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MODULAR INEQUALITIES FOR THE MAXIMAL OPERATOR IN
VARIABLE LEBESGUE SPACES

DAVID CRUZ-URIBE, OFS, GIOVANNI DI FRATTA, AND ALBERTO FIORENZA

Abstract. A now classical result in the theory of variable Lebesgue spaces due to
Lerner [24] is that a modular inequality for the Hardy-Littlewood maximal function in
Lp(·)(Rn) holds if and only if the exponent is constant. We generalize this result and give
a new and simpler proof. We then find necessary and sufficient conditions for the validity
of the weaker modular inequality∫

Ω

Mf(x)p(x) dx ≤ c1
∫

Ω

|f(x)|q(x) dx+ c2,

where c1, c2 are non-negative constants and Ω is any measurable subset of Rn. As a
corollary we get sufficient conditions for the modular inequality∫

Ω

|Tf(x)|p(x) dx ≤ c1
∫

Ω

|f(x)|q(x) dx+ c2,

where T is any operator that is bounded on Lp(Ω), 1 < p <∞.

1. Introduction

The variable Lebesgue spaces are a generalization of the classical Lebesgue spaces, where
the constant exponent p is replaced by a variable exponent function p(·). They have been
studied extensively for the past twenty years, particularly for their applications to PDEs,
the calculus of variations [1, 14, 15], but also for their use in a variety of physical and
engineering contexts: the modeling of electrorheological fluids [27], the analysis of quasi-
Newtonian fluids [30], fluid flow in porous media [2], magnetostatics [9] and image recon-
struction [4].

Let Ω ⊂ Rn be a Lebesgue measurable set, 0 < |Ω| ≤ ∞. Given a measurable exponent
function p(·) : Ω → [1,∞), hereafter denoted by p(·) ∈ P(Ω), for any measurable set
E ⊂ Rn, |E ∩ Ω| > 0, we set

p−(E) = ess inf
x∈E∩Ω

p(x), p+(E) = ess sup
x∈E∩Ω

p(x).

For brevity, we set p− = p−(Ω) and p+ = p+(Ω). The space Lp(·)(Ω) is defined as the set of
all measurable functions f such that for some λ > 0, ρp(·),Ω(f/λ) < ∞, where ρp(·),Ω is the
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modular functional defined by

ρp(·),Ω(f) =

∫
Ω

|f(x)|p(x) dx.

In situations where there is no ambiguity we will simply write ρp(·)(f) or ρ(f). The space

Lp(·)(Ω) is a Banach function space when equipped with the Luxemburg norm

‖f‖Lp(·)(Ω) = inf{λ > 0 : ρp(·),Ω(f/λ) 6 1}. (1.1)

When p(·) = p, a constant, then Lp(·)(Ω) = Lp(Ω) and (1.1) reduces to the classical norm
on Lp(Ω). For the properties of these spaces, we refer the reader to [14, 15].

Given a function f ∈ L1
loc(Rn), the (uncentered) Hardy-Littlewood maximal function

Mf is defined for x ∈ Rn by

Mf(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)|dy,

where the supremum is taken over all cubes Q ⊂ Rn containing x and whose sides are
parallel to the coordinate axes. (See [14, 16].) If f ∈ L1

loc(Ω), then we define Mf by
extending f to be identically 0 on Rn \ Ω. The following result, proved by Neugebauer
and the first and third authors [11, 12], gives a nearly optimal sufficient condition on the
exponent p(·) for the maximal operator to satisfy a norm inequality on Lp(·)(Ω).

Theorem 1.1. Given an open set Ω ⊂ Rn, let p(·) ∈ P(Ω) be such that 1 < p− ≤ p+ <∞
and p(·) ∈ LH(Ω), i.e., p(·) is log-Hölder continuous both locally and at infinity:

|p(x)− p(y)| 6 C0

− log(|x− y|)
, |x− y| < 1

2
, x, y ∈ Ω,

|p(x)− p∞| 6
C∞

log(e+ |x|)
, x ∈ Ω .

Then M is bounded on Lp(·)(Ω):

‖Mf‖Lp(·)(Ω) 6 C‖f‖Lp(·)(Ω). (1.2)

In the constant exponent case, Theorem 1.1 reduces to the classical result that the max-
imal operator is bounded on Lp(Ω), 1 < p < ∞. In this case, the norm inequality is
equivalent to the modular inequality∫

Ω

Mf(x)p dx ≤ C

∫
Ω

|f(x)|p dx.

