like to-be-tall, to-be-rich
or to-be-red take their full meaning only in a given context, that is when
qualifying a well-defined entity. Even simple verbal forms like to-fly, to-
run, to-live-in-water, to-be-made-of-metal need a principal referent concept
to fully seize the strength with which they apply to di↵erent items. Thus, the
concept a feature applies to may be seen itself as a contextual determination
of this feature. To summarize, the meaning of a feature depends on the
context in which this feature is used, contrary to the meaning of a concept,
which exists by itself.

It does not seem at this stage that any formalism can fully account for
the di↵erence between features and concepts. It is true that in Description
Logics, a di↵erent treatment is applied for one and two-places predicates:
binary predicates characterize indeed the roles of the language, which are
used to express relationship between the concepts (Nardi & Brachman, 2003).
In this famework, to-be-a-tree will be a concept, expressible by a single symbol
A, but to-have-green-leaves is a role, expressed by a formula of the type
‘8 hasLeaves.Green’. However, no di↵erence is made in Description Logics
between the unary predicates that translate a notion of concept and those
that translate a notion of feature.

It should be noted that, when considering a feature f of a concept ↵,
the way f applies to an object is generally itself related to the categorial
membership of an auxiliary concept �. Consider for instance the feature
to-have-wings. In order to evaluate to which degree this feature applies to
an item x, we must be able to determine what exactly covers the concept
to-be-a-wing, and which objects fall under it (for a discussion on the di↵er-
ence between knowing what an X is and knowing what it is to have an X,
see (Fodor, 1998). This observation shows that circularity cannot be avoided
when trying to build a general mathematical model for categorial member-
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ship. However, such is not the purpose of this work, which aims at analyzing
how the knowledge of a concept can be drawn from the knowledge of its
associated set of features, without questioning the nature and the sources of
the latter.

2.3 Applicability functions and applicability orders for
concept features

The strength with which a feature f of a concept ↵ applies to an object is
usually measured in a given ontology through a percentage or an applicability
degree function �

↵

f

that takes its values in the unit interval. Concerning
the range of this function, it is important to observe that it can be most
often circumscribed to a finite subset of [0, 1]: this is clearly true for fuzzy
features like to-be-tall, to-be-rich or to-be-warm, since the measure of their
applicability is always approximative (to an inch, a cent or a degree). On
the Brittany coast of France, for instance, the set of water temperatures t

in July ranges for from 15 to to 25 degrees Celsius degrees, thus covering 11
possible (integral) values. In this context, the function associated with the
concept warm may be given by �

↵

f

= t/10�1.5. The finiteness of the range of
�

↵

f

is even more obvious in the general process of categorization: ranking the
objects relatively to a feature of a given concept only yields a small number
of equivalence classes. To determine, for instance, to which extent a flower
may be considered as a poppy, one roughly evaluates its redness, its shape
and the size of its petals. Concerning the redness, comparison with other
objects shows that only a finite number of discernible reds separate the color
of that particular flower from that of an ideal poppy. Thus, in the context
of a to-be-a-poppy, there exists only a small number of possible degrees of
redness. The same observation can be made concerning the other features
that define or describe poppies, like the shape and the size of the petals.

For this reason, this paper will be devoted to the family of concepts
whose features can be weighed on a finite scale. These concepts form the
family of featured concepts. Given a featured concept ↵, the way any of its
associated feature f applies to an item is accounted for by an applicability
degree function �

↵

f

that takes only a finite number of values. Equivalently,
we may say that f , as an ↵-feature, generates an applicability order �↵

f

defined for any objects x, y of the universe of discourse by: x �↵

f

y if and
if �↵

f

(x)  �

↵

f

(y). The relation thus defined is a total order that has only
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finitely many equivalence classes. There exists therefore only a finite number
of intermediate states between an object x totally deprived of f and an object
y to which the feature f fully applies.

Apart from the finiteness condition, featured concepts will be required to
satisfy an agreement condition to guarantee the existence of at least an object
to which simultaneously apply all the defining and characteristic features
associated with a concept ↵.

This leads to the following definition:

A featured concept ↵ is a concept for which there exists a finite set of
defining features �(↵) and a finite set of characteristic features ⌅(↵) that
satisfy the two properties :

1. for every defining or characteristic feature f , the corresponding appli-
cability function �

↵

f

takes a finite number of values

2. There exists at least an item z such that �↵
f

(z) = 1 for all defining or
characteristic features f .

As was recalled in paragraph 2.1, in the agent’s mind the set �(↵) is con-
stituted by attributes that appear to be essential for the concept realization:
the only objects to which ↵ applies are those that possess these attributes.
On the contrary, the characteristic features are only present in the typical
exemplars of the concept.

The family of featured concepts will be denoted by F . In order to lighten
the notations, the superscript of the applicability functions and degrees will
be omitted, so that �

f

and �

f

stands for �↵

f

, and �

↵

f

. However, it is necessary
to keep in mind that the applicability order or the applicability function of
a feature is always defined relatively to the concept it qualifies.

3 Membership orders

In general, the human mind has no tool at its disposal to directly evaluate
the categorial membership of an object: in the extremal cases, we may be
able to decide that a given object is or is not a member of the concerned
category, but we do not know in the intermediate states how to quantify
its partial membership: a conventional bomb is definitely not a weapon-of-
mass-destruction (WMD), and the same is true for a machine gun, yet, we
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are unable to attribute a precise degree of membership to any of these items
taken alone. We can only compare them. Similarly, we are unable to assign
a precise membership degree to a sink as a piece of furniture, while being
ready to admit that it is ‘more’ a piece of furniture than a heat-pipe, and
‘less’ a piece of furniture than a window.

As a matter of fact, concerning membership evaluation, and apart from
the binary distinction between members and non-members of a category, the
best thing the human mind seems to be capable of is to compare two objects
and decide which one, if any, falls ‘more’ under the concerned concept. Thus,
the concept to-be-a-weapon-of-mass-destruction will be generally considered
as applying more to a machine-gun than to an arquebus, and less to a spear
than to an arquebus. Clearly, this judgement shows the existence of a basic
ordering induced by the concept to-be-a-weapon-of-mass-destruction in the
universe of discourse. This ordering is by no means a consequence of a
supposed degree assignment that the agent has set a-priori on the objects
at her disposal: if directly questioned what membership degree should be
attributed to a machine-gun considered as a WMD, an agent will be generally
unable to provide a sensible answer. Of course, such an assignment may
be established once comparison has been made between the items at hand.
For instance, a non-decreasing ranking like bludgeon  sword  crossbow
 arquebus  gun  machine-gun  flamethrower  conventional bomb 
scud  atomic bomb may yield a posteriori a membership degree of the
concerned items, which can be readily visualized from their position on a
[0,1] scale: thus, an atomic bomb will be considered as being 100% a WMD,
a scud as 90%, a conventional bomb as 80% and so on. The point is that
these numerical values will appear as a consequence of a pre-recognized order
among the di↵erent weapons that are part of the agent’s universe: they will
not be at the origin of it. This construction of a membership degree as a
secondary tool, stemming from a membership order, will be examined in
details in section 3.3.

