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I- INTRODUCTION, RECALL, NOTATIONS AND DEFINITIONS

The Riemann’s function ζ (see [2]) is a complex analytic function that has

appeared essentially in the theory of prime numbers. The position of its

complex zeros is related to the distribution of prime numbers and is at the

crossroads of many other theories.

The Riemannn’s hypothesis (see [5] and [6]) conjectured that all nontrivial

zeros of ζ are in the line x = 1
2 .

The Mobius function generally designates a particular multiplicative func-

tion, defined on the strictly positive integers and with values in the set

{−1, 0, 1} :

µ(n) =



0 if n has at least one repeated factor

1 if n=1

(−1)k if n is the product of k distinct prime factors
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In number theory, the function of Mertens is defined by M(n) = ∑
1≤k≤n

µ(k)

and it has been falsely conjectured by Mertens that the absolute value of

M(n) is always less than
√
n , and that if we can prove that the absolute

value of M(n) is always less than
√
n, so Riemann’s hypothesis is true.

Figure 1 – Mertens function to n=10,000,000

This conjecture is passed for real for a long time. But in 1984, Andrew

Odlyzko and Hermante Riele [1] show that there is a number greater than

1030 which invalidates it (See also [3] and [4]) However it has been shown

that the Riemann’s hypothesis [2] is equivalent to the following conjecture :

Conjecture : M(n) = O(n 1
2 +ε).

The purpose of this paper is to prove this conjecture and to deduce a new

proof of Riemann’s hypothesis.

Recall also that in [7] it has been shown that prime numbers are defined by

a function Φ , follow a law in their appearance and their distribution is not

a coincidence.

II- THE PROOF OF THE CONJECTURE :

Proposition 1 : M(n) = O(n 1
2 +ε)

Lemma 1 : Let ζN(s) = ∑∞
n=N

1
ns . If 0 < s < 1 then : ζN(s) = oN(1)

Note : ζN(s) is defined by extension, and this means that the action of the

force ζN on the particle s becomes weaker when N becomes large.
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Proof of the lemma :

As a reminder, the ζ function of Riemann is a meromorphic and complex

complex analytic function defined for s such that Re(s) > 1 by the Dirichlet

series :ζ(s) = ∑∞
n=1

1
ns

Since the Dirichlet eta function can be defined by η(s) = (1− 21−s) ζ(s)

where : η(s) = ∑∞
n=1

(−1)n−1

ns with 0 < Re(s) we have in particular :

ζ(z) = 1
1− 21−z

∞∑
n=1

(−1)n−1

nz

for z 6= 1 and 0 < Re(z).

This extends the ζ function to the set {z ∈ C\{1}tel que 0 < Re(z)}.

Let : ηN(s) = ∑∞
n=N

(−1)n−1

ns with 0 < Re(s)

And let : ζN(s) = ∑∞
n=N

1
ns

First, by the uniqueness of the extensions of the analytic functions, ζN(s)

is prolonged in {z ∈ C\{1}such taht 0 < Re(z)} by the function ζN(s) =

ζ(s)−∑N−1
n=1

1
ns

And as we have ζ2N(s) = η2N(s) + 2∑∞n=N
1

(2n)s = η2N(s) + 2
2s ζN(s)

It follows that : ζ2N(s) − 1
2s−1 ζN(s) = η2N(s) is defined for any s such that

Re(s) > 0.

So ζ2N(s)− 1
2s−1 ζN(s) = oN(1) because η2N(s) = oN(1) .

If s is such that 0 < s < 1 :

And if lim
N→+∞

ζ2N(s) = −∞ then as ζN(s) = ∑∞
i=N(ζi(s) − ζ2i(s)), we can

assume that ζN(s) < ζ2N(s) - because there is an infinity of such s -, so we will

have ζ2N(s)−ζN(s) = oN(1) because |ζ2N(s)− ζN(s)| <
∣∣∣ζ2N(s)− 1

2s−1 ζN(s)
∣∣∣.

And consequently : ζN(s)− 1
2s−1 ζN(s) = ζN(s)−ζ2N(s)+ζ2N(s)− 1

2s−1 ζN(s) =

oN(1). So ζN(s) = oN(1). which is absurd.