Similar modular inequalities hold in the scale of Orlicz spaces: see, for instance, [23]. It is
therefore natural to consider the analogous question of modular inequalities for the maximal
operator on the variable Lebesgue spaces:∫

Ω

Mf(x)p(x) dx 6 C

∫
Ω

|f(x)|p(x) dx. (1.3)

Since inequality (1.3) implies the norm inequality (1.2), it is clear that stronger hypotheses
may be needed on the exponent function p(·) for the modular inequality to hold. The fol-
lowing example from [13] shows that log-Hölder continuity is not sufficient and the modular
inequality need not hold even for a smooth exponent function.
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Example 1.2. Let p(·) ∈ P(R) be a measurable exponent function which is equal to 2 on
the interval [0, 1] and equal to 3 on [2, 3] (we make no other assumptions on p(·)). Define
the sequence of functions {fk}k∈N = {kχ[0,1]}k∈N. Then for any x ∈ [2, 3],

Mfk(x) >
1

3

∫ 3

0

|fk(y)| dy =
k

3
,

so that

ρp(·),R(Mfk) >
∫ 3

2

(
k

3

)3

dx =
k3

27
.

On the other hand ρp(·),R(fk) = k2, so (1.3) cannot hold.

In fact, when Ω = Rn and p+ <∞, Lerner [24] showed that inequality (1.3) never holds
unless p(·) is constant.

Theorem 1.3. Let p(·) ∈ P(Rn), p+ <∞. Then the modular inequality∫
Rn
Mf(x)p(x) dx 6 Cp(·),n

∫
Rn
|f(x)|p(x) dx,

where Cp(·),n is a constant depending on n, p(·) but independent of f , holds if and only if there
is a constant p > 1 such that p(·) = p almost everywhere.

Remark 1.4. The original proof of Theorem 1.3 in [24] (see also [14, Theorem 3.31]) used
the theory of MuckenhouptAp weights from harmonic analysis. For a simpler proof, see [21]
and Corollary 1.22 below.

However, weaker modular inequalities that include an error term are true. These results
played a role in the original proofs of Theorem 1.1. For instance, we have the following
result [14, Theorem 3.33].

Theorem 1.5. Given p(·) ∈ P(Rn) such that 1 < p− ≤ p+ < ∞ and p(·) ∈ LH(Rn),
suppose f ∈ Lp(·)(Rn) and ‖f‖p(·) 6 1. Then∫

Rn
Mf(x)p(x) dx 6 Cp(·),n

∫
Rn
|f(x)|p(x) dx+ Cp(·),n

∫
Rn

dx

(e+ |x|)np−
,

where the constant Cp(·),n depends on n, p(·) but is independent of f .

The goal of this paper is to give necessary and sufficient conditions for modular inequal-
ities of the form ∫

Ω

Mf(x)p(x)dx 6 c1

∫
Ω

|f(x)|q(x)dx+ c2, (1.4)

to hold for all measurable functions f , where p(·), q(·) ∈ P(Ω), and c1 > 0, c2 ≥ 0 are
constants depending on n, p(·), q(·) and |Ω|, but are independent of f . We are interested
in the weakest possible conditions on the exponent functions p(·) and q(·) for (1.4) to hold.
In particular, we want to prove modular inequalities without assuming any smoothness
conditions on the exponents.

In this paper we will only consider the case p(·) 6≡ 1. The endpoint case when p(·) ≡ 1
is substantially different. If Ω is bounded and q− > 1, then (1.4) always holds: this is
an immediate consequence of [10, Theorem 1.2]. If Ω = Rn, then (1.4) never holds, since
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Mf is never in L1(Rn) unless f = 0 a.e. More generally, given any set Ω with infinite
measure, then arguing as in Example 1.7 below, we would have Lq(·)(Ω) ⊂ L1(Ω), which
is impossible: see [14, Theorem 2.45]. When q− = 1 the problem of characterizing q(·) is
open. Some delicate results in [18, 20] show that this problem depends on how quickly q(·)
approaches 1.

Our two main results completely characterize the exponents p(·) and q(·) so that the
modular inequality holds. Our characterization depends strongly on whether Ω has finite
or infinite measure; When Ω has finite measure our result is remarkably simple.