Order relations therefore appear to provide the most adequate model to
account for categorial membership as perceived by a cognitive agent. Ap-
pealing systematically to relations of this type whenever it is possible avoids
the drawbacks that may result from the application of more sophisticated
theories. It is true that in some cases, order relations may be insu�cient
to fully treat categorial membership - this will be for instance the case for
fuzzy concepts, or for vague concepts of a continuous type. However, concern-
ing the specific class of featured concepts, the tool provided by weak order
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relations is su�ciently powerful to fully address the categorization problem.
In this perspective, the fact that a concept ↵ may apply more (or better)

to an item x than to an item y will be translated by a preorder (reflexive
and transitive) relation on the set O of objects, real or imaginary, that are
part of the agent’s universe of discourse. This relation will be denoted by
�µ

↵

. The expression ‘x �µ

↵

y’ therefore translates the sentence ‘the concept
↵ applies at least as much to the object y as to the object x’.

The corresponding strict partial order will be denoted by �µ

↵

, that is
x �µ

↵

y if and only if x �µ

↵

y and not y �
↵

x.
In the general case, and contrary to most of the existing theories, the

relation �µ

↵

will not be supposed to be total. There is no reason indeed to
a priori eliminate the case where the membership of two objects is incom-
parable. Taking again the bird example, this enables us for instance to deal
with the case where an agent refuses to compare the birdhood of a bat with
that of a tortoise.

3.1 The case of featured concepts

Let now ↵ be a featured concept and suppose that its defining feature set
�(↵) consists of the k features f1, f2, . . . , fk. In the perspective of the at-
tributional view, the applicability orders �

f1 ,�f2 , . . . ,�fk
induced on O by

these features are part of the agent’s knowledge. The assumption that the
knowledge of the features is su�cient to acquire knowledge of the target con-
cept requires that the membership order �µ

↵

should naturally stem from the
�

f1 ,�f2 , . . . ,�fk
. One could then simply consider that �µ

↵

is the intersec-
tion of the �0

fi
s, but this would ignore the internal structure of the set �(↵).

Indeed, the defining features of ↵ cannot be considered as equivalent. In the
agent’s mind they do not necessarily weigh the same weight. For instance,
a particular agent may associate with the concept to-be-a-bird the defining
set {to-be-a-vertebrate, to-be-oviparous, to-have-feathers, to-have-a-beak, to-
have-wings}, and consider moreover that having wings is a more important
feature for birdhood than having a beak. For this agent consequently, a bat
will be given more birdhood than a tortoise. To account for this phenomenon,
it is necessary to equip the set �(↵) with a salience relation, which will be
simply translated by a strict partial order >�(↵).

The membership order induced by ↵ can be now defined by:

x �µ

↵

y i↵ for each defining feature f

i

such that y �
fi x, there exists a
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defining feature f

j

, f
j

>�(↵) fi, such that x �
fj y.

Thus, the concept ↵ applies at least as much to y as to x if each of its
defining feature that applies more to x than to y is dominated by a defining
feature that applies more to y than to x (see (Freund, 2014) for a justification
of this construction).

The relation �µ

↵

sets a partial (weak) order on the set O. Its associated
strict partial order reads

x �µ

↵

y if and only if x �µ

↵

y and there exists some defining feature f

i

for
which x �

fi y.

Example 1 Let ↵ be the concept to-be-a-bird, and suppose that, from the
point of view of an agent, its defining feature set in the context of living be-
ings is the set {to-have-two-legs, to-lay-eggs, to-have-a-beak, to-have-wings}
with the following salience order: to-have-a-beak >

s

to-lay-eggs >
s

to-have-
two-legs, and to-have wings >

s

to-lay-eggs>
s

to-have-two-legs. Suppose for
the sake of simplicity that, in the agent’s mind, membership to any of these
features is a two-valued function. Let s, m, t, b and d respectively stand for
a sparrow, a mouse, a tortoise, a bat and a dragonfly. Then the induced
membership order is determined by the following arrow :

two� legs lay � eggs beak wings

sparrow ? ? ? ?

mouse
tortoise ? ?

bat ? ?

dragonfly ? ?

One readily checks that d �µ

↵

s, m �µ

↵

t, and m �µ

↵

b. Note that one has
b �µ

↵

d, since the concept to-have-two-legs under which the bat falls, contrary
to the dragonfly, is dominated by the concept to-lay-eggs that applies to the
dragonfly and not to the bat. On the other hand, one does not have d �µ

↵

b, as
nothing compensates the fact that the dragonfly lays eggs and the bat does not.
This yields b �µ

↵

d. Note also that the tortoise and the bat are incomparable:
one has neither b �µ

↵

t, nor t �µ

↵

b.
The strict ↵-membership order therefore reads:
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m

b

d
t

s

⇢
⇢

c
c

c

c
c

c




3.2 Essence and Extension

The membership order �µ

↵

adequately translates the notion of membership to
a category. Indeed it follows from the agreement condition that there exist
�µ

↵

-maximal elements in O, namely those that fall under all the defining
features of ↵. These objects form the extension, or the category, of the
concept ↵, denoted by Ext↵. Its elements constitute the exemplars, or the
instances, of the concept.

This definition by means of maximal membership conforms with the in-
tuition: an object x (fully) falls under a concept ↵ if ↵ cannot apply more to
an object y than to x. Whatever salience order is set on �(↵), an object falls
under the featured concept ↵ if and only if it falls under each of its defining
features. In other words one has Ext↵ =

T
(Ext k)

k2�(↵). One retrieves
here the classical characterization of a defining feature set as a set of features
that are ‘individually necessary and jointly su�cient to ensure membership
relative to ↵’.

