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Variational approaches for nonlinear elasticity show that Hill's incremental formulation
for the prediction of the overall behaviour of heterogeneous materials yields estimates
which are too sti� and may even violate rigorous bounds. This paper aims at proposing an
alternative `a�ne' formulation, based on a linear thermoelastic comparison medium, which
could yield softer estimates. It is ®rst described for nonlinear elasticity and speci®ed by
making use of Hashin±Shtrikman estimates for the linear comparison composite; the
associated a�ne self-consistent predictions are satisfactorily compared with incremental and
tangent ones for power-law creeping polycrystals. Comparison is then made with the
second-order procedure (Ponte CastanÄ eda, P., 1996. Exact second-order estimates for the
e�ective mechanical properties of nonlinear composite materials. J. Mech. Phys. Solids, 44
(6), 827±862) and some limitations of the a�ne method are pointed out; explicit
comparisons between di�erent procedures are performed for isotropic, two-phase materials.
Finally, the a�ne formulation is extended to history-dependent behaviours; application to
the self-consistent modelling of the elastoplastic behaviour of polycrystals shows that it
o�ers an improved alternative to Hill's incremental formulation.
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1. Introduction

Nonlinear estimates for the e�ective properties of heterogeneous materials were
®rst proposed for predicting the elastoplastic behaviour of polycrystals. The initial
contributions of the Taylor (1938) type, as well as those using an elastic
description of the internal interactions between the crystals (KroÈ ner, 1961), make
no recourse to any linearisation procedure. Hill's (1965) incremental formulation
of the elastoplastic self-consistent scheme is based on the use of instantaneous or
`tangent' (multibranched) moduli or compliances relating the stress and strain rate
tensors at both the local and the global scales within a step-by-step
homogenisation procedure. It is the actual starting point of a whole range of
schemes using linearisation of the constitutive relations of the phases. This
incremental formulation has been considered for a long time the standard for
deriving nonlinear estimates, especially for `hereditary' behaviours, i.e., for those
behaviours which exhibit dependence of the current response on the loading path.
However, an incremental formulation is no longer necessary for non-hereditary
behaviours such as steady-state creep. Hutchinson (1976) extended Hill's
procedure to this case by using tangent creep compliances instead of elastoplastic
ones. He noticed that, for power-law creep, Hill's formulation may be integrated
into a `total' one making use of `secant' creep compliances. Other secant moduli
or compliances have also been de®ned (Berveiller and Zaoui, 1979; Tandon and
Weng, 1988) leading to a (classical) `secant formulation', closely related to Hill's
incremental formulation.

The development of variational approaches (Willis, 1983; Talbot and Willis,
1985; Ponte CastanÄ eda, 1991; Suquet, 1993) for behaviours deriving from a single
potential (nonlinear elasticity or viscosity) has made it possible to compare some
of these nonlinear estimates to rigorous bounds of Hashin±Shtrikman type. A
general conclusion (Gilormini, 1996) is that both the incremental and the
(classical) secant formulations lead to estimates that are too `sti�' and can even
violate these bounds in some cases. The main reason for this is that the local
tangent or secant moduli, which should vary from point to point, even inside a
given phase, are assumed to be piecewise uniform (i.e., uniform per phase) and
de®ned at some reference stress or strain which, as a rule, is taken to be the
average stress or strain per phase.

Two di�erent routes have been explored in order to overcome this di�culty. On
the one hand, several modi®cations have been brought into the secant approach
to take better into account the stress (or strain) ¯uctuations within the individual
phases. A ®rst attempt was made for particulate composites by Qiu and Weng
(1992). It consists in using the average shear energy in the matrix to de®ne its
e�ective stress. However, the result is valid only for incompressible materials. A
more general theory, valid for arbitrary microstructures and independent of any
assumption of phase incompressibility, has been proposed by Suquet (1995) (see
also Suquet, 1997). It is based on second-order moments in each individual phase
of the linear comparison solid. The use of second-order moments has also been
considered independently by Hu (1996) and Buryachenko (1996). Interestingly, it

R. Masson et al. / J. Mech. Phys. Solids 48 (2000) 1203±12271204

2



has been shown (Suquet, 1995; Ponte CastanÄ eda and Suquet, 1998) that this
secant theory based on second-order moments coincides with Ponte CastanÄ eda's
(1991) variational procedure; this property ensures that the resulting estimates do
not lead to the violation of any bound. On the other hand, new linearisations
have been searched for, with the objective of generating softer estimates even
when using the classical reference quantities. This is the case for the `second-order
procedure' proposed by Ponte CastanÄ eda (1996) which makes use of a second-
order Taylor development of the strain or stress potentials. This paper aims at
proposing an alternative solution, the `a�ne formulation', initially suggested by
Rougier et al. (1994), which makes use of the stress±strain relations instead of the
potentials; we will discuss both its limitations and its advantages with respect to
other procedures.

We ®rst de®ne this a�ne formulation for nonlinear elasticity or viscosity
(Section 2), with an application to the self-consistent scheme in view of a
comparison with the incremental formulation as well as with the tangent
formulation proposed by Molinari et al. (1987) for power-law creep. Next, we
compare the a�ne formulation with the second-order procedure and we extend
this comparison to other schemes, speci®cally for two-phase composites (Section
3). Finally, we apply the a�ne formulation to hereditary behaviours, with special
emphasis on crystalline elastoplasticity for a direct comparison with Hill's
formulation (Section 4).

2. The a�ne formulation for nonlinear elasticity or viscosity

2.1. Principle of the a�ne formulation

An incremental formulation is not required for nonlinear elasticity and
viscosity. Therefore, the tangent moduli or compliances, associated with some
given initial prestress or prestrain (or prestrain rate), could give, at any stage, a
better description of the current local behaviour than any secant ones. We deal
here with nonlinear elasticity, but all the forthcoming developments are still valid
for viscous materials with eee�x� denoting the strain rate. We consider a given
deformed state (0) of a representative volume element O of the heterogeneous
material under consideration. At this stage, let eee�0��x� and sss�0��x� be the strain and
stress tensors at some point x in some phase s. The nonlinear stress±strain
relations for this phase read sss � Hs�eee� or equivalently eee � Gs�sss�: Their linearised
`a�ne' approximation at this stage (0) reads at x

sss � L�0�s �x�:eee� ttt�0��x�, or, equivalently, eee � M�0�s �x�:sss� ZZZ�0��x� �1�
with

L�0�s �x� �
dHs

deee

�
e�0��x�

�
, ttt�0��x� � Hs

�
eee�0��x�

�
ÿ L�0�s �x�:e�0��x�
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M�0�s �x� �
dGs

dsss

�
sss�0��x�

�
, ZZZ�0��x� � Gs

�
sss�0��x�

�
ÿM�0�s �x�:sss�0��x�: �2�

The tensors L�0�s and M�0�s are reciprocals of each other and exhibit diagonal
symmetry due to the existence of a stress or strain potential (see Section 3). When
this procedure is applied throughout O, the nonlinear-elastic heterogeneous body
is transformed into a linear thermoelastic body (by identifying the prestrain or
prestress tensors with their thermal analogues). This `linear thermoelastic
comparison composite' is a continuously heterogeneous body, i.e. a composite
with in®nitely many phases. Assume for a while that we can deal with this
di�culty in the purely elastic case (no prestrain or prestress ®eld) and derive the
corresponding strain and stress localisation tensor ®elds A�0�s �x� and B�0�s �x�: They
can be used to get the overall constitutive equations of the thermoelastic medium
by:

Åsss � ÄL
�0�
:Åeee� Ättt�0�, ÄL

�0� �


L�0�:A�0�

�
, Ättt�0� �



ttt�0�:A�0�

�
Åeee � ÄM

�0�
: Åsss� ÄZZZ�0�, ÄM

�0� �


M�0�:B�0�

�
, ÄZZZ�0� �



ZZZ�0�:B�0�

�
�3�

where h�i indicates a spatial average. These equations can only be used when the
strain or stress ®elds eee�0��x� or sss�0��x� are known. They have to be combined with
strain or stress localisation equations for the thermoelastic problem (which do not
derive, in the general case, from the knowledge of A�0�s �x� and B�0�s �x�); this results
in a global set of implicit equations for eee�0��x� or sss�0��x�:

2.2. Approximation of piecewise uniformity

Such a treatment is not practical and one has, as usual, to adopt the
simpli®cation of piecewise uniform moduli and prestresses (compliances and
prestrains) per phase. This is done by referring these quantities to some reference
strain eees (stress ssss� in every phase. This choice is an essential one. To make clearer
the speci®c aspects of the a�ne approach with respect to other classical
formulations, we prescribe, as do those, the reference strain (stress) to be the
average per phase of the strain (stress) ®eld. The procedure is detailed for
prestrains and compliances; dual results are obtained upon appropriate
substitution of the relevant ®elds and variables.

Thus, at any stage, every phase s is supposed to obey the linearised constitutive
equations (for clarity, the index 0 referring to the current stage is omitted):

eee � Ms:sss� ZZZs, Ms � dGs

dsss �ssss �, ZZZs � Gs�ssss � ÿMs:ssss: �4�

We emphasise that the approximate ®elds eee and sss in Eq. (4) are di�erent from the
actual ®elds in the nonlinear composite. They will be denoted by eeeTHE and sssTHE in
Section 3 for clarity, but this distinction is not essential here. Notice that the
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average stress and strain are related by eees � Gs�ssss� in each phase s, which, for
typical nonlinear elastic behaviour, leads to overestimating the local, and therefore
the overall sti�ness. Formally, Eq. (3) are unchanged but they now only use per
phase average linear localisation tensors As or Bs, e.g.,

Åeee � ÄM: Åsss� ÄZZZ, �5a�

ÄM �
X
s

csMs:Bs, �5b�

ÄZZZ �
X
s

csZZZs:Bs, �5c�

Bs � hBis, �5d�
with cs denoting the volume fraction of phase s and h�i the spatial average over
phase s. Additional localisation equations, relating the reference stresses ssss,
identi®ed with the per phase stress averages in the thermoelastic comparison
composite, to the global stress Åsss and the prestrains ZZZs are still needed: they have
to be speci®ed independently, according to the chosen homogenisation scheme.
Two-phase materials provide a noticeable exception since Levin's theorem (Levin,
1967) gives then directly

c1�sss1 ÿ B1: Åsss1� � ÿc2�sss2 ÿ B2: Åsss� � �M1 ÿM2�ÿ1:
ÿ

ÄZZZÿ hZZZi�: �6�

2.3. Hashin±Shtrikman estimates

For multiphase materials, we can adopt Hashin±Shtrikman type estimates for
which the localisation equations read

ssss �
�

I � Q0:dddM0
s

�ÿ1
:
�

Åsss0 � Q0:� ÄZZZÿ ZZZs �
�

�7�

with I is the-fourth order unit tensor, dddM0
s the deviations of the local compliances

with respect to those of the reference medium (say M0), Åsss0 an auxiliary stress
tensor ensuring hsssi � Åsss and Q0 the stress Green tensor de®ned as

Q0 �
�

EE
DDD0�xÿ x 0 � dx 0, x 2 EE: �8�

Here DDD0 is the stress Green operator of the reference medium and EE is the
representative ellipsoid associated with the assumed ellipsoidal spatial distribution
(Willis, 1977) of the phases. Dual variants of Eqs. (7) and (8) are derived for eees
and the strain Green tensor P0 upon substitution of Ms, M0, Åsss0, Åsss, ÄZZZ, ZZZs and DDD0

by Ls, L0, Åeee0, Åeee, Ättt, ttts and the strain Green operator GGG0, respectively.
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Hill's compliance constraint tensor M�0 can be used to rewrite Eq. (7) as an
interaction equation of an inclusion of phase s embedded in an in®nite reference
medium:

eees ÿ Åeee0 � ÿM�0:�ssss ÿ Åsss0�, M�0 �
ÿ
Q0
�ÿ1ÿM0 �9�

with eees�Ms:ssss� ZZZs and Åeee0�M0: Åsss0� ÄZZZ (the dual form would involve the sti�ness
constraint tensor L�0��M�0�ÿ1��P0�ÿ1ÿL0).

When the self-consistent scheme is used, the reference medium is the searched
homogeneous equivalent medium: exponents 0 for P, Q, dddLs and dddMs must be
changed to SC and L0, M0 into ÄL

SC
and ÄM

SC
: Note that Åsss0 (respectively Åeee0� is

then equal to Åsss (respectively Åeee� and BSC
s and M�SC are linked by the relation:

BSC
s �

ÿ
Ms �M�SC

�ÿ1
:
ÿ

ÄM
SC �M�SC

�
: �10�

The a�ne formulation can be applied to these estimates by solving the implicit set
of nonlinear equations (4), (5) and (7) for the unknown quantities ssss (or from
their dual expressions for eees). This can be performed numerically by the use of a
(modi®ed) ®xed-point iterative procedure: for a given macroscopic stress Åsss, we
start at step (k ) with initial values sss�k�s obtained at step �kÿ 1� (for k = 1, we set
sss�1�s � Åsss, 8s), from which we derive M�k�s and ZZZ�k�s by Eq. (4) and ÄZZZ�k� and ÄM

�k�
by

Eq. (5). Then Eq. (7) gives sss�k�1�s as solution of the nonlinear equation

sss�k�1�s �
�

I � Q0�k�:dddM0�k�
s

�ÿ1
:
n

Åsss�k�0 � Q0�k�:
h

ÄZZZ�k� ÿ Gs

�
sss�k�1�s

�
�M�k�s :sss�k�1�s

io
�11�

where sss�k�1�s has been used instead of sss�k�s in the last two terms for accelerated
convergence (this refers to a `nonlinear inclusion' embedded in the in®nite matrix
de®ned by M0 and ÄZZZ�k� subjected to Åsss�k�0 at in®nity). The procedure is repeated
until convergence is attained for the ssss: For the self-consistent scheme, the
computation of ÄM

SC
requires an additional iterative loop within each of the above

steps.