Theorem 1.6. Given a set Ω ⊆ Rn, 0 < |Ω| <∞, let p(·), q(·) ∈ P(Ω), p(·) 6≡ 1. Then the
modular inequality (1.4) holds if and only if p+(Ω) 6 q−(Ω).

As our second result below shows, the assumption that |Ω| <∞ is critical in Theorem 1.6.
But to motivate this result, we first give the following example.

Example 1.7. If Ω ⊆ Rn, |Ω| =∞, and if p(·) ∈ P(Ω), q(·) ∈ P(Ω), then the assumption
that p+(Ω) ≤ q−(Ω) is not sufficient for (1.4) to be true. We first consider the case p+(Ω) =
q−(Ω). Fix an open set Ω, |Ω| =∞, and constants 1 < p < q <∞. Define p(·) ≡ p and

q(x) =

{
p if x ∈ Q
q if x ∈ Ω\Q,

where Q ⊂ Ω is a cube. Then p+(Ω) = q−(Ω). Suppose (1.4) holds; then we would have∫
Ω

|f(x)|p dx 6
∫

Ω

Mf(x)p dx

6 c1

∫
Q

|f(x)|p dx+ c1

∫
Ω\Q
|f(x)|q dx+ c2.

But then, if we let f := gχΩ\Q, we would get the embedding Lq(Ω\Q) ⊂ Lp(Ω\Q), which
does not hold when p < q since Ω has infinite measure [22, 29].

The case p+(Ω) < q−(Ω) is obtained from the same argument by taking Q = ∅.

The problem in Example 1.7 arises because the exponents p(·) and q(·) behave differently
at infinity. To avoid this, we make the following definition.

Definition 1.8. Given a set Ω, |Ω| = ∞, let FΩ denote the collection of subsets of Ω that
havie infinite measure. Given p(·), q(·) ∈ P(Ω), we say that p(·) and q(·) touch at infinity,
and denote this by p(·)mq(·), if for every E ∈ FΩ,

p+(E) = p+(Ω) = q−(Ω) = q−(E).

The exponents in Example 1.7 do not touch at infinity. We consider three additional
examples.

Example 1.9. Let Ω = R.

(1) The exponents p(x) = 2− (1 + x2)−1, q(x) = 2 + (1 + x2)−1 touch at infinity.
(2) On the other hand, if we let q̃(x) = a+ (1 + x2)−1, a > 2, then p(·) and q̃(·) do not

touch at infinity.
(3) Finally, if p(x) ≡ 2 and q(x) = 2 + χE, where E is any bounded measurable set,

then p(·) and q(·) touch at infinity.



MODULAR INEQUALITIES FOR THE MAXIMAL OPERATOR IN VARIABLE LEBESGUE SPACES 5

We can now state our second main result, characterizing the modular inequality on sets
Ω with infinite measure.

Theorem 1.10. Given a set Ω ⊆ Rn, |Ω| = ∞, let p(·), q(·) ∈ P(Ω), p(·) 6≡ 1. Define
D := {x ∈ Ω : p(x) < q(x)} 6= ∅. Then the following are equivalent:

(i) The modular inequality (1.4) holds;

(ii) p(·)mq(·) and Lq(·)(Ω) ↪→ Lp(·)(Ω);

(iii) p(·)mq(·) and there exists λ > 1 such that

ρr(·),D(1/λ) =

∫
D

λ−r(x)dx <∞, (1.5)

where r(·) is the defect exponent defined by 1
r(x)

= 1
p(x)
− 1

q(x)
;

(iv) p(·)mq(·) and there exists a measurable function ω, 0 < ω(·) 6 1, such that

ρp(·),D(ω) =

∫
D

ω(x)p(x)dx <∞ (1.6)

and
‖ω(·)−|p+−p(·)|‖L∞(D) · ‖ω(·)−|q(·)−p+|‖L∞(D) <∞. (1.7)

Remark 1.11. There is a close connection between the embedding Lq(·)(Ω) ↪→ Lp(·)(Ω) and
condition (1.5): we have that this embedding holds if and only if p(x) ≤ q(x) a.e. and (1.5)
holds (see [14, Theorem 2.45]). However, (1.5) is independent of p(·)mq(·). For one direc-
tion, let Ω = (2,∞) and define p(·) and q(·) by

1

p(x)
=

1

2
− 1

x2
,

1

q(x)
=

1

p(x)
− 1

x4
.