As mentioned above, the set �(↵) has no objective character: it consists
of the features that a given agent would choose as most suitable to define
the extensional aspect of a concept. Another agent may choose a di↵erent
defining feature set �0(↵), even if both agents agree on the definition of ↵.
The set Ext↵ provides a more objective representation of ↵: if two agents
agree on ↵, they will agree on Ext↵. More generally, the role played by
the defining feature set may be extended to a larger set, Ess↵, called the
essence of ↵. This set gathers the concepts and features that apply to every
element of Ext↵, that is: Ess↵ = {� 2 F ;Ext↵ ✓ Ext �}. One may
consider the elements of this set as the essential attributes of the concept. It
readily follows from the definitions that the extension of ↵ can be retrieved
from its essence: one has indeed Ext↵ =

T
(Ext k)

k2Ess↵

. In the language
or Formal Concept Analysis, this shows that the pair (Ext↵, Ess↵) can be
considered as a formal concept in the context (O,F , I), where (x, ↵) 2 I i↵
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x falls under ↵.
The notion of subconcept can be now precisely defined : a concept � will

be said to be a subconcept of ↵ i↵ �µ

�

✓ �µ

↵

. This implies in particular
Ext � ✓ Ext↵, and consequently Ess↵ ✓ Ess�.

Two remarks have to be made concerning the above definitions. First,
the essence of a concept as defined above corresponds to the classical one
(see (Desclés & Pascu, 2011)), provided one remembers that the universe
of discourse includes imaginary, as well as real, objects. Restricting the set
O to real objects would indeed lead to counterintuitive results: for instance
consider the concept to-be-US-president, and suppose that it is known that all
past and present US presidents were golf players. Then the attribute to-be-a-
golf-player applies to all instances of to-be-US-president ; if only real existing
objects were considered, the feature to-be-a-golf-player would become part
of the essence of to-be-US-president...! Enlarging the set of real objects to
imaginary ones avoids this drawback, because we can imagine an US president
that does not play golf.

Another remark is that the essence of a concept, as defined above, gath-
ers two di↵erent families of concepts. On the one hand, we find the spe-
cific attributes that are attached to this concept and help distinguishing it
from neighboring concepts. In the example of to-be-US-president, such is for
instance the case of the concepts to-sleep-in-the White-House, to-convene-
Congress, to-command-the-US-armed-forces - in the current literature, this
set is usually referred to as the ’Intension’ of the concept. On the other hand,
we have the generic attributes, which the concept has inherited from some
super-concept: for instance, the generic attributes of the concept to-be-US-
president include the features to-be-mortal, to-be-a-vertebrate or to-have-a-
heart, which are part of the essence of to-be-a-man.

The distinction between specific and non specific features plays an im-
portant role in category-based induction. It will be more precisely studied in
section 6.2.2.

3.3 Membership distance and membership degree

Since �µ

↵

is generally not a total order, there exists no membership degree
function �

↵

that would satisfy x �µ

↵

y i↵ �

↵

(x)  �

↵

(y). It is however possible
to approximate the notion of membership degree by considering increasing
chains of objects, similarly to what was evoked in the WMD example. The
following construction stems from the fact that any strictly increasing chain
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of the form x1 �µ

↵

x2 �µ

↵

. . . �µ

↵

x

k

�µ

↵

. . . must be of finite bounded length
(this because of the finite number of defining features, together with the
finiteness condition of paragraph 2.3). Given an object x, it therefore makes
sense to consider the maximal length of a chain x �µ

↵

x1 �µ

↵

. . . �µ

↵

x

n

with
last term x

n

2 Ext↵. This length measures the distance that separates
x from Ext↵. It will be referred to as the membership distance of x, and
denoted by µ

↵

(x).
Let now N

↵

be the length of a maximal �µ

↵

-chain in O. The membership
degree �

µ

↵

is defined, for all objects x, by �

µ

↵

(x) = 1� µ↵(x)
N↵

. One has readily
�

µ

↵

(x) = 1 if and only x 2 Ext↵, and �

µ

↵

(x) = 0 if and only if x is maximally
distant from Ext↵. Note that �µ

↵

(x) < �

µ

↵

(y) whenever x �µ

↵

y.

Example 2 In Example 1, the membership order yields µ

↵

(t) = 1 provided
that, for the agent, there exists no animal z such that t �µ

↵

z �µ

↵

s. Similarly
µ

↵

(d) = 1 and µ

↵

(b) = 2. Concerning the mouse, the agent may consider
that the chain m �µ

↵

k �µ

↵

b �µ

↵

d �µ

↵

s is a maximal one, where k stands for
a monkey, so that µ

↵

(m) = 4. The maximal length of a chain is 4, and the
membership degrees are �

µ

↵

(m) = 0, �µ
↵

(b) = 1/2, �µ
↵

(t) = �

µ

↵

(d) = 3/4) and
�

µ

↵

(s) = 1.

3.4 Categorial membership for compound concepts

3.4.1 The determination connective

It is sometimes possible to determine a concept ↵ by another concept �. We
obtain in this way a compound concept, which will be denoted by � ?↵. This
determination is most often realized by the combination of an adjective or
an adjectived verb with a noun, like in the compositions to-be-a-carnivorous-
animal, to-be-a-flying-bird, to-be-a-french-student, to-be-a-red-apple. It can
also take the form of a noun-noun combination, like in to-be-a-pet-fish, to-be-
a-barnyard-bird, and, more generally, of a relative clause that will be globally
encapsulated by the concept � (e.g. to-be-an-American-who-lives-in-Paris).
Typically, the concept � becomes a simple feature of the compound concept
� ? ↵. Its role can be therefore considered as secondary, compared with that
played by the principal concept ↵: to-be-red is a feature of the composed
concept to-be-a-red-car, and to-be-a-woman becomes a feature of a to-be-
physician-that-is-a-woman.

Not to mention the simple conjunction (to-be-an-history-teacher & to-be-
a-geography-teacher), which provides equal importance to both constituents,
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other types of connective exist in which the principal role is attributed to the
modifier, like in to-be-a-Picasso-painting. These will not be studied in the
present paper.

As a last remark, it is important to keep in mind that only the intersective
conceptual combinations are accounted for: the objects that fall under the
composed concept �?↵ are exactly the ones that both fall under ↵ and under
� (see (Kamp & Partee, 1995) for the distinction between intersective and
non-intersective modifiers). This shows that the determination connective ?

is only a partial operator: given arbitrary ↵ and �, it may be meaningless
to build the concept � ? ↵. For instance, there is no sense in talking of a
sailing-number or a wooden-salience. Such pseudo-concepts correspond to
nothing, and no object, real or fictitious, can be thought of falling under
them, contrary to imaginary concepts like a pink-elephant, a striped-apple or
a flying-cow : these latter definitely have a non-empty extension, because we
can imagine a pink elephant, a striped apple or a flying cow.