2.4. Comparison of the a�ne and tangent formulations

The a�ne formulation makes use of the same linearisation scheme of the local
constitutive equations as the one which was originally proposed for the self-
consistent modelling of power-law creep of polycrystals, within a ®nite strain
framework, by Molinari et al. (1987) and then extended somewhat by Lebensohn
and TomeÂ (1993). In this section, we ®rst emphasise the main di�erences between
this formulation, restricted to small strains, hereafter referred to as the `tangent
formulation' for reasons given in the sequel, and the a�ne formulation. An
illustrative example is then used to compare the predictions of the a�ne, the
tangent and the incremental formulations. Throughout this section eee will refer to
the strain rate.
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2.4.1. Analysis of the tangent formulation
The a�ne and tangent formulations di�er from each other in the way they

tackle the localisation problem. The overall linearised constitutive equations have
the same form (5) but the tangent e�ective compliances ÄM

TAN
and prestrain ÄZZZTAN

obey

ÄM
TAN � d ÄG

TAN

d Åsss
� Åsss�, ÄZZZTAN � ÄG

TAN� Åsss� ÿ ÄM
TAN

: Åsss, �12�

instead of Eqs. (5b) and (5c). Here ÄG
TAN� Åsss� is a `tangent' estimate for the overall

strain response. Such a treatment requires the stress dependence of this function
to be known a priori. That is why the tangent formulation has been restricted to
power-law creep with the same exponent n throughout the material, a case for
which the authors have argued, after Hutchinson (1976), that ÄG

TAN� Åsss� obeys the
same power-law dependence. Let us adopt the same restriction for comparison;
the local strain eees and prestrain ZZZs in each phase s then satisfy:

eees � mMs:ssss, �13a�

ZZZs � �mÿ 1�Ms:ssss, 0 < m � 1

n
< 1: �13b�

The same relations hold at the macroscopic level for the tangent approach:

Åeee � m ÄM
TAN

: Åssss, �14a�

ÄZZZTAN � �mÿ 1� ÄM
TAN

: Åsss: �14b�
Let us ®rst show that the a�ne and tangent procedures do not coincide by
proving that Eq. (14b) is not obeyed by ÄZZZAFF and ÄM

AFF
: From Eqs. (5c) and (13b),

we have

ÄZZZAFF �
X
s

cs
tBs:ZZZs � �mÿ 1�

X
s

cs
tBs:Ms:ssss �15�

where tB is transposed from B: From the classical thermoelastic relation between
the macroscopic and local elastic strains and tB, for their a�ne analogues we
have:

ÄM
AFF

: Åsss � htB:M:sssi �
X
s

cs


tB:Ms:sss

�
s: �16�

Since, due to the intraphase heterogeneity, we have in general

tB:Ms:sss

�
s 6� tBs:Ms:ssss, 8s, �17�

we conclude from Eqs. (15) and (17) that ÄZZZAFF 6� �mÿ 1� ÄM
AFF

: Åsss, in contrast with
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Eq. (14). Thus, the a�ne formulation does not reduce to the tangent one which
does not comply with the general framework of homogenised linear
thermoelasticity.

An important di�erence can be pointed out between the tangent and a�ne
treatments of the self-consistent scheme. Hill's expression (9), can be preferred to
the more explicit form (7), but it has to be used simultaneously with the actual
linearised constitutive equations which refer to a tangent description. On the other
hand, according to the tangent approach, Hill's equation for phase s, applied to
the self-consistent scheme, is combined with the relations

eees � mMs:ssss Åeee � m ÄM
TAN

: Åsss �18�
which express a secant-like formulation. Consequently (see Lebensohn and TomeÂ ,
1993), Eqs. (9) and (18) can be combined to give

ssss � bbbTAN
s : Åsss, bbbTAN

s �
ÿ
mMs �M�TAN

�ÿ1
:
ÿ
mMTAN �M�TAN

�
: �19�

Referring to Eq. (10), this quasi-stress localisation tensor bbbTAN
s combines a `secant'

description of the local and global behaviours with a tangent analysis of the
inclusion/matrix interaction. This inconsistency is likely to be responsible for the
odd behaviour of the tangent method at large n values where its predictions tend
towards the lower Reuss-type bound (see hereafter). The same comment can be
made for the initial version of the tangent model (Molinari et al., 1987) too, which
used an isotropic approximation of the overall compliance tensor ÄM

TAN
:

2.4.2. Steady creep of fcc polycrystals
The a�ne formulation is applied next to the self-consistent modelling of the

steady creep of polycrystals for comparison with both the tangent and the
incremental predictions. This polycrystal is an aggregate of perfectly bonded
crystals which di�er only by their lattice orientation. In each single crystal, the
creep deformation is only due to glide on slip systems a, with the unit normal to
the slip plane na and the unit slip direction ma: The orientation tensor Ra which
relates the resolved shear stress to the stress tensor by ta � Ra:sss is

Ra � 1

2
�na 
ma �ma 
 na� �20�

where 
 denotes a tensorial product. Note that ma and ÿma are taken to be
associated with two di�erent systems so that ta is always nonnegative. Though the
a�ne approach could be applied to any shear stress±shear strain rate relations,
including dissimilar relations for di�erent sets of slip systems, attention is
restricted, for comparison with the tangent predictions, to power-law creep with
the same exponent for all systems: ga� ga0�ta=ta0�n with ga the shear strain rate on
system a, ga0 a reference shear rate and ta0 a (positive) reference shear stress. The
relation between the local creep strain rate eee and stress sss in phase s, which refers
to a set of grains with the same lattice orientation, reads
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eee �
X
a

ga�sss�Ra �
X
a

ga0
Ra:sss
ta0

!n

Ra � Gs�s� �21�

and can be linearised about the reference stress ssss according to Eq. (4) with

Ms � n
X
a

ga0
ta0

Ra:ssss
ta0

!nÿ1
Ra 
 Ra, ZZZs � �1ÿ n�Gs�ssss �: �22�

The linear self-consistent scheme with spherical symmetry is used to model an
untextured fcc polycrystal. The a�ne estimate of the overall response Åeee to a
prescribed stress Åsss is derived from Eqs. (5) and (22), combined with the
localisation equations (7). Hill's constraint tensor M�SC can be used as well, which
leads to estimates for ssss through the resolution of the following set of equations:

eees ÿ Åeee � ÿM�SC:�ssss ÿ Åsss�, M�SC �
ÿ
Q�SC

�ÿ1ÿ ÄM
SC

ÄM
SC �

X
s

csMs:B
SC
s , BSC

s �
�

I � QSC:dddMSC
s

�ÿ1
: �23�

These equations can also be used in order to derive both the incremental
predictions, upon substitution of the tangent compliances Ms by the anisotropic
secant ones mMs, and the tangent ones, upon substitution of the stress localisation
tensors BSC

s by tensors bbbTAN
s as given by Eq. (19). Thus the a�ne, tangent and

incremental estimates can be determined with the same numerical procedure,
adapted from the one proposed by Molinari et al. (1987).