Then we have p(x) ≤ q(x) and the defect exponent is r(x) = x4, so (1.5) holds for any
λ > 1. Thus Lq(·)(Ω) ↪→ Lp(·)(Ω). However, p+(Ω) = 4 and q−(Ω) = 2, so we do not have
that p(·) and q(·) touch at infinity.

Conversely, let Ω = (e9,∞) and define p(·) and q(·) by

p(x) = 2, q(x) =
2 log log(x)

(log log(x)− 2)
.

Then q−(Ω) = 2 and it decreases to this value as x→∞, so p(·)mq(·). However, the defect
exponent is r(x) = log log(x) and the integral in (1.5) is infinite for any value of λ > 1.

Remark 1.12. The condition (1.5) is closely related to the problem of finding sufficient
conditions for the maximal operator to be bounded on Lp(·)(Ω) when Ω is unbounded.
Nekvinda [26] showed that the log-Hölder continuity condition at infinity in Theorem 1.1
can be replaced by a weaker integral condition: for some λ > 1,∫

D

λ−r(x) dx <∞,

where now r(·) is defined by 1
r(x)

=
∣∣∣ 1
p(x)
− 1

p∞

∣∣∣ and D = {x ∈ Ω : p(x) 6= p∞}. For

a thorough discussion of this condition and its relationship with (1.5) and the associated
embedding theorem, see [14, Section 4.1].
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Remark 1.13. As a consequence of the assumption that p(·)mq(·), we have that for any
R > 0,

p+(Ω \B(0, R)) = p+(Ω) = q−(Ω) = q−(Ω \B(0, R)).

Therefore, p(·) and q(·) have a common asymptotic value in the sense that

p+(Ω) = lim sup
|x|→∞

p(x) = lim inf
|x|→∞

= q−(Ω).

Denote this asymptotic value by p∞; it is a generalization of the value p∞ that occurs in the
definition of log-Hölder continuity in Theorem 1.1 or in the Nekvinda condition discussed
above. In particular, if |D| =∞, then condition (1.7) is equivalent to

‖ω(·)−|p∞−p(·)|‖L∞(D) · ‖ω(·)−|q(·)−p∞|‖L∞(D) <∞.

Remark 1.14. It is a consequence of the proof that if the modular inequality (1.4) holds,
then c1 > 1: see the proof of the implication (i)⇒ (ii).

In the proof of Theorems 1.6 and 1.10, we use the definition of the maximal operator to
prove necessity. In the proof of sufficiency, we only use the fact that the maximal operator
is a bounded operator on Lp(Ω), 1 < p < ∞. Therefore, as an immediate corollary of the
proofs we get the following result.

Corollary 1.15. Given a set Ω and p(·), q(·) ∈ P(Ω), suppose that either |Ω| < ∞ and
p+(Ω) ≤ q−(Ω), or |Ω| =∞, p(·)mq(·), and (1.5) holds. If T is any operator that is bounded
on Lp(Ω) for all 1 < p <∞, then∫

Ω

|Tf(x)|p(x) dx ≤ c1

∫
Ω

|f(x)|q(x) dx+ c2,

with positive constants c1, c2 that depend on p(·), q(·) and T but not on f .

The assumption on the operator T is very general and is satisfied by most of the classical
operators of harmonic analysis: for example, it holds for Calderón-Zygmund singular inte-
gral operators and square functions. In fact, a close examination of the proof shows that
we can assume less: given fixed p(·) and q(·), we only require that the operator is bounded
on Lp+(Ω). As a consequence, we can prove a modular inequality for the Fourier transform

f̂(ξ) =

∫
Rn
f(x)e−2πix·ξ dx

on variable Lebesgue spaces, using the Plancherel theorem that ‖f̂‖2 = ‖f‖2. The impor-
tance of this result follows from the fact that natural generalization of the Hausdorff-Young
inequality fails in the variable exponent setting. (See [14, Section 5.6.10] for complete de-
tails.)

Corollary 1.16. Given p(·), q(·) ∈ P(Rn), p+ = 2, suppose p(·)mq(·), and (1.5) holds.
Then ∫

Rn
|f̂(ξ)|p(ξ) dξ ≤ c1

∫
Rn
|f(x)|q(x) dx+ c2,

with positive constants c1, c2 that depend on p(·) and q(·) but not on f .
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Remark 1.17. Modular inequalities for other operators that are bounded on Lp(Ω) have
been extensively studied in the setting of Orlicz spaces: see, for example, [5, 6, 7, 8, 17, 23].
Modular inequalities in the variable Lebesgue spaces for operators other than the maximal
operator have not been studied, though we refer the reader to [19] for a modular interpola-
tion inequality in variable Sobolev spaces.