Similarly, concepts determined through qualitative or quantitative adjec-
tives, like a big-piano, or a nice-house will not be taken in consideration, as
one cannot consider that to-be-big or to-be-nice are well-defined concepts.
When forming the composition � ? ↵, it is always understood that the inter-
section Ext↵ \ Ext � is a non-empty well-defined set.

3.4.2 Membership orders for compound concepts

Let ↵ and � be two concepts for which corresponding membership orders have
been defined, and suppose that the determination of ↵ by � is meaningful,
that is Ext↵\Ext � 6= ;. We want to set a membership order on the concept
�?↵ that gives preeminence to ↵ over �. This can be simply done by setting:

x �µ

�?↵

y if x �µ

↵

y and, either x �µ

↵

y, or x �µ

�

y.

In this framework, the concept to-be-a-flying-bird will be considered as ap-
plying more to a penguin than to a bat: indeed, the principal concept is that
of being-a-bird, while to-fly appears as a simple feature, less important than
the concept it modifies.

The relation thus defined is reflexive and transitive. Since it is clearly a
subrelation of �µ

↵

, it makes � ? ↵ a subconcept of ↵.
The hypothesis that Ext↵ \Ext � 6= ; implies that full categorial mem-

bership can be recovered through the �µ

�?↵

-maximal elements. If we define
indeed the extension Ext (�?↵) of �?↵ as the set of �µ

�?↵

-maximal elements,
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it holds Ext (� ? ↵) = Ext↵ \ Ext �. Categorial membership is therefore
compositional : an object falls under a determined concept if and only if
it falls both under the concept and under its determiner. The category of
red-cars exactly covers all the items that are red and that are cars.

Compositionality for �µ

�?↵

-maximal elements does not extend to arbitrary
items: an object y may fall more than an object x under � ? ↵, while falling
less than x under �: to-be-a-flying-bird for instance applies more to a penguin
than to a bat, although to-fly applies more to a bat than to a penguin.

3.4.3 Membership degree and the conjunction e↵ect

As was done for simple concepts, a membership distance can be defined
for compound concepts of the form � ? ↵: for any object x, let µ

�?↵

(x)
denote the length of a maximal �µ

�?↵

-chain starting from x and ending in
Ext (� ? ↵). Note that µ

↵

(x)  µ

�?↵

(x). If N
�?↵

is the length of a maximal
�µ

�?↵

-chain in O, the (� ?↵)-membership degree of x may be then defined by

�

µ

�?↵

(x) = 1� µ�?↵(x)
N�?↵

.

An interesting side-e↵ect of this construction is that it renders possible a
modelling of the so called conjunction e↵ect. This phenomenon was observed
in 1981 by Osherson and Smith (Osherson & Smith, 1981). It has been
since at the origin of numerous research and experiments (see in particular
(Hampton, 1988), (Tversky, 1977), (Kamp & Partee, 1995), (Aerts, 2009),
(Franco, 2009), or (Hampton, 2017) for a general review. The conjunction
e↵ect can be described by the fact that an item may be found to be more
strongly a member of the conjunction of two concepts than a member of one
of them. Thus, a guppy appears to be more a member of the concept to-be-a-
pet-fish than a member of to-be-a-pet or to-be-a-fish. This problem is di↵erent
from the one evoked at the end of the preceding section: here, one does not
compare the membership of two objects relative to a single concept, but the
membership of one object relative to two concepts. The use of membership
degrees renders possible an explanation of the conjunction e↵ect. It turns
out indeed that nothing stands against the fact that the (� ? ↵)-membership
degree of an item might be greater than its ↵-membership degree, as can be
seen in the following example:

Example 3 Let us take again the degree computations of example 2. The
chain m �µ

↵

k �µ

↵

b �µ

↵

d �µ

↵

s being supposed to be maximal, one has
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�

µ

↵

(k) = 1/4. If � is the feature to-be-black, equipped with a two-valued
membership degree function, one may think of a maximal � ? ↵-chain like

m �µ

�?↵

m

0 �µ

�?↵

k

0 �µ

�?↵

k �µ

�?↵

b �µ

�?↵

b

0 �µ

�?↵

d �µ

�?↵

d

0 �µ

�?↵

s �µ

�?↵

r,

with m: a white mouse; m0: a black cat; k0: a (red-brown) kangaroo; k: a
black macaque; b: a brown bat; b0: a black bat; d: a blue dragonfly; d0: a black
fly; s: a sparrow; r: a raven. This leads to N

�?↵

= 9, and �

µ

�?↵

(k) = 1/3,
showing that, in this model, the macaque is more a black bird than a bird.

3.4.4 Objections to the compositional theory

Several arguments have been developed against a theory of compositionality
in which membership to a compound concept simply boils down to mem-
bership to each of its constituents. It has been objected for instance that
there is a di↵erence between the concept s ? g (being-a-game-that-is-a-sport
and the concept g ? s (being-a-sport-that-is-a-game), and that they do not
have the same exemplars, although, in the proposed model, the concepts s?g
and g ? s would have the same extension. But even though they share the
same exemplars, these concepts are not equal, as they have di↵erent mem-
bership orders. Moreover, although some experiments seem to contradict
this assumption, an item which is considered as a sport that is a game must
be both a sport and a game - even if it is before all considered as a sport.
Confusion comes when one mixes membership and typicality, as is the case of
the unary model, where a unique scale is used to measure these two notions.
Things would be of course di↵erent if we considered a composed concept
like ‘to-be-a-sport-that-is-secondarily-a-game’. Nevertheless, such a complex
concept cannot be accounted for through the determination connective ? the
way it has been circumscribed.

Another example that would tend to reject compositionality is provided
by the composed concept to-be-school-furniture. Experiments show that peo-
ple consider a blackboard as a clear exemplar of this concept, although not
an exemplar of the unmodified to-be-furniture. The explanation is that here
again the compound resulting concept is not really obtained through the de-
termination connective ?, the same way to-be-a-urban-furniture is not a de-
termination of to-be-a-furniture. Indeed, by default, to-be-a-furniture refers
to to-be-home-furniture, and school-furniture is not home-furniture that can
be found in school. This shows that rather than a determination, the oper-
ation that yields school-furniture from furniture is a modification. Clearly
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there is no contradiction in the fact that an instance of a modified concept
is not an instance of the unmodified concept.