Glide is assumed to occur on the twelve octahedral slip systems and shear strain
rates to obey a power-law with homogeneous reference shear strain rates g0 and
shear stresses t0 throughout the polycrystal. For a tensile prescribed overall stress,
the relation between the equivalent overall stress �seq and strain rate �eeq reads
(Hutchinson, 1976) �eeq � g0� �seq= ~s0�n so that the reference stress ~s0 governs the
tensile overall creep response of the polycrystal. Due to the transverse isotropy of
the creep compliance tensor and to incompressibility, QSC can be derived
straightforwardly (Hutchinson, 1976). Classically, we take advantage of
symmetries to reduce averages on one standard triangle and proceed with
increasing values of n. Corresponding a�ne, tangent and incremental estimates of
~s0 as well as upper Voigt±Taylor and lower Reuss bounds are reported in Fig. 1.
As pointed out by Hutchinson (1976), Hill's incremental estimate tends towards
the Voigt±Taylor upper bound while, as expected, the a�ne prediction is
signi®cantly softer and is likely to tend towards some intermediate value between
the Voigt and Reuss bounds (additional evidence for this will be found in Fig. 2
for two-phase materials). The tangent estimate softens as n increases, which
enhances the intracrystalline heterogeneity, and deviates from the a�ne one
tending towards the Reuss bound.
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3. Limitations of the a�ne procedure

3.1. E�ective potential and duality gap

All previous derivations have been written in terms of stress±strain relations.
For nonlinear elasticity or steady state creep (viscoplasticity), the local behaviour
of the constitutive phases derives from a strain potential (or dissipation) ws�eee� or a
stress potential us�sss�, which are Legendre transforms of each other:

sss � dws

deee
�eee�, eee � dus

dsss
�sss� and us�sss� � sup

eee

�
eee:sssÿ ws�eee�

�
: �24�

The overall behaviour derives also from a strain ~w�Åeee� or a stress ~u� Åsss� potential,
which are Legendre transforms of each other as well, and are given by:

~w�Åeee� � inf
eee2K�Åeee�

*X
s

ks�x�ws�eee�
+

and ~u� Åsss� � inf
sES� Åsss�

*X
s

ks�x�us�sss�
+
, �25�

where K�Åeee� (or S� Åsss�� is the set of compatible strain (or statically admissible
stress) ®elds with average Åeee (or Åsss); ks is the characteristic function of phase s.

Fig. 1. Evolution of the normalised reference stress ~s0=t0 of an untextured fcc polycrystal with the

strain-rate sensitivity m � 1=n: Predictions of the a�ne (AFF), incremental (INC) and tangent (TAN)

procedures combined with the self-consistent linear estimate, as well as Voigt and Reuss bounds are

plotted for uniaxial tension.

10



The question of the existence of such e�ective potentials from which the stress±
strain relation predicted by the a�ne procedure would derive can be appropriately
addressed through the comparison between the a�ne procedure and the second-
order procedure recently proposed by Ponte CastanÄ eda (1996), which, by
construction, derives from a potential. A related question is the equivalence of the
prescribed strain approach and the dual approach of a prescribed overall stress.

3.1.1. The second-order procedure
We provide here a simpli®ed description of this procedure and refer to Ponte

CastanÄ eda (1996) and Ponte CastanÄ eda and Suquet (1998) for more details. It is
based on a second-order Taylor expansion of the strain potential in each phase s
about some reference strain eees, to be speci®ed later:

ws�eee�1ws�eees � � ssss:�eeeÿ eees � � 1

2
�eeeÿ eees �:Ls:�eeeÿ eees � �26�

where ssss� dws

deee �eees� is the stress associated to the reference strain and Ls� d2ws

deeedeee �eees� is
the tangent modulus at the same reference strain. Such an expansion for the local
potential is equivalent to a ®rst-order expansion similar to Eq. (1) for the stress±
strain relation, when Hs � dws

deee : Combining Eqs. (25) and (26) provides an estimate
~wSOE for the e�ective potential ~w�Åeee� of the composite:

~wSOE�Åeee, eee1, . . . ,eeeN� �
X
s

cs

�
ws�eees � ÿ ssss:eees � 1

2
eees:Ls:eees

�
� ~P�Åeee, eee1, . . . ,eeeN � �27�

with

~P�Åeee, eee1, . . . , eeeN� � inf
eee2K�Åeee�

*
1

2
eee:

 X
s

ksLs

!
:eee�

 X
s

ksttts

!
:eee

+
, �28�

where, as in Eq. (1), ttts�ssssÿLs:eees: The last minimisation is a problem for a linear
thermoelastic comparison composite with the phase distribution of the nonlinear
composite and with homogeneous local moduli Ls and prestresses ttts in each phase
s. Its solution takes the form (Willis, 1981):

~P�Åeee� � 1

2
Åeee: ÄL:Åeee� ~ttt:Åeee� ~f, �29�

where the e�ective moduli ÄL and the e�ective prestress ~ttt are computed according
to the dual expression of Eq. (5) with help of some linear localisation tensors As

relevant to the microstructure � ~f is the elastic energy at vanishing overall strain,
related to internal strain incompatibilities). The macroscopic stress is computed by
taking the derivative of ~w�Åeee� with respect to Åeee: One can check that

@ ~P

@eees
� 1

2
csheee:Ns:eeeisÿcsheeeis:Ns:eees with Ns � d3ws

deeedeeedeee
�eees �, �30�
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so that

ÅsssSOE � ÅsssTHE � 1

2

X
s

cs

�
Ns:

deees
dÅeee

�
::

�eeeÿ eees � 
 �eeeÿ eees �� �31�

where ÅsssTHE � ÄL:�eee � ~ttt is the macroscopic stress in the thermoelastic comparison
composite. The above expressions provide an estimate for the e�ective strain
potential and the e�ective stress related to the macroscopic strain Åeee for any choice
of reference strains eees: An appropriate choice is to prescribe, as in Section 2.2, the
reference strains to be equal to the average strains in every phase of the linear
thermoelastic comparison composite subjected to the same overall strain: 8s, eees�
heeeis: This prescription leads to a simpler expression of the estimate of the overall
nonlinear potential (Ponte CastanÄ eda and Suquet, 1998):

~wSOE�Åeee� �
X
s

cs

�
ws�eees � � 1

2
ssss�eees �:��eeeÿ eees �

�
: �32�

The second-order procedure can also be applied in the dual situation of a
prescribed stress and leads to estimates for the e�ective stress potential and the
corresponding macroscopic strain. Second-order Taylor expansions of the local
stress potential about some reference stresses sssss , when plugged into Eq. (25),
provide an estimate for the e�ective stress potential involving the stress potential
of some linear thermoelastic comparison composite:

~uSOE� Åsss� �
X
s

cs

�
us
ÿ
sssss
�ÿ eeess :sss

s
s �

1

2
sssss :Ms:sssss

�
� 1

2
Åsss: ÄM: Åsss� ÄZZZ: Åsss� ~g �33�

where, as previously, eeess � dus
dsss �sssss � and Ms� d2us

dsssdsss �sssss �, ZZZs� eeess ÿMs:sssss and ÄM and ÄZZZ
are the e�ective compliances and prestrains of this comparison composite � ~g is its
complementary energy at vanishing overall stress, related to residual stresses). The
overall strain is obtained by derivation with respect to Åsss:

ÅeeeSOE � ÅeeeTHE � 1

2

X
s

cs

�
Os:

dsssss
d Åsss

�
::

ÿ
sssÿ sssss

�
 ÿsssÿ sssss
��

s
�34�

where ÅeeeTHE � ÄM: Åsss� ÄZZZ is the macroscopic stress in the thermoelastic comparison
composite and with Os� d3us

dsssdsssdsss�sssss �: The reference stresses are the average stresses
in the phases in the thermoelastic comparison composite: sssss �hssssis:

3.1.2. Comparison between a�ne and second-order procedures
The linear thermoelastic comparison composite referred to by the a�ne and the

second-order procedure for a given prescribed strain Åeee are identical. Both
approaches di�er only by the way the overall stress is computed. While in the
a�ne procedure it is identi®ed to the overall stress in the comparison composite
according to ÅsssAFF � ÅsssTHE, it is given by Eq. (31) in the second-order procedure.
Both results are di�erent because of the additional term in Eq. (31) which reads,
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with eees � heeeis:

ÅsssSOE ÿ ÅsssAFF � 1

2

X
s

cs

�
Ns:

deees
dÅeee

�
::
�heee
 eeeisÿheeeis
heeeis

�
: �35�

The second moment heee
 eeeis of local strains is generally larger than heeeis 
 heeeis (in
the sense of quadratic forms) because of the strain heterogeneity within the phases
in the comparison composite. Exceptions correspond to materials with a phase
distribution such that the local ®elds in the comparison composite are uniform in
all phases exhibiting a nonlinear behaviour (i.e., Ns 6� 0): examples of such
materials are laminates and matrix-inclusion composites with a linear matrix and
nonlinear ellipsoidal inclusions at low volume fraction. This intraphase
heterogeneity is also the reason for which the a�ne estimate does generally not
derive from an e�ective potential. Note also that, because of the additional term
in Eq. (31), it does not make sense, for the second-order procedure, to identify the
local stresses in the comparison composite to the local stresses in the nonlinear
composite.

The question of the existence or not of a duality gap can be addressed in the
following way: if Åsss�Åeee� is the macroscopic stress due to the prescribed strain Åeee
according to some scheme, does the strain due to this stress according to the dual
version of the same scheme coincide with Åeee? The answer is yes for the a�ne
procedure. This can be made clear by noting that the stresses ssss� dws

deee �eees� related to
the reference strains which solve the equations governing the a�ne procedure for
the prescribed strain Åeee solve the equations that characterise the reference stresses
in the dual approach for a prescribed stress ÅsssAFF�Åeee� � ÅsssTHE�Åeee�: This is mostly
because Ls�eees� and Ms�ssss� are inverse of each other. But these stresses ssss in
general do not solve the corresponding equations for an overall stress ÅsssSOE�Åeee�: The
reference stresses in the dual second-order approach for a prescribed stress ÅsssSOE�Åeee�
are thus di�erent from ssss and that is why they were referred to in the previous
section using the exponent s: there are two di�erent second-order estimates, the
®rst one, based on the strain potential expansion, being generally more
appropriate than the second one for the type of nonlinearities exhibited by ductile
composites.

At this stage it is worth mentioning that there might be some other non-
standard, more appropriate choices of reference strains or stresses, for both the
a�ne and the second-order procedure. In particular, the prescription

8s 
�eeeÿ eees �:Ns:�eeeÿ eees �
�
s
� 0 �36�

ensuring that ÅsssSOE � ÅsssAFF � ÅsssTHE, would guarantee the existence of an overall
potential for the a�ne procedure and would suppress the duality gap in the
second order one. Unfortunately, such a de®nition leads to a dead end in the case
of power-law type materials, such that ws�leee� � lm�1ws�eee�, 8l > 0: For such
materials the reference strains are homogeneous functions of degree one of the
overall strain so that Ls�Åeee� is homogeneous of degree mÿ 1 and, by Euler's
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formula, Ns:
deees
dÅeee :Åeee � �mÿ 1�Ls�Åeee�: The general result (31) reads then

2� ÅsssSOE ÿ ÅsssAFF �:Åeee � �mÿ 1�
X
s


�eeeÿ eees �:Ls:�eeeÿ eees �
�
s

�37�

which is negative because Ls is positive de®nite and mR1: The dual result is:

2�ÅeeeSOE ÿ ÅeeeAFF �: Åsss � �nÿ 1�
X
s

cs


�sssÿ ssss �:Ms:

ÿ
sssÿ sssss

��
s
r0: �38�

This proves that both second-order estimates are always weaker than the a�ne
one for power-law type materials, regardless of the de®nition used for the
reference strains or stresses; equality can only be achieved in materials exhibiting
uniform local ®elds in the nonlinear phases, as those mentioned above.

3.2. Weakly inhomogeneous composites

3.2.1. Exact second-order expansion
The composites considered in this section have a small contrast. More

speci®cally the energy ws of the phases di�ers from the energy w0 of a
homogeneous nonlinear reference medium by a small quantity measured by a
small parameter t:ws�eee� � w0�eee� � tdws�eee�: The following notations related to the
homogeneous reference medium and to the perturbation will be useful in the
sequel

L0 � d2w0

deeedeee
�Åeee�, N0 � d3w0

deeedeeedeee
�Åeee�, ttts � d

deee
dws�Åeee�, dddLs � d2

deeedeee
dws�Åeee�: �39�

An asymptotic expansion with respect to the contrast for the exact ®elds eee and sss
in the nonlinear composite and for the exact e�ective energy has been given by
Suquet and Ponte CastanÄ eda (1993). This expansion to second-order for the
energy reads

~w�Åeee� � w0�Åeee� � thdwi�Åeee� ÿ t2

2
hÇeee0:L0:Çeee0i �O�t3 � �40�

where Çeee0 is the solution of the following linear `thermoelastic' problem

Çsss0�x� � L0:Çeee0�x� �
X
s

ks�x�ttts, div� Çsss0� � 0, hÇeee0i � 0: �41�

The expansion to second-order in the contrast of the exact e�ective stress±strain
relation for the nonlinear composite derives from Eq. (40):

Åsss1dw0

deee
�Åeee� � t

d

deee
hdwi�Åeee� ÿ t2

2

�
hÇeee0:N0:Çeee0i � 2

�
Çeee0:L0:

dÇeee0
dÅeee

��
�42�

and this expression can be simpli®ed (using the relations obtained by
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di�erentiating Eq. (41) with respect to Åeee� into

