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ABSTRACT. The stochastic finite element method allows to solve stochastic boundary value prob-
lems where material properties and loads are random. The method is based on the expansion
of the mechanical response onto the so-called polynomial chaos. In this paper, a non intru-
sive method based on a least-squares minimization procedure is presented. This method is
illustrated by the study of the settlement of a foundation. Different analysis are proposed: the
computation of the statistical moments of the response, a reliability analysis and a parametric
sensitivity analysis.

RÉSUMÉ. La méthode des éléments finis stochastiques permet de résoudre des problèmes aux
limites dans lesquels les propriétés des matériaux et le chargement sont aléatoires. Cette mé-
thode est basée sur le développement de la réponse sur la base du chaos polynomial. Dans ce
papier, une méthode "non intrusive" basée sur une minimisation au sens des moindres carrés
est présentée. Cette méthode est appliquée à l’étude du tassement d’une fondation. On montre
comment obtenir les moments statistiques de la réponse et comment effectuer une analyse de
fiabilité.

KEYWORDS: stochastic finite element, non intrusive method, polynomial chaos, stochastic re-
sponse surface method

MOTS-CLÉS : Eléments finis stochastiques, méthode non intrusive, chaos polynomial, surfaces de
réponse stochastiques
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1. Introduction

The Stochastic Finite Element Method (SFEM) developed by (Ghanem et al.,
1991) allows to solve stochastic boundary value problems involving spatially ran-
domly varying material properties usually described as Gaussian or lognormal random
fields. The method is based on the discretization of the input random fields and the
expansion of the mechanical response onto the so-called polynomial chaos. A similar
procedure allowing to model random material properties and loads by means of an
arbitrary number of random variables of any type has been recently proposed (Sudret
et al., 2004, Sudret et al., 2005, Berveiller, 2005). In both cases, the coefficients of
the response expansion are computed using a Galerkin procedure, which leads to a
linear system whose size is equal to the number of degrees of freedom of the finite
element model multiplied by the number of coefficients retained in the response ex-
pansion. The output of this method is the expansion of response quantities S(θ) (such
as displacement, strain or stress components) onto the polynomial chaos.

S(θ) =
P−1∑
j=0

sjΨj({ξk(θ)}M
k=1) [1]

where sj are the coefficients to be determined, {Ψ0, · · · , ΨP−1} are multidimension-
nal Hermite polynomials of order less or equal than p, {ξk(θ)}M

k=1 are standard Gaus-
sian random variables, M is the number of random input parameters and P denotes
the size of the polynomial chaos basis, which is given by:

P =
(M + p)!

M ! p!
[2]

In this paper, a non intrusive method (called regression method) is proposed for com-
puting these coefficients using a series of deterministic analysis.

2. Non intrusive regression method

The non intrusive regression method presented in this section is based on a least-
squares minimization between the exact solution and the approximate solution based
on the polynomial chaos (Isukapalli, 1999, Mahadevan et al., 2003, Berveiller et al.,
2004, Berveiller, 2005). First the input random variables (gathered in a random vector
X whose joint PDF (Probability Density Function) is prescribed) are transformed into
a standard Gaussian vector ξ. If these M variables are independent, the one-to-one
mapping reads :

ξi = Φ−1 (Fi(Xi)) [3]

where Φ is the standard Gaussian CDF (Cumulative Density Function) and
{Fi(Xi), i = 1, · · · , M} are the marginal CDF of the Xi’s. Let us denote by
{ξ(k), k = 1, · · · , n} n outcomes of the standard Gaussian random vector ξ. For each
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outcome ξ(k), the isoprobabilistic transform yields a vector of input random variables
X(k) (Eq.(3)). Using a classical finite element code, the response vector S(k) can be
computed. According to Eq.(1), each scalar component of the response S (displace-
ment, strain, stress, etc.) may be approximated as follows:

S ≈ S̃(ξ) =

P−1∑
j=0

sjΨj(ξ) [4]

where {sj}
P−1
j=0 are coefficients to be computed. The regression method consists in

finding the set of coefficients that minimizes the difference:

ΔS =

n∑
k=1

[
S(k) − S̃(ξ(k))

]2

[5]

These coefficients are solution of the following linear system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑
k=1

Ψ0(ξ
(k))Ψ0(ξ

(k)) · · ·
n∑

k=1

Ψ0(ξ
(k))ΨP−1(ξ

(k))

...
. . .