It is interesting to note that the compound concept to-be-school-furniture
cannot be translated in French through a determination or a modification of
the words meubles or ameublement, which are used for usual (home) furni-
ture. The French word that translates the furniture dedicated to some specific
use is mobilier : one speaks then of mobilier d’école (school-funiture), mo-
bilier urbain (urban-furniture), or mobilier de bureau (o�ce furniture). The
compound concept obtained in this way is fully compositional.

4 Typicality

The relative typicality of objects falling under a concept ↵ is accounted for
through an order relation that stems from the characteristic set associated
with ↵. This set consists of features that, from the point of view of an agent,
are su�cient to characterize the typical exemplars of ↵. For instance, if ↵ is
the concept to-be-a-bird, the associated characteristic set ⌅(↵) may include
the concepts to-fly, to-sing, to-live-in-the-trees. It may also include attributes
that are related to the average size, the shape or the weight of the concept
typical exemplars, like to-be-small or to-be-light. On the contrary, concepts
like to-have-feathers and to-have-wings, which apply to all instances of ↵,
will not be part of the characteristic feature set, but they may figure in the
defining feature set �(↵).

As was the case for the defining feature set, the characteristic set is sup-
posed to be equipped with a partial salience order, denoted >⌅(↵). This order
is meant to compare the relative importance of the di↵erent characteristic
features.

4.1 The typicality order

Let ↵ be a featured concept. For two elements x and y of Ext↵, we set

x �⌧

↵

y i↵ for each characteristic feature f of ↵ such that y �
f

x, there
exists a characteristic feature g, g >⌅(↵) f , such that x �

g

y.

It is easily seen that this relation is a (weak) partial order on Ext↵. The
set of �⌧

↵

-maximal elements of Ext↵ will be denoted by Typ↵. It gathers
the typical exemplars of the concept. Clearly, an exemplar z of ↵ is ↵-typical
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if and only if it falls under all the characteristic features of ↵. It follows that
Typ↵ =

T
(Ext k)

k2⌃(↵).
It is possible to parallel the construction proposed in paragraph 3.2, and

define the intension of the concept ↵ as the set of concepts and features that
apply to every element of Typ↵. One has therefore Int↵ = {� 2 F ;Typ↵ ✓
Ext �}. This set can be substituted to the (subjective) characteristic set used
for the definition of Typ↵. Conversely, it holds Typ↵ =

T
(Ext k)

k2Int↵.
This shows that (Typ↵, Int↵) is a formal subconcept of (Ext↵, Ess↵).

The intension of a concept includes its essence; the elements of Int↵ that
are not in Ess↵ are the typical attributes of the concept: they consist of
the attributes that are generally but not always true of the exemplars of
the concept. They apply to every typical instance of the concept, without
applying to all of its exemplars.

Contrary to categorial membership, typicality is not preserved by embed-
ding: typical ostriches are not typical birds. A subconcept � of ↵ will be said
to be smooth if its typical instances are typical for ↵, that is if Typ � ✓ Typ↵.
The concept to-be-a-robin for instance may be seen as a smooth subconcept
of to-be-a-bird.

Membership and typicality orders fully determine a concept as they de-
scribe how the universe of discourse is structured relative to this concept.
Two concepts ↵ and � will be considered are equivalent, written ↵ ⌘ �, if
�µ

↵

=�µ

�

and �⌧

↵

=�⌧

�

.
Note that two concepts may have same extension and same typical ele-

ments without being equivalent. For instance, such will be the case if their
respective defining set and characteristic sets are identical, but equipped with
di↵erent corresponding salience orders. The concepts ↵ and � will be said
to be similar, written ↵ ' �, if they have same extension and same set of
typical elements

4.2 The case of compound concepts

Let � ?↵ be the determination of ↵ by a concept �, and define the typicality
order �⌧

�?↵

on the set Ext↵ \ Ext � by:

x �⌧

�?↵

y if x �⌧

↵

y and either x �⌧

↵

y, or x �⌧

�

y.

This relation is reflexive and transitive. Because of the finiteness of ⌅(↵),
the set of �⌧

�?↵

-maximal elements of Ext (� ? ↵) is not empty. This set will
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be denoted by Typ(� ?↵), and its elements referred to as the typcal instances
of � ? ↵.

As was the case for membership, the typicality order for composed con-
cept gives preeminence to the initial concept: a typical exemplar of � ? ↵

has maximal ↵-typicality among the elements of Ext (� ? ↵). Taking this
side however leads to seemingly paradoxical results. It has been objected
for instance that this construction makes a gull a more typical exemplar of
Antarctic-bird than a penguin, while, for most people, the penguin appears
to be the typical Antarctic bird, The explanation is that there is a mix-up
between a typical Antarctic bird and a bird that typically lives in Antarctic,
this latter being usually interpreted as a bird that mainly lives in Antarctic.
Such is indeed the case for the penguin, which, contrary to the gull, is an
Antarctic endemic bird. Moreover, the penguin’s features are so di↵erent
from those of a familiar European birds that they may appear as ’typical’
of this atypical species. Typicality indeed is often understood as a di↵eren-
tiation tool: the most typical exemplars of an atypical subcategory tend to
be chosen among the less typical exemplars of this category... This interpre-
tation however does not correspond to the usual definition of typicality by
means of characteristic features. It covers a di↵erent notion, that accounts
for representativeness rather than typicality. To precisely define this notion,
it would be necessary to introduce a representativeness order inside a sub-
category: for instance, given two exemplars x, y of a subconcept � of ↵, one
may say that, relatively to ↵, y is a better representative of � than x if y
is both more �-typical and less ↵-typical than x. It is this order relation,
di↵erent from typicality, that would render the penguin more representative
as an Antarctic bird than the skua or the petrel.

Contrary to membership, typicality is not compositional. The typical
instances of � ? ↵ cannot be retrieved from the typical instances of ↵ and �.
This comes from the fact that the set Typ↵ \ Typ � may be empty, like in
the example (to-be-an-ostrich)?(to-be-a-bird). However it is not di�cult to
see that if the set Typ � \ Typ↵ is not empty, one has Typ � \ Typ↵ =
Typ (� ? ↵): a typical black olive is a typical olive that is typically black.

Concerning the determination connective, two interesting properties de-
serve to be mentioned. The first one is associativity : for any concepts ↵, �, �,
one has

� ? (� ? ↵) ⌘ (� ? �) ? ↵.