It results that we have lim
N→+∞

ζ2N(s) = lim
N→+∞

ζN(s) = 0

3



M. Sghiar. International Journal of Engineering and Advanced Technology
(IJEAT) ISNN:2249-8958, Volume- 7 Issue-2, December 2017

Hence the lemma is proved.

Proof of the proposition : Let ε such that 0 < ε < 1
2 . Note that we have

one of the possibilities :

i- M(n+ 1) = M(n)

ii- M(n+ 1) = M(n) + 1

iii- M(n+ 1) = M(n)− 1

In any case we have :

∣∣∣∣∣M(n+ 1)
(n+ 1) 1

2 +ε

∣∣∣∣∣ ≤
∣∣∣∣∣M(n)
n

1
2 +ε

∣∣∣∣∣+
∣∣∣∣∣ 1
(n+ 1) 1

2 +ε

∣∣∣∣∣
It follows that :

∣∣∣∣∣M(n+ 1)
(n+ 1) 1

2 +ε

∣∣∣∣∣ ≤
∣∣∣∣∣
n+1∑
k=1

1
k

1
2 +ε

∣∣∣∣∣ =

∣∣∣∣∣∣
+∞∑
k=1

1
k

1
2 +ε
−

+∞∑
k=n+2

1
k

1
2 +ε

∣∣∣∣∣∣
And hence for n large enough and by using the lemma 1 we have :

∣∣∣∣∣M(n+ 1)
(n+ 1) 1

2 +ε

∣∣∣∣∣ ≤
∣∣∣∣ζ(1

2 + ε)
∣∣∣∣+ o(1)

And the result is deduced.

Lemma 2 :

1
ζ(z) = z

∫ +∞

1

M(x)
xz+1 dx

For z such taht Re(z) > 1

Proof : We have :

M(n) =
∑

1≤k≤n
µ(k)

where µ(k) is the Mobius function.

We have the link between the inverse of the Riemann zeta function, the
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Möbius function and the Euler product :

1
ζ(z) =

+∞∏
pk

(1− 1
pzk

) =
+∞∑
n=1

µ(n)
nz

where Re(z) > 1, pk is the k-th prime number.

Mertens function, M(x) is closely linked with the positions of zeros of the

Riemann zeta-function ζ(z). If we define M(0) = 0, we get this relation :

1
ζ(z) =

+∞∑
n=1

µ(n)
nz

=
+∞∑
n=1

M(n)−M(n− 1)
nz

=
+∞∑
n=1

M(n)
nz

−
+∞∑
n=1

M(n− 1)
nz

=
+∞∑
n=1

M(n)
nz

−
+∞∑
n=1

M(n)
(n+ 1)z

=
+∞∑
n=1

M(n)( 1
nz
− 1

(n+ 1)z ) =
+∞∑
n=1

M(n)
∫ n+1

n

z

xz+1dx

= z
+∞∑
n=1

∫ n+1

n

M(x)
xz+1 dx = z

∫ +∞

1

M(x)
xz+1 dx

Since M(x) is constant on each interval [n, n+1[.

So :
1

ζ(z) = z
∫ +∞

1

M(x)
xz+1 dx

Corollary 1 (The Riemann hypothesis) : All non-trivial zeros of ζ are

in the line x = 1
2 .

Proof : By posing M(x) = ∑
1≤k≤x

µ(k) , and by lemma 2, we can write :

1
ζ(z) = z

∫ +∞

1

M(x)
xz+1 dx

The Proposition 1 shows that this integral converges for Re(z) > 1
2 , implying

that 1
ζ(z) is defined for Re(z) > 1

2 . According to this result, it can define a
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function analytic in Re(z) > 1/2 and extend an analytic continuation of 1
ζ(z)

from Re(z) > 1 to Re(z) > 1/2 and by symmetry for Re(z) < 1
2 . Thus, the

only non-trivial zeros of ζ satisfy Re(z) = 1
2 , which is the statement of the

Riemann’s hypothesis.

III- Conclusion :

To prove the Riemann’s hypothesis we needed to prove and use a property

of the Mertens function (Proposition 1). And curiously and inversely for

the proof of this last proposition we have used properties of the Riemann

function, which shows the close link between the Mertens function and the

Riemann function, as shown by the equations above.

Riemann- Mertens- Sghiar
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