Åsss1dw0

deee
�Åeee� � t

d

deee
hdwi�Åeee� � t2

2

�hÇeee0:N0:Çeee0i � 2


dddL:Çeee0

���O�t3�: �43�

3.2.2. The a�ne method for small contrast
The predictions of the second-order and a�ne estimates, both for the local ®elds

and for the e�ective constitutive law, can be expanded to second order in the
contrast. Regarding the local ®elds, the Taylor expansion of the ®elds sssTHE and
eeeTHE in the linear thermoelastic comparison medium can be obtained for small
contrast t by considering the successive derivatives with respect to t of the systems
of equations in the thermoelastic comparison composite satis®ed by sssTHE and eeeTHE:

eeeTHE � eeeTHE
0 � tÇeeeTHE

0 � t2

2
ÈeeeTHE
0 �O�t3� �same form for sssTHE�: �44�

The terms of order 0 in these expansions are the homogeneous ®elds in the
homogeneous nonlinear reference medium with energy w0:eeeTHE

0 � Åeee, sssTHE
0 � dw0

deee �Åeee�:
To order 1, �ÇeeeTHE

0 , ÇsssTHE
0 � coincide with the solution of Eq. (41). The terms of order

2 are obtained by taking the second derivative with respect to t of the system of
equations satis®ed by sssTHE, eeeTHE at t � 0: It is found that the ®elds ÈeeeTHE

0 and ÈsssTHE
0

do not coincide with the exact second-order terms in the expansion of the actual
®elds in the nonlinear composite. Therefore, the approximate ®elds sssTHE, eeeTHE

coincide with the actual ®elds sss, eee in the nonlinear composite up to order 1 in the
contrast, but not to higher order in general.

Regarding the e�ective constitutive relation, the prediction of the second-order
procedure for the energy (and therefore for the constitutive relations) is known
(Ponte CastanÄ eda, 1996) to be exact to second-order in the contrast. Therefore, it
also coincides with Eq. (43). The expansion to second-order in the contrast of the
prediction of the a�ne procedure can be performed either by taking the spatial
average of the expansion (44) for sssTHE to second-order or by using the expansion
(44) for eeeTHE to ®rst-order and the relations (35) and (43). The ®nal result reads

�sssAFF � dw0

deee
�Åeee� � t

d

deee
hdwi�Åeee� � t2

2

"X
s

cshÇeee0is:N0:hÇeee0is�2


dddL:Çeee0

�#�O�t3 �: �45�

The a�ne procedure is therefore not exact to second order in the contrast, except
when the ®rst order correction Çeee0 of the strain ®eld is constant in each phase.

3.3. Application to porous materials

Nonlinear porous materials should exhibit a nonlinear answer under pure
hydrostatic load, even when the nonlinear matrix is incompressible. On the
contrary, the a�ne estimate for such materials exhibits a linear dependence of the
volume change on the hydrostatic pressure at a ®xed, possibly non-vanishing,
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macroscopic deviatoric load. Such a limitation is in fact common to all nonlinear
extensions that assume, explicitly or not, that the average stress of a given phase is
related to the average strain by the local constitutive law of this phase:

heeeis�
dus
dsss
�hsssis � �46�

and make use of some linearisation of the local constitutive law about the average
strain or stress in each phase. This is the case for the classical incremental
procedure, the classical secant schemes and the tangent model, in their anisotropic
as well as isotropic variants, and the present a�ne procedure; but it is neither the
case for the variational estimates (or the modi®ed secant procedure) nor the
second-order estimate.

The reason for this limitation can be made clear as follows. Consider a porous
materials with a pore volume fraction c subjected to the overall stress Åsss � ÿ �pi� �s,
where �p is the pressure and �s the deviatoric stress. The stress in the pores being
zero, the average stress in the matrix is 1

1ÿc�ÿ �pi� �s�: If Eq. (46) holds and if the
matrix is incompressible, the average strain in the matrix M is given by

heeeiM�
duM

dsss

�
1

1ÿ c
�s

�
�47�

and does not depend on the overall pressure. The average deformation of the
pores depends on which model is used to describe the porous material. But all the
above-mentioned models make use of some linear porous comparison material,
the matrix of which having the secant, tangent or a�ne properties of the
nonlinear matrix at the stress 1

1ÿc �s, which again does not depend on the overall
pressure. As a consequence, the deformation of the pores at ®xed �s will depend
linearly on the pressure and so will the overall strain.

The true nonlinear behaviour of such materials is due to the heterogeneity of
the local stress ®eld in the matrix which locally might be deviatoric even under
pure overall hydrostatic stress and thus involve the constitutive nonlinearities.
Such intraphase heterogeneities are overlooked by models that deal only with per
phase average quantities, which are therefore unable to describe the nonlinear
answer of such materials under hydrostatic load.

3.4. Two-phase isotropic incompressible composites

We conclude this section with a comparison between the a�ne and second-
order procedures and several other schemes, for a two-phase composite made of
incompressible isotropic power-law type phases, with local potentials

ws�eee� � sse0
m� 1

�
eeq

e0

�m�1
�48�

for purely deviatoric strain �ws�eee� � �1 when tr eee 6� 0 to enforce
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incompressibility). Here, e0 is a reference strain and ss characterises the sti�ness of
the phase s. The deviatoric stress and the restriction to purely deviatoric strains of
the tensor of tangent moduli at some traceless reference strain eees are:

ssss � 2msct
s

ÿ
eeq
s

�
eees and Ls � 2mtgt

s

ÿ
eeq
s

�
Es � 2msct

s

ÿ
eeq
s

�
Fs �49�

where mtgt
s �eeq

s �� mss
3e0
� eeq

e0
�mÿ1 is the tangent modulus, msct

s �eeq
s ��nmtgt

s �eeq
s � is the secant

modulus, Es � 2
3
eees
eeq
s

 eees

eeq
s

is the projector on the `direction of the reference strain'
and Fs � K ÿ Es, K is the projector on purely deviatoric tensors.