Indeed, a straightforward computation shows that the membership and
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the typicality orders of � ? (� ? ↵) and (� ? �) ? ↵ are identical.
The second property is that of idempotence: for any concept ↵, it holds:

↵ ? ↵ ⌘ ↵.

There is no di↵erence between to-be-a-bird-that-is-a-bird and to-be-a-bird.

5 On resemblance

The notion of resemblance is an important one in the categorization process.
It has been at the center of numerous theoretical and experimental studies.
Searchers tried to precisely circumscribe this notion, either by defining a
resemblance degree between two items, or by determining the link between
resemblance, membership and typicality (Rosch, 1975), (Tversky & Kahne-
man, 1983) and (Wittgenstein, 1953).

Resemblance may be considered as a binary relation between objects
(Henry resembles his brother), between concepts (the wolf resembles a dog),
or between an object and a concept (this picture resembles a Picasso). To
study this notion first requires to determine which type of resemblance one is
dealing with. In this paper, only resemblance between objects and concepts
or between concepts will be studied.

5.1 Resemblance between objects and concepts

In a first approximation, resemblance between an object and a concept seems
to be directly linked with categorial membership : saying that this piece of
music resembles Beethoven means that what is heard is close of falling under
the concept to-be-Beethoven’s work. However, it is clear that resemblance
relative to a concept is first perceived as resemblance with the typical in-
stances of this concept. The Beethoven referred to in the preceding example
is not the ‘young Beethoven’, whose compositions still reflect Haydn influ-
ence, but the later Beethoven of the second or third period. Similarly, saying
that ‘Peter’s bedroom looks like a boat cabin’ refers to a typical boat cabin,
excluding for instance a destroyer’s cabin...

It follows that, when an agent asserts that a particular item x resembles
a concept ↵, one may infer, first, that x is not known by the agent to be an
instance of ↵, and, secondly that, for this agent, x resembles a typical exem-
plar of this concept, sharing with it a certain amount of typical attributes.
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Thus, looking at a bat, one may say it resembles a bird, just because it has
wings, it flies, and it has the size or the shape of a bird. Conversely, an ani-
mal may be declared not to resemble a bird if it does not resemble a typical
bird, even though this animal is known to be a bird. For instance, looking
at a penguin, an assertion like ‘this animal does not resemble a bird’ is per-
fectly understandable. Resemblance first deals with the typical attributes of
a concept.

In the framework of featured concepts, it seems that resemblance to a
concept may be analyzed and treated through a preorder relation in a way
similar to what was done for membership and typicality.

The simplest way to do so would be to define on the set �(↵) [ ⌅(↵) a
salience order stemming from the salience orders of �(↵) and ⌅(↵), and then
build on O a weak order relation, as was done for membership or typicality.
However, in such a model, resemblance would be very much dependent on
salience, leading to counterintuitive results: a single ↵-feature with maximal
salience, that applied to x and not to y, would make x more ↵-resemblant
than y, even though many other ↵-features may apply to y and not to x. To
take an example, suppose that ↵ is the concept to-be-a-bird and that to-fly
has maximal salience in �(↵)[⌅(↵). Then bird-resemblance will principally
rest on the ability of an item to fly; consequently, bats will be more bird-
resemblant than kiwis, although having feathers, singing and building nests,
taken together, should, at least, compensate the fact that kiwis do not fly.

The following construction seems to remedy this drawback, as it takes
into account the number of ↵-attributes that apply to an object x as well as
the preeminence of the characteristic features over the defining ones.

Denote by ⇧(↵) the set �(↵)[⌅(↵) - this set is referred to as the stereo-
typical set of ↵ (see (Connolly, Fodor, Gleitman, & Gleitman, 2007), (Fodor,
1994), or (Jönsson & Hampton, 2007)).

Recalling that �(↵) and ⌅(↵) are supposed to be disjoint sets, let >⇧(↵)

be the salience order on ⇧(↵) that extends the salience orders >�(↵) and
>⌅(↵), and satisfies moreover f >⇧(↵) g for all f 2 ⌅(↵) and g 2 �(↵). The
study of the ordered set (⇧(↵), >⇧(↵)) may be seen as providing a bridge
between the binary model and the unary model.

Given an element f of ⇧(↵), define the salience degree of f as the number
s

f

= 1 + |{h 2 ⇧(↵); f >⇧(↵) h}|.
Using the f -applicability function �

f

(x) defined in 2.3 renders possible
the definition of the ↵-resemblance degree of an element x of O by setting:
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�

⇢

↵

(x) =
⌃f2 ⇧(↵)sf �f (x)

⌃f2⇧(↵)sf
.

The elements of O that are maximally resemblant to a concept ↵ are the
typical instances of ↵. Their resemblance degree is equal to 1.

Example 4 Taking again the bird example, suppose that the defining feature
set is as in example 1, that is �(↵) ={to-have-two-legs, to-lay-eggs, to-
have-a-beak, to-have-wings} with salience order to-have-a-beak >

s

to-lay-
eggs >

s

to-have-two-legs, and to-have wings >

s

to-lay-eggs>
s

to-have-two-
legs. Suppose that its characteristic set consists of the three features to-build-
nests, to-sing, and to-fly, equipped with the order to-fly>

s

to-build-nests and
to-fly>

s

to-sing. Computing the bird-resemblance degrees of a bat b, a penguin
p and a kiwi k yields �

⇢

↵

(b) = 11/26, �⇢
↵

(p) = 9/26 and �

⇢

↵

(k) = 19/26. The
bat is less bird-resemblant than the kiwi, but more bird-resemblant than the
penguin.

Note that, in this model, categorial membership cannot be directly retrieved
through resemblance: there exists no degree threshold above which an item
can be declared to be an exemplar of the target concept. All what can be
said, is that an item with ↵ resemblance degree equal to 1 must be a typical
instance of ↵. This comes from the fact that, in evaluating resemblance,
one compares objects with the typical instances of a concept, rather than to
arbitrary exemplars of this concept.

5.2 Resemblance between concepts

One may again interpret concept resemblance as resemblance between typical
instances : judging that ‘Braque resembles Picasso’ amounts to say that a
typical painting of Braque resembles a Picasso. In other words, one will say
that a concept ↵ resembles a concept � if every typical instance of ↵ resembles
to the concept � in the sense of the preceding paragraph.

This observation leads to a possible construction of the �-resemblance
degree of a concept ↵, which can be defined as

�

⇢

�

(↵) = Min

x2Typ↵

�

⇢

�

(x).