...
n∑

k=1

ΨP−1(ξ
(k))Ψ0(ξ

(k)) · · ·

n∑
k=1

ΨP−1(ξ
(k))ΨP−1(ξ

(k))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎝

s0

...
sP−1

⎞
⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n∑
k=1

S(k)Ψ0(ξ
(k))

...
n∑

k=1

S(k)ΨP−1(ξ
(k))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

[6]

Note that the P × P matrix on the left hand size is evaluated once and for all. More-
over it is independent on the mechanical problem under consideration. Then the co-
efficients of the expansion of each response quantity si are obtained by the resolution
of the linear system Eq.(6).
The crucial point in this approach is to properly select the collocation points, i.e. the
outcomes {ξ(k), k = 1, · · · , n}. Note that n ≥ P is required so that a solution of
(6) exist. (Webster et al., 1996) and (Isukapalli, 1999) choose for each input variable
the (p + 1) roots of the (p + 1)-th order Hermite polynomialHp+1(x), and then built
(p + 1)M vectors of length M using all possible combinations between theses differ-
ent roots (Figure 1). Then they select n outcomes {ξ(k), k = 1, · · · , n} out of these
(p + 1)M possible combinations as follows :
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– (Webster et al., 1996) selected n = P + 1 and the (P + 1) outcomes which

maximize ϕn(ξ(k)) = (2π)−M/2 exp

[
−1/2

∥∥∥ξ(k)
∥∥∥2

]
. This corresponds to selecting

the points that minimize
∥∥ξ

∥∥2.
– (Isukapalli, 1999) selected by the same method 2(P + 1) outcomes, adding the

null vector ξ = 0 if it is not already included in the experimental design.

Figure 1. Scheme of the selection of the collocation points (M = 2, p = 4, n = 9)

No indication of the reasons of these choices for n could be found in the literature.
In the sequel, a parametric study is carried out to investigate the influence of n on
the accuracy of the results. Indeed, using the selection method mentioned above, it
is easy to increase the accuracy by taking more collocation points, without losing the
benefit of previous computations. It is also possible to define an error estimator for
any response quantity S. Suppose that we have n = kP collocation points, where
k = 1, 2, · · · , and that the minimal k for a given accuracy is looked after. For each
k ≥ 1, an estimation of the response quantity S (assumed not vanishing) is computed
together with a convergence rate εk :

εk =

∣∣∣∣Sk+1 − Sk

Sk

∣∣∣∣ [7]

If this rate is smaller than a tolerance, say 1%, the regression scheme is said to be
accurate. Otherwise P new collocation points are added to the scheme (leading to P
additional finite element runs). The procedure is followed up until convergence.
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3. Application example : settlement of a foundation

3.1. Description

Let us consider an elastic soil mass made of two layers of different isotropic linear
elastic materials lying on a rigid substratum (Figure 2(a)). A foundation on this soil
mass is modeled as two uniform pressure loads P1 and P2 applied respectively over a
length 2B1 and 2B2 of the free surface (Figure 2(b)). Due to the symmetry, half of the
structure is modeled by finite element. The mesh comprises 99 nodes and 80 4-node
elements which allows a 1%-accurate evaluation of the maximal settlement compared
to a reference solution.

�

�

�
�

A

��
2B1 = 10m

t1 = 7, 75 m

t2 = 22, 25m

E1, ν1

E2, ν2

P2

����P1

��2B2 = 5m

(a)

ux=0

ux=uy=0

ux=0

(b)

Figure 2. (a) : Scheme of the foundation - (b) : Mesh of the foundation

In the sequel, three different analysEs of this problem are performed. First, the
statistical moments of the maximum settlement are computed. Then a reliability anal-
ysis with respect to admissible settlements is carried out. Finally, the approach is used
in a purely deterministic context, where the parameters are given interval values.

3.2. Statistical moments of the response

In this section, the six parameters (namely Young modulus and Poisson ration in
each layer and two loads) are modelled as random variables described in Table1. We
consider a polynomial chaos of order three. Thus P = (6+3)!

6!3! = 84 coefficients are to
be determined using the non intrusive method. We are interested in the evaluation of
the maximum settlement of the foundation obtained at point A and denoted by uA.

The four statistical moments of the maximal settlement of the foundation obtained
by the non intrusive method are compared to reference results. From Eq.(1), the sta-
tistical moments of any response quantity can be computed analytically. The mean
and the variance of S are given by:

E[S] = s0 [8]
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Table 1. Definition of the input random variables for moments and reliability analysis

Parameter Notation Distribution Mean Coeff. Var.
Young modulus upper layer E1 Lognormal 50 MPa 20%
Young modulus lower layer E2 Lognormal 70 MPa 20%
Poisson ratio upper layer ν1 Uniform [0.28; 0.32] 0.3 4%
Poisson ratio lower layer ν2 Uniform [0.28; 0.32] 0.3 4%
Load #1 P1 Weibull 0.2 MPa 30%
Load #2 P2 Lognormal 0.4 MPa 20%