Remark 1.18. There is a certain parallel between Corollary 1.15 and the theory of Rubio
de Francia extrapolation in the scale of variable Lebesgue spaces. Roughly speaking, the
theory of extrapolation says that if an operator T is bounded on Lp(w), where 1 < p < ∞
and w is any weight in the Muckenhoupt Ap class, then T is bounded on Lp(·) provided that
the maximal operator is bounded on Lp(·). (See [14, Section 5.4] for a precise statement of
extrapolation.) We can restate Corollary 1.15 as saying that if T is bounded on Lp(Ω), and
the maximal operator satisfies a certain modular inequality, then (because Theorems 1.6
and 1.10 given necessary as well as sufficient conditions) T satisfies the same modular in-
equality (possibly with different constants).

Remark 1.19. It would be of interest to generalize Corollary 1.15 and modular inequali-
ties on Orlicz spaces by considering the analogous question in the scale of Musielak-Orlicz
spaces [25]. It would also be interesting to determine if the conditions in Corollary 1.15 are
necessary for any other operators to satisfy a modular inequality.

If we consider constant exponent functions p(·) = p and q(·) = q, then Theorems 1.6
and 1.10, and Corollary 1.15 have the following corollary.

Corollary 1.20. Given Ω ⊂ Rn, suppose |Ω| < ∞. If 1 < p 6 q < ∞, then the following
inequality holds ∫

Ω

Mf(x)p dx 6 c1

∫
Ω

|f(x)|q dx+ c2, (1.8)

for every f ∈ Lq(Ω) and for some positive constants c1, c2 depending on n, p, q, |Ω|, but
independent of f . If |Ω| =∞, then inequality (1.8) holds if and only if 1 < p = q.

Moreover, if T is an operator that is bounded on Lp(Ω), 1 < p <∞, then these conditions
are sufficient for T to satisfy the modular inequality∫

Ω

|Tf(x)|p dx ≤ c1

∫
Ω

|f(x)|q dx+ c2.

To prove Theorems 1.6 and 1.10, we will first prove the following proposition which es-
tablishes a necessary condition which for sets Ω of finite measure is also sufficient.

Proposition 1.21. Given p(·), q(·) ∈ P(Ω), if the modular inequality (1.4) holds, then

p+(Ω) ≤ q−(Ω) . (1.9)

As a corollary to Proposition 1.21, together with the classical theorem on the bound-
edness of the maximal operator on Lp(Ω), 1 < p < ∞ (cf. [28]), we immediately get the
following generalization of Theorem 1.3 to arbitrary domains and unbounded exponent
functions.

Corollary 1.22. Given an open set Ω and p(·) ∈ P(Ω), the modular inequality∫
Ω

Mf(x)p(x) dx 6 c1

∫
Ω

|f(x)|p(x) dx+ c2,
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with positive constants c1, c2 depending on n, p(·), q(·) and |Ω| but independent of f , holds if
and only if p(·) equals a constant p > 1 almost everywhere.

Remark 1.23. Theorem 1.22 does not contradict Theorem 1.5, since in the latter result we
need the additional hypothesis that ‖f‖Lp(·)(Rn) ≤ 1.

The remainder of this paper is organized as follows. In Section 2 we first prove Proposi-
tion 1.21. In Section 3 we prove Theorem 1.6 and in Section 4 we prove Theorem 1.10.

2. Proof of Proposition 1.21

We begin with a definition and a lemma. Given a measurable set Ω ⊆ Rn, |Ω| > 0, we
denote byQΩ the set of open cubesQ in Rn (whose sides are parallel to the coordinate axes)
such that |Ω ∩Q| > 0.

Lemma 2.1. Given a set Ω ⊆ Rn, let p(·) ∈ P(Ω), q(·) ∈ P(Ω). Then the following
conditions are equivalent:

(i) p+(Q) 6 q−(Q) for every Q ∈ QΩ;

(ii) p+(Ω) 6 q−(Ω).

Proof. The fact that (ii) implies (i) is easy: for any Q ∈ QΩ we have

p+(Q) = p+(Q ∩ Ω) 6 p+(Ω) 6 q−(Ω) 6 q−(Q ∩ Ω) = q−(Q).