The resemblance between ↵ and � is therefore measured by taking among
the typical elements of ↵ those that are the least �-resemblant.

Following this definition, the maximally �-resemblant concepts are the
concepts ↵ such that Typ↵ ✓ Typ �. In particular, such will be the case
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for the smooth subconcepts of �. In general, however, ↵ may have maxi-
mal �-resemblance without being a subconcept of �. For instance, although
not all Caravage paintings are figure paintings, we can consider that Car-
avage paintings maximally resemble figure representations, because typical
paintings from Caravage are typical figure representations.

6 Category-based induction

Category-based induction is the process through which, from a given cate-
gory, one infers information relative to another category, this inference being
based on a link between the source and the target category. In particular,
one may ask which attributes of a category remain true for a subcategory
or, inversely, which attributes of a subcategory may be raised to the whole
category. One may also be interested in resemblance between categories, and
look for the attributes that transpose from one category to a resemblant one.
These problems can be treated with the tools developed in the preceding
sections.

6.1 Within-category induction

While the essential attributes of a concept apply to the exemplars of any
of its subconcepts, this is no more true for its typical attributes. Typical
birds fly, but typical ostriches don’t. However, typical birds have feathers
with remiges, and such is the case for ostriches. This poses the problem
of determining which attributes of a concept remain valid for some subcon-
cept. Knowing for instance that ducks have webbed feet, can we deduce that
quacking ducks have webbed feet (Connolly et al., 2007)? The inheritance
problem is of particular interest in the case of subconcepts obtained through
concept determination. To quote (Jönsson & Hampton, 2012) ‘Given that
an attribute is not universally true of a concept (...), how should one deter-
mine whether the predicate should also be considered generically true of the
complex concept formed when an adjectival or nominal modifier is applied
to the noun’. As will be seen, the answer depends on the smoothness of the
target subconcept (recall that a subconcept � of ↵ is said to be smooth in ↵

if Typ � ✓ Typ↵).
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6.1.1 Smooth subconcepts and non-exceptional modifiers

A determiner � will be said to be non-exceptional for ↵ if Ext �\Typ↵ 6= ;,
that is if there exists at least an exemplar of � that is a typical instance of
↵. To-be-red for instance is non-exceptional for the concept to-be-an-apple,
while to-be-blue would be an exceptional determiner (in fact, a modifier).
This notion of non-exceptional determiner may be seen as a formal definition
of the compatible modifiers introduced by (Smith, Osherson, Rips, & Keane,
1988). It is tightly linked with that of smoothness: indeed, it can be shown
(Freund, 2008) that � ? ↵ is a smooth subconcept of ↵ if and only if �

is non exceptional for ↵. Conversely, it is not di�cult to prove that, up
to similarity, the concepts obtained from the determination of ↵ by a non
exceptional attribute � generate all the smooth subconcepts of ↵.

If � is a non-exceptional modifier of ↵, � ? ↵ is smooth in ↵, and we
have therefore Typ (� ? ↵) ✓ Typ↵, showing that every typical attribute
of ↵ applies to the typical instances of � ? ↵. For instance, knowing that
there exist typical birds that are white and that birds generally sing, we can
conclude that white birds generally sing.

This provides a first answer to the within-category induction problem:
if � is non-exceptional for ↵, inheritance in � ? ↵ is total.
Note as a particular case, that the above result holds if � is itself a typical

attribute of ↵: flying-birds will inherit all the typical properties of birds.

6.1.2 Comparison with experimental results: the modifier e↵ect

It has been observed that whatever type of modifier is used, likelihood for
an attribute tends to be reduced after modification of a principal concept
(Jönsson & Hampton, 2012)). Thus, the authors wrote that ‘Sentences were
assigned systematically decreasing likelihood ratings as the head noun was
modified by a single typical modifier (eg., flightless penguins), by a single
atypical modifier (solitary penguins, or by two atypical modifiers (solitary
migrant penguins)’.

As far as non-exceptional modifiers are concerned, this definitely contra-
dicts the property evoked above, and therefore questions the proposed model.
However, the experiments did not concern simple truth of statements, like
‘do quacking ducks have webbed feet’: using numbers from 1 to 10, the par-
ticipants had to indicate the likely truth of a sentence (Ducks have webbed
feet, quacking ducks have webbed feet...). It would be interesting to see what
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answers of the type Y/N would have been given successively to sentences first
unmodified, then typically modified, then atypically modified. At any rate,
the disparity of some answers with the above result would show that a weak
but maybe significant percentage of the participants do not follow this type
of model in their categorization process.

6.1.3 The case of exceptional modifiers

When � is exceptional for ↵, � ? ↵ is no longer smooth in ↵ and the full
inheritance property does not apply anymore. Non-flying birds do not in-
herit the bird typical property of flying. The problem is to determine which
attributes of ↵ are preserved in � ? ↵. For this it is useful to determine what
makes � exceptional for ↵.

Suppose that ↵ is a featured concept for which � is exceptional. Since
Typ↵ = Ext↵ \ (

T
(Ext k)

k2⌅(↵)), the set Ext � \ Ext↵ \ (
T
(Ext k)

k2⌅(↵))
is empty.

The simplest case where this situation occurs happens when, for a single
↵-characteristic feature k0, one has Ext �\Ext↵\Ext k0 = ;, while Ext �\
Ext↵\(T(Ext k)

k2⌅(↵)�{k0}) 6= ;. No element of Typ (�?↵) (fully) falls under
k0. Suppose more precisely that the k0-applicability degree of each element
of Typ (� ? ↵) is equal to 0. Then one observes that any characteristic
feature of ↵ di↵erent from k0 remains a typical attribute of � ? ↵.
Indeed, let h be such a feature and suppose by reductio ad absurdum that
there exists an element z of Typ (� ? ↵) that does not fall under h. Choose
an arbitrary element y of Ext �\Ext↵\(

T
(Ext k)

k2⌅(↵)�{k0}). Then z �
h

y

and z �
k

y for any characteristic feature k of ↵, k 6= k0. From this follows
that z �⌧

↵

y. But this contradicts the fact that z is a �⌧

�?↵

-maximal element
of Ext (� ? ↵). This shows that h applies to Typ (� ? ↵), and h is therefore
a typical attribute of � ? ↵.