The comparison is carried out for matrix-inclusion type composites with
isotropically distributed spherical inclusions at low volume fraction, so that the
classical Hashin±Shtrikman estimate built with the matrix as reference medium is
an appropriate model for the description of the thermoelastic comparison
composite. The relations given in Section 2 lead to the following system of
equations characterising the deviatoric reference strains eee1 and eee2 for a given load
Åeee:

2msct
1

ÿ
eeq
1

�
eee1 � L�1�L1�:eee1 � 2msct

2

ÿ
eeq
2

�
eee2 � L�1�L1�:eee2

L1 � 2mtgt
s

ÿ
eeq
1

�
E1 � 2msct

s

ÿ
eeq
1

�
F1, c1eee1 � c2eee2 � Åeee: �50�

The constraint tensor L�1 related to L1 of the form (49) has orthotropic symmetry
and its full computation is in general a di�cult task which has to be performed
numerically. But when eee1 is a (traceless) uniaxial tension or a pure shear, it can be
given the following expression (Nebozhyn and Ponte CastanÄ eda, 2000)

L�1 � 2

�
1� n

2C�m, y� ÿ 1

�
mtgt
1 E1 � G1 �51�

where G1 satis®es G1:E1 � E1:G1 � 0 and C is the coe�cient introduced by Suquet
and Ponte CastanÄ eda (1993), which depends on m and the angle y related to the
third invariant of the tensor eee1�y � 0 and y � p=6 correspond to uniaxial tension
and pure shear, respectively). Furthermore, for these speci®c values of y, it can be
shown that the reference strains are proportional to the macroscopic strain, so
that the system (50) can be simpli®ed into a system of scalar equations
characterising the equivalent strains eeq

1 and eeq
2 , which is easy to solve numerically.

The a�ne estimate for the overall stress is then obtained by averaging the stresses
in the phases while the second order estimate (strain energy expansion) is
computed according to Eq. (32); the dual variant of Eq. (32) leads to the e�ective
complementary energy according to the stress energy expansion-based second-
order procedure. A macroscopic reference stress Ässs such that �seq � ~s��eeq=e0�m (for
the a�ne procedure) or �w�Åeee� � ~se0

m�1��eeq=e0�m�1 (for the second-order procedure)
can then be identi®ed.

The results are plotted in Fig. 2 as a function of the nonlinearity for a
composite with 15% inclusions three times sti�er than the matrix and are
compared to the predictions of the incremental, secant and variational estimates
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Fig. 2. Reference stress of a two-phase, incompressible, power-law type, matrix-inclusions composite,

with 15% inclusions and a contrast of 3, as a function of the nonlinearity m. Predictions of the a�ne

(AFF), second-order (SOE and SOE (u )), variational (VAR), incremental (INC), and secant (SEC)

procedures combined with the Hashin±Shtrikman linear estimate, as well as rigourous Voigt, Reuss and

upper Hashin±Shtrikman variational bounds are plotted, for uniaxial tension (a) and pure shear (b).

Note that the bounds, the variational and the secant estimates, which are not sensitive to the third

invariant of the load, are identical on both plots. 18



as well as to the Voigt, Reuss and upper Hashin±Shtrikman variational bounds. It
turns out that the a�ne estimate is the softest among all those dealing with phase-
averaged quantities; in particular, it improves substantially on the incremental
procedure which is de®nitely too sti� at high nonlinearities. Unlike the classical or
modi®ed (i.e., variational) secant estimates, it is sensitive to the third invariant, as
expected.

However, the a�ne estimate is sti�er than the variational one, over the whole
range of nonlinearities in the case of tension as well as for m > 0:1 for shear.
Since the variational estimate is an upper bound for the e�ective nonlinear
properties for the class of microstructures that can be described by the linear
Hashin±Shtrikman estimates at any contrast of the phases, it is suspected that the
a�ne estimate is still too sti�. Furthermore, there are situations where the a�ne
estimate violates the variational Hashin±Shtrikman upper bound, which is valid
for any microstructure with an isotropic distribution of the phases.

This occurs, in particular, for the case of small contrast and high nonlinearity.
Indeed the small-contrast expansions (43) and (45) can be given explicit
expressions in the present situation. Assuming overall isotropy for the composite,
the e�ective stress-strain relation can be conveniently expressed in terms of the
above-de®ned reference stress ~s: The exact expansion (43) simpli®es to

~sSOE � hsi ÿ C�m, y�


s2
�
ÿ hsi2
s0

�O�t3�: �52�

The expansion to second-order (45) of the a�ne method is made explicit by using
the relations hÇeee0is � ÿ�L�0 � L0�ÿ1:ttts together with the expression (51) of the
constraint tensor L�0 (valid at least when y � 0 and y � p=6). The result is

~sAFF � hsi ÿ 2m

m� 1

�
1ÿ mÿ 1

m� 1
C�m, y�

�
C�m, y�



s2
�
ÿ hsi2
s0

�O�t3� �53�

and is di�erent from the exact expression (52), except in the linear case �m � 1).
In particular, when m tends to 0, mC�m, y� tends to 0 and the prediction of the
a�ne procedure tends (to second-order) to the Voigt upper bound ~sV � hsi:

4. Extension of thsse a�ne formulation to rate-dependent and rate-independent
elastoplasticity

4.1. Principle

The a�ne formulation has been presented in Section 2 for nonlinear elasticity
or viscosity for the sake of clarity. It can be extended to constitutive behaviours
which exhibit a dependence of the current response on the loading path. Actually,
a ®rst draft of the a�ne method was originally proposed (Rougier et al., 1994) for
rate-dependent elastoplasticity and we refer to Masson and Zaoui (1999) for its
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fully developed version. In this section, after a brief description of the general way
to deal with hereditary behaviours, rate-independent elastoplasticity will be focused
on, with special emphasis on the self-consistent scheme in view of comparison with
the incremental formulation. Here, eee and ggg again denote strains and shear strains
and their rates are Çeee and Çggg:

The main di�culty is the need to account for the previous local and global
responses at times tRt when deriving the current response at t: Let Åeee�t� be the
prescribed macroscopic loading path, assumed to be zero for tR0; we are
searching for the macroscopic stress response Åsss�t�: According to the a�ne
procedure, the resolution of an implicit set of equations for the local variables
eees�t� or ssss�t� is required. In addition, due to the considered hereditary behaviour,
the knowledge of eees�t� or ssss�t�, 8tRt is also required: these quantities must have
been determined through a similar implicit treatment, involving at any time t a
speci®c linear comparison composite as de®ned at that time. Note that, in turn,
each of these auxiliary problems at any intermediate time requires the knowledge
of the local variables at all previous times. This results in a multiply implicit set of
simultaneous equations which can only be solved numerically.

For rate-dependent elastoplasticity, it has been proposed (Masson and Zaoui,
1999) to discretise the time interval �0, t� into intermediate times yi, i � 1, N and
to determine the behaviour of the linear (thermoviscoelastic) comparison
composite and the associated local variables by proceeding through increasing
times yi, so as to use at each step the results obtained at previous steps. Despite
the apparent similarity, this treatment is quite di�erent from an incremental one
which would not use the same linear comparison composite. The same di�erence
will be stressed for rate-independent elastoplasticity for which a slightly modi®ed
method has to be proposed to deal with the speci®c situation of multibranched
constitutive equations.