In order to prove that (i) implies (ii), let {Qn}n∈N be a countable cover of Ω by elements
of QΩ. We then have that if p+(Q) ≤ q−(Q) for every Q ∈ QΩ, then

p+(Qm) ≤ q−(Qn) ∀m,n ∈ N. (2.1)

To see this, note that for everym,n ∈ N, there exists a cubeQm,n ∈ QΩ such thatQm∪Qn ⊆
Qm,n. By hypothesis p+(Qm,n) ≤ q−(Qm,n), so

p+(Qm) 6 p+(Qm,n) 6 q−(Qm,n) 6 q−(Qn) .

Now, if we first take the supremum over m ∈ N and then take the infimum over n ∈ N,
by (2.1) we get supm∈N p+(Qm) 6 infn∈N q−(Qn). Therefore,

p+(Ω) = p+

(⋃
m∈N

Qm

)
= sup

m∈N
p+(Qm)

6 inf
n∈N

q−(Qn) = q−

(⋃
n∈N

Qn

)
= q−(Ω).

�

The following argument is inspired by Example 1.2 and is similar to the proof of Theo-
rem 1.3 in [21, Thm. 5.1].

Proof of Proposition 1.21. If (1.9) does not hold, then by Lemma 2.1 there exists a cube
Q ∈ QΩ such that p+(Q) > q−(Q). Let α, β be such that

q−(Q) < α < β < p+(Q) .
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LetEβ ⊂ Q∩Ω, |Eβ| > 0, be such that p(x) ≥ β for a.e. x ∈ Eβ. Similarly, letEα ⊂ Q∩Ω,
|Eα| > 0, be such that q(x) ≤ α for a.e. x ∈ Eα. Define f = λχEα , where λ > 1. Then for
all z ∈ Q,

Mf(z) ≥ 1

|Q|

∫
Q

|f(y)| dy =
λ|Eα|
|Q|

.

Moreover, if λ > |Q|/|Eα|, then (λ|Eα|/|Q|)p(x) ≥ (λ|Eα|/|Q|)β for every x ∈ Eβ. Hence,∫
Ω

Mf(x)p(x)dx >
∫
Eβ

(
λ|Eα|
|Q|

)p(x)

dx > |Eβ|
(
λ|Eα|
|Q|

)β
.

On the other hand, ∫
Ω

|f(x)|q(x) dx =

∫
Eα

λq(x) dx ≤ |Eα|λα.

Therefore, if (1.4) holds, then we must have that

|Eβ|
(
λ|Eα|
|Q|

)β
≤ c1|Eα|λα + c2

for all λ sufficiently large, which is a contradiction since α < β. �

3. Proof of Theorem 1.6

By Proposition 1.21 we have that if the modular inequality (1.4) holds, then p+(Ω) ≤
q−(Ω). Therefore, it remains to show that this condition is sufficient.

Fix a set Ω and p(·), q(·) ∈ P(Ω) such that p+(Ω) ≤ q−(Ω), and fix a function f . Given
a set E ⊆ Ω, we define

I(E) =

∫
E

Mf(x)p(x) dx, F (E) =

∫
E

|f(x)|p+ dx,

and
D1(Mf) = {x ∈ Ω : Mf(x) > 1}, D1(f) = {x ∈ Ω : |f(x)| > 1}.

We now estimate as follows:∫
Ω

Mf(x) dx = I(D1(Mf)) + I(Ω \D1(Mf)).

We immediately have that I(Ω\D1(Mf)) ≤ |Ω|. On the other hand, since p(·) 6≡ 1, p+ > 1,
so the maximal operator is bounded on Lp+(Ω). Hence,

I(D1(Mf)) ≤
∫
D1(Mf)

Mf(x)p+ dx ≤ cp+,n

∫
Ω

|f(x)|p+ dx = cp+,nF (Ω).

To estimate F (Ω) we argue similarly: since p+(Ω) ≤ q−(Ω),

F (Ω) = F (D1(f)) + F (Ω \D1(f)) ≤
∫
D1(f)

|f(x)|q(x) dx+ |Ω|.

If we combine all of these inequalities, we get∫
Ω

Mf(x) dx ≤ cp+,n

∫
Ω

|f(x)|q(x) dx+ (cp+,n + 1)|Ω|.

This completes the proof of sufficiency.
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4. Proof of Theorem 1.10

We will prove the following chain of implications:

(i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (i).