By this result, we see that inheritance to an exceptional subcategory
still holds for the characteristic features that do not directly contradict the
determiner. If ↵ is the concept to-be-a-bird, with characteristic feature set
⌅(↵) = {to-fly, to-build-nests, to sing to-eat-seeds}, we can conclude that,
typically, walking birds sing, walking birds build nests and walking birds eat
seeds.
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6.2 Over-category induction

Over-category induction is the process through which a property that is
known to hold for a subcategory can be raised to a whole category. For
instance (Connolly et al., 2007), knowing that setters are susceptible to dys-
plasia, can one conclude that all dogs are susceptible to dysplasia ? This
problem may be seen as the converse of that of within-category induction.
However, it slightly di↵ers in that one has to distinguish between essen-
tial and characteristic attributes. The essential attributes pose no problem
in within-category induction, because any essential attribute of a concept
remains an essential attribute of its subconcepts (recall (see 3.2) that the
essential attributes of a concept are those that apply to every exemplar of
the concept). On the contrary, an essential attribute of a subcategory need
not hold for the whole category : ducks have webbed feet, but this is not
generally true for birds. The problem of over-category induction is therefore
the following one: what are the essential attributes of a subcategory that
generically apply to the whole category ?

6.2.1 The case of compound concepts

Over-category induction has an evident solution when the considered sub-
concept is obtained by determining the basic one through one of its typical
attributes. In this case indeed if � is a typical attribute of ↵, every es-
sential attribute of � ?↵ becomes a typical attribute of ↵. This comes
from the fact that one has Typ↵ ✓ Ext �, hence Typ↵ ✓ (Ext � \Ext↵) =
Ext (� ? ↵). Any essential attribute of � ? ↵ therefore applies to Typ↵.

From the fact that birds generally fly and that all flying-birds have feath-
ers with remiges, we can thus conclude that birds generally have feathers
with remiges.

6.2.2 Typical subconcepts

Let us consider again the concept to-be-a-bird. When an agent says that the
robin is a typical exemplar of this concept, she rests her assertion on the fact
that robins inherit all the attributes that a typical bird should have: to fly,
to sing, to live in the trees, etc. This inheritance property then extends from
individual items to the whole category of robins, thus becoming an essential
property of the concept ‘to-be-a-robin’. Each exemplar of to-be-a-robin is a
typical instance of to-be-a-bird. This leads to the following notion: a concept
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� is a typical subconcept of ↵ if each exemplar of � is a typical instance of ↵,
that is if Ext � ✓ Typ↵. Note that such a concept is necessarily smooth in
↵.

Let now � and � be two typical subconcepts of ↵, and h an essential
feature of �. Suppose that over-category induction holds for h, so that h

becomes a typical attribute of ↵. Then, since Ext � ✓ Typ↵, h must be
also an essential feature of �. This shows that a feature of � can extend to a
typical attribute of ↵ only if it is an essential feature of all typical subconcepts
of ↵. In other words, this feature must not be specific to �.

The distinction between specific and non-specific features intervened dur-
ing the experiments conducted on category-based induction (Connolly et al.,
2007). The predicates that were the best candidates for induction to the
mother category were the so-called blank predicates. For the participants,
these predicates did not bear any special meaning, they were liable to apply
to any category that was considered close enough to the tested one. On the
contrary, features that were tightly related or specific to the source category
had to be discarded.

To make this notion precise, let us say that an essential attribute is non-
specific for a typical subconcept � of ↵ if it is shared by all the typical
subconcepts of ↵. For instance, to-have-webbed-feet is a non specific feature
of ducks as a subcategory of aquatic-birds.

This distinction provides an answer to the over-category induction prob-
lem, at least in the case where ↵ is a featured concept. Indeed, let � be a
typical subconcept of ↵ and k an essential feature of �. If k remains a typical
attribute for ↵, we have seen that k is non-specific. Conversely, suppose that
k is a non-specific feature of �. Denote by f1, f2, . . . fn the characteristic fea-
ture features of ↵, and let � be the ’pseudo-concept’ � = f1 ? f2 ? . . . ? fn ? ↵.
We may see � as the concept to-be-a-typical-↵ that parallels the notion of
typical object introduced by Desclés (Desclés & Pascu, 2011). Note that
Ext � = Ext↵ \ Typ↵, that is Ext � = Typ↵, showing that � is a typical
subconcept of ↵. This implies now that k becomes an essential feature of
�, and therefore applies to Ext �, hence to Typ↵. This shows that h is a
typical attribute of ↵.

The above result shows that an essential feature of � extends to
a typical attribute of ↵ if and only if it is non-specific to �. For
instance, to-have-webbed feet applies to the category of aquatic birds, but
not to the whole category of birds.
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6.3 Induction through resemblance

When a concept ↵ is su�ciently close to a concept �, one expects that some
attributes that hold for the typical instances of � will also hold for the typical
attributes of ↵: for example some attributional properties should transpose
from bats to birds, from horses to cows or from camels to dromedaries.

If ↵ is maximally �-resemblant, it follows from section 5.1 that one has
Typ↵ ✓ Typ � : any typical attribute of � therefore typically applies to ↵.
Apart from this trivial case, one may wonder if a similar answer may hold
in the case where the �-resemblance degree of ↵, although not maximal, is
very close to 1.

Recall that the � resemblance degree of ↵ is �

⇢

�

(↵) = Min

x2Typ↵

�

⇢

�

(x),

where �

⇢

�

(x) =
⌃f2 ⇧(�)sf �f (x)

⌃f2⇧(↵)sf
.

Suppose that �⇢
�

(↵) � 1� |�(�)|
⌃f2⇧(�)sf

. Then, given a typical instance x

of ↵, one has �

f

(x) 6= 0 for every characteristic feature of �. Indeed, if

�

h

(x) = 0 for some element h of ⌅(�), this would imply �

⇢

�

(x) < 1� |�(�)|
⌃f2⇧(�)sf

,

because the salience degree of h, as a characteristic feature of �, is greater
than |�(�)|.

In the particular case where the applicability of the characteristic features
of � are measured by a two-valued degree function, this result means that
if ↵ su�ciently resembles to �, every characteristic feature of �

becomes a typical attribute of ↵.
This result shows that Induction through resemblance is accounted for by

the proposed model, as was the case for within and over-category induction.

7 Conclusion

Order relations seem to provide an economical as well as a powerful tool
for the study of categorization. For the class of featured concepts, they
accurately model the way a given agent may understand a concept. They
constitute an interesting alternative that explains and foresees classical prob-
lems linked with concept combination or category-based induction. It is to
be hoped that experimental studies will confirm the adequacy between this
model and the reality.
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