Var[S] = σ2
S =

P−1∑
i=1

E[Ψ2
i ]s

2
i [9]

The skewness and the kurtosis coefficients are given by:

δS =
1

σ3
S

P−1∑
i=1

P−1∑
j=1

P−1∑
k=1

E[ΨiΨjΨk]sisjsk [10]

κS =
1

σ4
S

P−1∑
i=1

P−1∑
j=1

P−1∑
k=1

P−1∑
l=1

E[ΨiΨjΨkΨl]sisjsksl [11]

The analytical formulae to compute the expectation of products of Ψj polynomi-
als are given in (Berveiller, 2005). Reference results are obtained by Monte Carlo
simulation (10000 samples) using a direct coupling between the finite element code
Code_Aster� 1 and the probabilistic code PROBAN. Figure 3 shows the evolution of
the statistical moments versus the number of samples in the Monte Carlo simulation.
Table 2 gathers the reference results and those obtained by the non intrusive method.
With the non intrusive regression method, good results are obtained for the four first
moments if more than 420 points (i.e. (M − 1)P points) are taken. Figure 4 presents
the evolution of the four first statistical moments (divided by the converged value in
the regression method) versus the number of collocation points. We can note that from
420 points (i.e. 5 × 84 ≡ (M − 1)P points), results have converged. Note that the
skewness and kurtosis coefficients obtained by Monte Carlo simulation slightly differ
from the regression results.

3.3. Reliability analysis

In reliability analysis, the failure criterion of a structure is defined in terms of a
limit state function g(X, S(X)) which may depend both on basic random variablesX

1. http://www.code-aster.org
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Table 2. Statistical moments of the maximal settlement

MC Simulation Non intrusive method
#FE runs 10000 84 168 336 420 4096
Mean -1.097 -0.566 -0.735 -1.040 -1.108 -1.108
Std. Dev. 0.0256 0.0802 0.0747 0.0439 0.0250 0.0250
Skewness -0.6019 1.6664 1.9638 2.3967 -0.5182 -0.5303
Kurtosis 3.7214 8.7149 10.9272 23.7676 3.4826 3.5095
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Figure 3. Evolution of moments obtained by direct coupling vs. the number of samples
in the Monte Carlo simulation

and response quantities S(X). The domain defined by g(X, S(X)) < 0 is the failure
domain and g(X, S(X)) > 0 defines the safe domain. The boundary between these
two domains is the limit state surface. When performing a stochastic finite element
analysis, the true limit state function is replaced by its polynomial approximation onto
the polynomial chaos. Thus the approximation is defined by definition in the so-called
standard normal space, which is the space used for the First Order Reliability Method
(FORM) in reliability analysis:

g(X, S(X)) ≡ g̃

⎛
⎝{ξk}

M
k=1,

P−1∑
j=0

SjΨj({ξk}
M
k=1)

⎞
⎠ [12]
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Figure 4. Evolution of moments vs. the number of collocation points in the non intru-
sive regression method

Thus the reliability problem, which is already formulated in the standard Gaussian
space, may be solved by any available method including Monte-Carlo Simulation,
FORM/SORM, Importance Sampling (IS), etc. (Ditlevsen et al., 1996).
The reliability of the foundation with respect to the maximum admissible settlement
ū is investigated. Hence the limit state function can be written:

g(X) = ū − uA(E1, E2, ν1, ν2, P1, P2) [13]

where uA(E1, E2, ν1, ν2, P1, P2) is the maximal displacement. The failure probabil-
ity is computed by FORM and importance sampling for different values of ū using the
two strategies mentioned above, namely :

– a direct coupling between the finite element code Code_Aster� and the proba-
bilistic code PROBAN by using FORM and importance sampling. Eq.(13) is used for
this purpose, when uA(·) is obtained with the finite element code. 1,000 samples are
used in IS allowing a coefficient of variation of the simulation of 1%.

– the non intrusive regression method followed by a FORM reliability analysis
and importance sampling (1,000 samples and a coefficient of variation of 1% for the
simulation). Note that FORM as well as IS are performed using analytical limite state
function in this case :

g̃(ξ) = ū −

83∑
j=0

uAjΨj({ξk}
6
k=1) [14]
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In this approach, the impact of the number of collocation points used to compute the
uAj’s onto the accuracy is studied.

Table 3 presents the probability of failure obtained by direct coupling and by regres-
sion using various numbers of collocation points. Figure 5 shows the evolution of
the ratio between the logarithm of the probability of failure (divided by the logarithm
of the converged probability of failure) versus the number of collocation points for
several values of the maximum admissible settlement ū. Again, accurate results are
obtained when using 420 collocation points or more for different values of the failure
probability (from 10−1 to 10−4). When taking less than 420 points, results are inac-
curate. When taking more than 420 points, the accuracy is not improved. It seems that
the best compromise between accuracy and efficiency is (M − 1)P collocation points
in this case, as it was also observed in the previous section.