[(i) ⇒ (ii)] We first prove that if the modular inequality (1.4) holds, then Lq(·)(Ω) ↪→
Lp(·)(Ω). Since Lp(·) is a Banach function space, the embedding Lq(·)(Ω) ↪→ Lp(·)(Ω) is
equivalent (cf. [3, Thm. 1.8]) to the set-theoretical inclusion Lq(·)(Ω) ⊆ Lp(·)(Ω). Since
Mf(x) > |f(x)| a.e. in Ω, if (1.4) holds, then ρp(·),Ω(f) 6 c1ρq(·),Ω(f)+c2. Fix f ∈ Lq(·)(Ω);
then for some λ > 0, ρq(·),Ω(f/λ) <∞. Therefore,

ρp(·),Ω(f/λ) 6 c1ρq(·),Ω(f/λ) + c2 <∞,

and so f ∈ Lp(·)(Ω).
We now prove that if (1.4) holds, then p(·)mq(·). Given any measurable set E ∈ FΩ and

any measurable function f : E ⊆ Ω→ R, (1.4) implies that∫
E

|f(x)|p(x)dx 6 c1

∫
E

|f(x)|q(x)dx+ c2, (4.1)

with c1, c2 > 0 the same constants. Fix E ∈ FΩ and define f(x) = λ · χBδ∩E(x), 0 < λ < 1
andBδ = B(0, δ). Since 0 < λ < 1, for x ∈ E, λp+(E) 6 λp(x) and λq(x) 6 λq−(E). Therefore,
by (4.1),

|E ∩Bδ|λp+(E) 6
∫
E∩Bδ

λp(x)dx

6 c1

∫
E∩Bδ

λq(x)dx+ c2 6 c1|E ∩Bδ|λq−(E) + c2.

Since |E∩Bδ| → ∞ as δ →∞, we get that λp+(E) 6 c1λ
q−(E)+c2|E∩Bδ|−1 for δ sufficiently

large. If we take the limit as δ →∞, we get that if (1.4) holds, then

λp+(E) 6 c1λ
q−(E) ∀ 0 < λ < 1 .

Since p+(E) 6 q−(E) we must have that p+(E) = q−(E) and c1 > 1.
Finally, since by Theorem 1.21, p+(Ω) 6 q−(Ω), and since p+(E) 6 p+(Ω) 6 q−(Ω) 6

q−(E), we get that p(·)mq(·).

[(ii) ⇒ (iii)] As noted above, this implication follows from the fact that the embedding
Lq(·)(Ω) ↪→ Lp(·)(Ω) is equivalent to assuming p(x) ≤ q(x) and (1.5) holds. (See [14, Thm.
2.45].)

[(iii) ⇒ (iv)] We explicitly construct the function ω. Since p(·)mq(·), we claim that there
exists κ > 1 such that |Eq(·),κ| < ∞, where Eq(·),κ = {x ∈ Ω : q(x) > κ}. For if not, then
for all κ > 1, |Eq(·),κ| = ∞. In particular, if we set κ = p+(Ω) + 1, then Eq(·),κ ∈ FΩ and
q−(Eq(·),κ) > p+(Ω) ≥ p+(Eq(·),κ), a contradiction.

Fix such a κ and define

ω(x) :=

{
λ−r(x)/p(x) x ∈ D\Eq(·),κ,
1 x ∈ D ∩ Eq(·),κ,
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where r(·) is the defect exponent defined by 1
r(x)

= 1
p(x)
− 1

q(x)
. Since λ > 1, we have that

0 < ω(·) 6 1 and

ω(·)−|p+−p(·)| = λ
p+−p(·)
q(·)−p(·) q(·) 6 λq(·) 6 λκon D\Eq(·),κ,

ω(·)−|q(·)−p+| = λ
q(·)−p+
q(·)−p(·) q(·) 6 λq(·) 6 λκon D\Eq(·),κ.

Moreover, ω(·)−|p+−p(·)| = ω(·)−|q(·)−p+| = 1 6 λκ on the set D ∩ Eq(·),κ and therefore (1.7)
holds.

Finally, to prove (1.6) we estimate as follows:

ρp(·),D(ω) =

∫
D\Eq(·),κ

λ−r(x)dx+ |Eq(·),κ| 6
∫
D

λ−r(x)dx+ |Eq(·),κ| <∞.

