B. D. Greenshields, J. Thompson, H. Dickinson, and R. Swinton, The photographic method 12 of studying traffic behavior, Highway Research Board Proceedings, p.13, 1934.

M. J. Lighthill and G. B. Whitham, On kinematic waves. II. A theory of traffic flow on long 14 crowded roads, Proceedings of the Royal Society of London A: Mathematical, Physical 15 and Engineering Sciences, pp.317-345, 1955.

P. I. Richards, Shock Waves on the Highway, Operations Research, vol.4, issue.1, pp.17-42, 1956.
DOI : 10.1287/opre.4.1.42

C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, vol.28, issue.4, p.20
DOI : 10.1016/0191-2615(94)90002-7

G. M. Coclite, M. Garavello, and B. Piccoli, Traffic Flow on a Road Network, SIAM Journal on Mathematical Analysis, vol.36, issue.6, pp.1862-1886, 2005.
DOI : 10.1137/S0036141004402683

C. F. Daganzo and N. Geroliminis, An analytical approximation for the macroscopic fun- 24 damental diagram of urban traffic, Transportation Research Part B: Methodological, vol.42, p.25

N. Geroliminis and J. Sun, Properties of a well-defined macroscopic fundamental diagram 27 for urban traffic, Transportation Research Part B: Methodological, vol.45, issue.3, pp.28-605, 2011.

N. Geroliminis and C. F. Daganzo, Existence of urban-scale macroscopic fundamental 30 diagrams: Some experimental findings, Transportation Research Part B: Methodological, p.31
DOI : 10.1016/j.trb.2008.02.002

URL : https://cloudfront.escholarship.org/dist/prd/content/qt1b07t4q7/qt1b07t4q7.pdf

M. Hajiahmadi, V. L. Knoop, B. D. Schutter, and H. Hellendoorn, Optimal dynamic route 33 guidance: A model predictive approach using the macroscopic fundamental diagram, 34 Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE Conference on, pp.35-1022, 2013.

L. Leclercq, C. Parzani, V. L. Knoop, J. Amourette, and S. P. Hoogendoorn, Macroscopic Traffic Dynamics with Heterogeneous Route Patterns, Transportation Research Procedia, vol.7, pp.631-650, 2015.
DOI : 10.1016/j.trpro.2015.06.033

URL : https://hal.archives-ouvertes.fr/hal-01215757

M. Beckmann, A Continuous Model of Transportation, Econometrica, vol.20, issue.4, pp.643-660, 1952.
DOI : 10.2307/1907646

H. Ho and S. Wong, Two-dimensional Continuum Modeling Approach to Transportation Problems, Journal of Transportation Systems Engineering and Information Technology, vol.6, issue.6
DOI : 10.1016/S1570-6672(07)60002-6

D. Helbing, A fluid dynamic model for the movement of pedestrians. arXiv preprint 3 cond-mat/9805213, 1998.

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, vol.36, issue.6
DOI : 10.1016/S0191-2615(01)00015-7

. Trian-flows, Physica A: Statistical Mechanics and its Applications, pp.8-4623, 2010.

R. M. Colombo, M. Garavello, M. Lécureux-mercier, M. , P. Goatin et al., A class of nonlocal models for 10 pedestrian traffic Comparative study of macroscopic pedes- 13 trian models, Mathematical Models and Methods in Applied Sciences Transportation Research Procedia, vol.22, issue.2, pp.477-485, 2012.

A. Kormanová, A Review on Macroscopic Pedestrian Flow Modelling, Acta Informatica Pragensia, vol.2, issue.2, p.15
DOI : 10.18267/j.aip.22

D. Rossa, F. , C. D. Angelo, and A. Quarteroni, A distributed model of traffic flows on 17 extended regions, NHM, vol.5, issue.3, pp.525-544, 2010.

Y. Jiang, S. Wong, H. Ho, P. Zhang, R. Liu et al., A dynamic traffic as- 19 signment model for a continuum transportation system, Transportation Research Part, vol.B, p.20
DOI : 10.1016/j.trb.2010.07.003

URL : http://hdl.handle.net/10397/9056

J. Du, S. Wong, C. Shu, T. Xiong, M. Zhang et al., Revisiting Jiangâ ? A ´ Zs dynamic 22 continuum model for urban cities, Transportation Research Part B: Methodological, vol.56, issue.23, pp.2013-96
DOI : 10.1016/j.trb.2013.07.001

Y. Jiang, P. Ma, and S. Zhou, Macroscopic modeling approach to estimate traffic- 25 related emissions in urban areas, Transportation Research Part D: Transport and Environment, vol.26, pp.2015-2042
DOI : 10.1016/j.trd.2015.10.022

R. Perez, L. , and F. G. Benitez, Outline of Diffusion Advection in Traffic Flow Model- 28 ing, Transportation Research Board 87th Annual Meeting, pp.8-1503, 2008.

T. Saumtally, Modèles bidimensionnels de trafic, p.30, 2012.

K. S. Sossoe and J. Lebacque, Reactive Dynamic Assignment for a Bi-dimensional Traffic 31
DOI : 10.1007/978-3-319-48944-5_17

J. Lebacque and M. Khoshyaran, First order macroscopic traffic flow models for networks in 38 the context of dynamic assignment, Transportation Planning, pp.119-140, 2004.

S. N. Kruzhkov, First order quasilinear equations in several independent variables

K. Lie, A dimensional splitting method for quasilinear hyperbolic equations with variable 42 coefficients, BIT Numerical Mathematics, vol.39, issue.4, pp.41-683, 1999.

E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical 44 introduction, 2013.
DOI : 10.1007/b79761

L. Gosse, A Two-Dimensional Version of the Godunov Scheme for Scalar Balance Laws, SIAM Journal on Numerical Analysis, vol.52, issue.2
DOI : 10.1137/130925906

URL : https://hal.archives-ouvertes.fr/hal-00870221

S. K. Godunov, A difference method for numerical calculation of discontinuous solutions of 3 the equations of hydrodynamics, Matematicheskii Sbornik, vol.89, issue.3, pp.271-275, 1959.

G. Strang, On the Construction and Comparison of Difference Schemes, SIAM Journal on Numerical Analysis, vol.5, issue.3
DOI : 10.1137/0705041