4.2. Rate-independent elastoplasticity of crystalline materials

We consider an elastoplastic polycrystal whose crystals obey the Schmid law
with a limited number of de®nite crystallographic slip systems a: The local strain
rate is decomposed into its elastic and plastic parts:

Çeee � Çeeee � Çeeep � S: Çsss�
X
a

_gaRa, �54�

with S the elastic compliance, Ra the orientation tensor (20) of system a and _ga the
associated nonnegative plastic shear strain rate (see Section 2.4.2). A slip system a
in phase s is potentially active when its resolved shear stress Ra:ssss reaches the
critical value tac ; it is active when, in addition, its rate Ra: Çssss equals the critical
resolved shear stress rate _tac , obeying the strain-hardening equation

_tac �
X
b

H ab _gb: �55�
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For simplicity, the hardening matrix H ab is assumed to be symmetric, positive
de®nite and constant (otherwise it would have to be linearised as well) so that the
local (elastoplastic) tangent moduli take the form (Hutchinson, 1970}:

Ls � Cs: I ÿ
X
ab

DabRa 
 Rb:Cs

!
�56�

where the summation is restricted to the active systems, with Cs the elastic moduli
and D a matrix with components Dab � �H ab � Ra:Cs:R

b�ÿ1: The shear rate on
active systems reads

ga �
X
b

DabRb:Cs:Çeees: �57�

The tangent moduli Ls, which have diagonal symmetry, depend on the current
combination of active systems and are then multibranched. The intermediate times
yi are de®ned as those times at which any new slip system in any phase of the
polycrystal becomes active or inactive, an occurrence we call an event. Between
two such consecutive events, the tangent moduli are, according to Eq. (56),
constant throughout the polycrystal and the local constitutive equations may be
linearised in the usual a�ne way: sss � Ls:eee� ttts, with Ls given by Eq. (56) and ttts�
ssss ÿ Ls:eees: The new di�culty of having to look at any time for the next event is
somewhat balanced by an easier, stepwise explicit, solution procedure. On the
other hand, the assumption of piecewise uniformity of the linear comparison
medium is likely to be still cruder than it would be for smoother constitutive
behaviour since, in the actual polycrystal, any new event occurring at some point
makes the local instantaneous moduli change abruptly.

The solution scheme we propose to predict the overall stress response at time t
to a prescribed strain path Åeee�t�, tRt, is the following:

. assume temporarily that at time t the instant yN when the nearest previous
event occurred is known as well as the average stress and strain tensors ssssN and
eeesN at t � yN for all the phases and the slip amounts gaN on all the slip systems;

. determine all the slip systems which are potentially active at t � yN throughout
the polycrystal. From that, consider all the possible combinations of active
systems in the polycrystal, each of them de®ning for the polycrystal a tentative
branch;

. for each trial branch (i ), determine the local moduli L�i �s by Eq. (56) and
prestress ttt�i �s � ssssNÿL�i �s :eeesN from ssssN and eeesN: these quantities remain constant
as long as no new event occurs and they allow us to de®ne the corresponding
linear (thermoelastic) comparison composite and its overall characteristics ÄL

�i �

and ~ttt�i �; by use of the associated localisation equations, derive updated local
average strain (and then stress) tensors from the prescribed macroscopic strain,
which yield the evolution of both the resolved and the critical shear stresses on
all the slip systems (through Eqs. (55) and (57)) and then, by zeroing all the
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quantities �ta�i �c ÿ ta�i ��, the time y�i �N�1 of the occurrence of the next nearest
event;

. the consistency of the trial branch (i ) can then be checked, i.e., the satisfaction
at time y�i �N�1 of the plastic criterion for the systems which had been considered
as active as well as inactive at time yN: This can be done by starting, for the
active systems, from the whole set of potentially active systems at yN and by
successively suppressing any one, or two, or more systems and applying the
same procedure as before until consistency is satis®ed. When reached, it yields
the expected response Åsss�t� as well as the local states at y�i �N�1;

. since yN, ssssN, eeesN and gaN are not known, proceed by increasing intermediate
times from t � 0 and follow the above procedure from y1 to yN, so as to use at
each intermediate time yi the initial quantities which have been derived before.

4.3. Comments and illustration

The a�ne treatment must be clearly distinguished from the incremental one.
This can be checked for the self-consistent scheme by comparing the localisation
equations at two successive times yi and yi�1: From the dual variant of Eq. (7),
speci®ed for the self-consistent scheme, we can write with simpli®ed notations:

eees�yi � � A�i�s :
h
�eee�yi � � P�i�:

�
~ttt�i� ÿ ttt�i�s

�i
; A�i�s �

�
I � P�i�:dddL�i�s

�ÿ1
�58�

where the exponent (i ) refers to the comparison composite at time yi: Similar
relations can be written at time yi�1 but involve another comparison composite.
When yi�1 is su�ciently close to yi, the variation DDDeees�yi � of the local strain is

Des�yi �1A�i�s :D�eee�yi � � D�i�As:�eee�yi � � D�i�
�
As:P:�~tttÿ ttts �

� �59�
where D�i �X � X �i�1� ÿ X �i �: This expression, which is a transcription of the time
derivative of the linear thermoelastic localisation equation, takes into account the
modi®cation of the comparison medium associated with the next event. In the
same situation, Hill's incremental expression reduces to Deees�yi � � A�i �s :D�e�yi �:

So, even with equal A�i �s values, the localisation equations are di�erent. For
example, the ®rst step of a tensile response is elastic, so that the stress and strain
per phase averages and the initial time y1 are the same for both formulations: the
®rst branch is identical beyond y1, with identical resulting tangent moduli and
strain localisation tensors, but the local strain rates will slightly di�er and the
overall estimates will gradually deviate from each other. Fig. 3 provides an
illustration of this di�erence: the tensile stress±strain curves of an untextured fcc
polycrystal without intracrystalline hardening as predicted from the incremental
(Hutchinson, 1970) and a�ne formulations of the self-consistent scheme are
compared. Again the a�ne treatment yields softer predictions than Hill's one.
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5. Conclusion

The a�ne formulation o�ers an improved alternative to Hill's incremental (as
well as to the tangent) formulation to estimate the e�ective properties of nonlinear
heterogeneous materials for both hereditary and non-hereditary constitutive
behaviours and without restrictions on the speci®c form of the constitutive
equations. However, it has been shown to display de®nite limitations which are
likely to originate from the identi®cation of the reference strain or stress tensors
with the per phase average ones. When compared with the second-order
procedure, which relies on the same assumption, it turns out that, except for the
duality gap, the second-order description based on potentials o�ers marked
advantages for nonlinear elasticity and viscoplasticity; on the other hand, the
direct stress-strain approach of the a�ne formulation makes it possible to explore
the ®eld of hereditary constitutive behaviours, both for rate-dependent and rate-
independent elastoplasticity.

There are still open questions mainly pertaining to the choice of the `best'
thermoelastic comparison composite and of possibly improved reference stresses
or strains. There is a need to improve both the classical a�ne and second-order
estimates, regarding the existence of an overall potential, the resolution of the

Fig. 3. Tensile stress-plastic strain curves of an untextured fcc polycrystal according to the incremental

and a�ne versions of the self-consistent scheme (isotropic elasticity with Young's modulus Ey and

Poisson's ratio n � 1=3; non-hardening single crystals with tc � t0).
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duality gap, the consistency to small contrast expansion and variational bounds
and the response of porous materials.
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