[(iv) ⇒ (i)] The proof of this implication is similar to the proof of sufficiency in the proof
of Theorem 1.6. However, since |Ω| =∞ we need to introduce ω and use ρp(·),D(ω) in place
of |Ω|.

As before, given a measurable function f and a measurable set E ⊆ Ω, define

I(E) =

∫
E

Mf(x)p(x)dx, F (E) =

∫
E

|f(x)|p+ dx.

Recall that D = {x ∈ Ω : p(x) < q(x)} and write∫
Ω

Mf(x)p(x) dx = I(D) + I(Ω \D).

Since p+ 6 q−, we have p(·) = p+ = q− = q(·) on Ω \D. Therefore, since p(·) 6≡ 1, p+ > 1,
so the maximal operator is bounded on Lp+(Ω). Hence,

I(Ω \D) =

∫
Ω\D

Mf(x)p+dx 6 cp+,n F (Ω)

To estimate I(D), define Dω(Mf) = {x ∈ D : Mf(x) > ω(x)} where ω is the function
from our hypothesis (iv). Then

I(D) =

∫
D\Dω(Mf)

Mf(x)p(x)dx+

∫
Dω(Mf)

Mf(x)p(x)dx

6 ρp(·),D(ω) +

∫
Dω(Mf)

(
Mf(x)

ω(x)

)p(x)

ω(x)p(x)dx.

Since Mf(·)/ω(·) > 1 on Dω(Mf),

6 ρp(·),D(ω) +

∫
Dω(Mf2)

(
Mf(x)

ω(x)

)p+
ω(x)p(x)dx

6 ρp(·),D(ω) + ‖ω−|p+−p(·)|‖L∞(D)

∫
D

(Mf(x))p+dx.

Again since M is bounded on Lp+(Ω),

6 ρp(·),D(ω) + cn,p+ · ‖ω−|p+−p(·)|‖L∞(D) F (Ω).
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If we combine the above inequalities we get

I(Ω) 6
[
cn,p+(1 + ‖ω−|p+−p(·)|‖L∞(D))

]
F (Ω) + ρp(·),D(ω), (4.2)

so to complete the proof we need to estimate F (Ω) = F (D) +F (Ω \D). As before we have
p(·) = p+ = q− = q(·) on Ω \D, so

F (Ω \D) =

∫
Ω\D
|f(x)|p+ =

∫
Ω\D
|f(x)|q(x)dx.

To estimate F (D), letDω(f) = {x ∈ D : |f(x)| > ω(x)}. Since 0 < ω 6 1 and p+ > p(·),
we have ρp+,D(ω) 6 ρp(·),D(ω). Therefore,

F (D) =

∫
D\Dω(f)

|f(x)|p+dx+

∫
Dω(f)

|f(x)|p+dx

6 ρp(·),D(ω) +

∫
Dω(f)

(
|f(x)|
ω(x)

)p+
· ω(x)p+dx.

Since |f(·)|/ω(·) > 1 on Dω(f)

6 ρp(·),D(ω) +

∫
Dω(f)

(
|f(x)|
ω(x)

)q(x)

· ω(x)p+dx

6 ρp(·),D(ω) + ‖ω−|q(·)−p+|‖L∞(D)

∫
D

|f(x)|q(x)dx.

If we combine the previous two estimates, we get

F (Ω) 6
∫

Ω\D
|f(x)|q(x)dx+ ρp(·),D(ω) + ‖ω−|q(·)−p+|‖L∞(D)

∫
D

|f(x)|q(x)dx

6 (1 + ‖ω−|q(·)−p+|‖L∞(D))

∫
Ω

|f(x)|q(x)dx+ ρp(·),D(ω).

Together with inequality (4.2) this gives us the modular inequality (1.4). This completes
the proof.
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Bessatsu, B42, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, pp. 51–94.

[22] V. Kabaila, Inclusion of the space Lp(µ) in Lr(ν), Litovsk. Mat. Sb. 21 (1981), no. 4, 143–148.
[23] V. Kokilashvili and M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces, World Scientific,

1991.
[24] A. K. Lerner, On modular inequalities in variable Lp spaces, Archiv der Math. 85 (2005), no. 6,

538–543.
[25] J. Musielak. Orlicz Spaces and Modular Spaces, volume 1034 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin, 1983.
[26] A. Nekvinda, Hardy-Littlewood maximal operator on Lp(x)(Rn), Math. Inequal. Appl., 7 (2004), no. 2,

255–265.
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