Table 3. Failure probability Pf

ū Direct Non intrusive
(cm) Coupling 84 168 336 420 4096
12 3.09.10−1 1.62.10−1 2.71.10−1 3.31.10−1 3.23.10−1 3.32.10−1

15 6.83.10−2 6.77.10−2 6.90.10−2 8.43.10−2 6.73.10−2 6.93.10−2

20 2.13.10−3 - 9.95.10−5 8.22.10−4 2.01.10−3 1.98.10−3

22 4.61.10−4 - 7.47.10−7 1.31.10−4 3.80.10−4 4.24.10−4

 0.9
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 1.2
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 1.4

 1.5

 1.6
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 0  200  400  600  800  1000
Number of points
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Figure 5. Evolution of the logarithm of the failure probability divided by the con-
verged value versus the number of collocation points
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3.4. Deterministic parametric analysis

In this section, the formalism of stochastic finite element is used to build a deter-
ministic response surface of the 6-parametermodel. In this sense, the input parameters
are given a range of variation [a; b]. To be able to apply the proposed method, these
intervals are then considered as support of uniform random variables (Table 4).

Table 4. Definition of input parameters for the parametric analysis
Parameter Notation Interval
Young’s modulus upper layer E1 [50 ; 70] MPa
Young’s modulus lower layer E2 [70 ; 90] MPa
Poisson’s ratio upper layer ν1 [0.1 ; 0.4]
Poisson’s ratio lower layer ν2 [0.1 ; 0.4]
Load #1 P1 [0.1 ; 0.3] MPa
Load #2 P2 [0.1 ; 0.3] MPa

Figure 6(a) shows the relative error between a deterministic finite element analysis
and the approximation of the settlement uA by a third order polynomial chaos using
420 collocation points. We can note that the maximum error is about 4%. Figure 6(b)
shows the Henry’s line (Saporta, 1990) of the residual which allows to determine
whether the residual follows a Gaussian distribution. The straight line (dotted) draw on
this figure is the fitted line to the Henry’s line. We can also determine the mean and the
standard deviation of the residual fitted to a Gaussian distribution and compared them
with those obtained empirically. The mean of the residual is equal to −3.96.10−6m
(the mean settlement is −0.082m). The standard deviation is equal to 7.94.10−4. The
skewness coefficient and the kurtosis coefficient are respectively equal to −0.56 and
0.64. For a Gaussian distribution these values are respectively 0 and 3. Values of
skewness and kurtosis coefficients allow to conclude that the residual is not fitted to
a Gaussian distribution. The Table 5 gathers the R2 coefficient (Saporta, 1990) of
the regression versus the number of collocation points. Again this coefficient shows
an excellent quality of the regression whatever the number of points. It is concluded
that P collocation points are sufficient to build a deterministic response surface of the
foundation. Note that the deterministic response surface built using the polynomial
chaos is now straight forward to use. For any values of the input parameters (in the
range given in Table 4), the corresponding standard normal values are computed using
Eq.(3). Then the quantities are used to evaluate the polynomial expansion.

Table 5. R2 coefficient
Number of collocation points 84 168 252 336 420

R2 0.999 0.992 0.993 0.993 0.993
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Figure 6. (a) : Relative error (%) - (b) : Henry’s line (420 collocation points)

4. Conclusion

The paper presents a non intrusive method to compute coefficients of the poly-
nomial series expansion of the response in stochastic finite element analysis. This
method is based on a least-squares minimization of the distance between the exact
solution and the polynomial expansion. The result is interpreted as a stochastic poly-
nomial response surface. The collocation points are selected amongM -uplets of roots
of Hermite polynomials. The method is illustrated by the analysis of the settlement
of a foundation. Various analysis are performed such as computation of the statistical
moments of the response and reliability analysis. Based on the selection scheme, it
appears that a number of points equal to (M − 1) times the size of the polynomial
chaos (i.e. 420 points in the application example) provides excellent accuracy both in
the mean region (moments of the response) and in the tail (probability of exceedance
of a threshold). As far as a deterministic parametric study is concerned, P colloca-
tion points are sufficient to get an accurate deterministic response surface. The great
advantage of the non intrusive approach compared to the classical Galerkin approach
is that only deterministic finite element models are used. Hence the full non linear
capabilities of the code may be used without additional implementation (see for in-
stance (Berveiller et al., 2005)). Note that if several output quantities are of interest,
the marginal cost to estimate the response coefficients is low. Indeed the deterministic
finite element analysis are usually the expensive part of the evaluation.
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