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Abstract

We consider stationary Navier-Stokes equations in R3 with a regular external force
and we prove exponential frequency decay of the solutions. Moreover, if the external
force is small enough, we give a pointwise exponential frequency decay for such solutions
according to the K41 theory. If a damping term is added to the equation, a pointwise
decay is obtained without the smallness condition over the force.

1 Introduction

Gevrey regularity for solutions of the Navier-Stokes equations has been studied in many differ-
ent frameworks: for a periodic setting with external force see [1], [6]; for the stationary problem
in T3 with frequency localized forces see [2]. For the evolution problem in R3 (with a null force)
a pointwise analysis is obtained in [4].

In this article we generalize some of these previous results in the framework of stationary
Navier-Stokes equations in R3

−ν∆
−→
U + P(div(

−→
U ⊗

−→
U )) =

−→
F , div(

−→
U ) = 0, div(

−→
F ), (1)

where ν > 0 is the fluid’s viscosity parameter,
−→
U : R3 −→ R3 is the velocity, P is the Leray’s

projector and
−→
F : R3 −→ R3 is a time-independent external force.

∗Corresponding author: plemarie@univ-evry.fr
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If the external force is regular enough we prove in Theorem 1.1 an exponential frequency
decay. Moreover, if the external force is small enough, we give in Theorem 1.2 a pointwise
exponential frequency decay for such solutions. Finally, if a damping term is added to the
equation, a pointwise decay is obtained in Theorem 1.3 without the smallness condition over
the force.

Theorem 1.1 Let
−→
F ∈ Ḣ−1(R3) be such that for ε0 > 0 we have∫

R3

e2ε0|ξ|
∣∣−̂→F (ξ)

∣∣2|ξ|−2dξ < +∞.

Then there exists
−→
U ∈ Ḣ1(R3) a solution to the stationary Navier-Stokes equations (1), such

that
−→
U verifies the following exponential frequency decay:∫

R3

e2ε1|ξ|
∣∣−̂→U (ξ)

∣∣2|ξ|2dξ < +∞, where ε1 = ε1(ε0,
−→
F , ν) > 0. (2)

In the laminar setting we obtain a sharper pointwise exponential frequency decay.
For 0 ≤ a < 3, we define the pseudo-measures space by

PMa =
{−→g ∈ S ′

(R3) : −̂→g ∈ L1
loc(R3) and |ξ|a−̂→g ∈ L∞(R3)

}
,

which is a Banach space endowed with the norm ‖−→g ‖PMa = ‖|ξ|a−̂→g ‖L∞ , for a = 0 we will
simply denote the space PM0 by PM.

Theorem 1.2 Let
−→
F ∈ PM. There exists a (small) constant η > 0 such that if

sup
ξ∈R3

e|ξ|
∣∣−̂→F (ξ)

∣∣ < η,

then there exists
−→
U ∈ PM2 a solution to the stationary Navier-Stokes equations (1) such that

−→
U verifies the following pointwise exponential frequency decay:∣∣−̂→U (ξ)

∣∣ ≤ ce−|ξ||ξ|−2, for all ξ 6= 0. (3)

If a damping term is added to the stationary Navier-Stokes system, we have the following result

Theorem 1.3 Let
−→
F ∈ H−1(R3) and for α > 0 consider the damped stationary Navier-Stokes

equations

−ν∆
−→
U + P(div(

−→
U ⊗

−→
U )) =

−→
F − α

−→
U , div(

−→
U ) = 0. (4)

If the external force
−→
F is such that

∣∣−̂→F (ξ)
∣∣ ≤ e−ε0|ξ| for a fixed ε0 > 0, then the stationary

solution
−→
U ∈ H1(R3) satisfies the following pointwise exponential frequency decay∣∣−̂→U (ξ)

∣∣ ≤ ce−ε1|ξ||ξ|−
5
2 , for all ξ 6= 0, where ε1 = ε1(ε0,

−→
F , ν) > 0. (5)

2



2 Proof of Theorem 1.1

Lemma 2.1 If
−→
F ∈ Ḣ−1(R3), then there exists at least one solution

−→
U ∈ Ḣ1(R3) to the

stationary Navier-Stokes equation (1).

Lemma 2.2 Let T0 > 0. For −→u 0 ∈ Ḣ1(R3) a divergence-free initial data and a divergence-

free external force
−→
f ∈ C([0, T0[, Ḣ1(R3)) there exists a time 0 < T1 < T0 and a function

−→u ∈ C([0, T1[, Ḣ1(R3)) which is a unique solution to the Navier-Stokes equations

∂t
−→u − ν∆−→u + P(div(−→u ⊗−→u )) =

−→
f , div(−→u ) = 0, −→u (0, ·) = −→u 0. (6)

Existence and uniqueness issues are classical, see [5] for details.

In the following proposition we prove the frequency decay for the solution −→u obtained in
Lemma 2.2.

Proposition 2.1 Let α > 0 and consider the Poisson kernel eα
√
t
√
−∆. Within the framework

of Lemma 2.2, if the external force
−→
f is such that

eα
√
t
√
−∆−→f ∈ C(]0, T0[, Ḣ1(R3)),

then the unique solution of equations (6) satisfies eα
√
t
√
−∆−→u ∈ C(]0, T1[, Ḣ1(R3)) for all time

t ∈ [0, T1[ where 0 < T1 < T0 is small enough.

Proof. Consider the space

E =
{−→u ∈ C(]0, T1[, Ḣ1(R3)) : eα

√
t
√
−∆−→u ∈ C(]0, T1[, Ḣ1(R3))

}
,

endowed with the norm ‖ · ‖E = ‖eα
√
t
√
−∆(·)‖L∞

t Ḣ1
x
. We study the quantity

‖−→u 1‖E =

∥∥∥∥hνt ∗ −→u 0 +

∫ t

0

hν(t−s) ∗
−→
f (s, ·)ds−

∫ t

0

hν(t−s) ∗ P(div(−→u 1 ⊗−→u 1))(s, ·)ds
∥∥∥∥
E

(7)

where hνt is the heat kernel. The two first terms of this expression are easy to estimate and we
have ∥∥∥∥hνt ∗ −→u 0 +

∫ t

0

hν(t−s) ∗
−→
f (s, ·)ds

∥∥∥∥
E

≤ c(ν, α, T0)
(
‖−→u 0‖Ḣ1

x
+ ‖eα

√
t
√
−∆−→f ‖L∞

t Ḣ1
x

)
. (8)

For the last term of (7), by definition of the norm ‖ · ‖E, by the Plancherel formula and by the
boundedness of the Leray projector we have

(I) =

∥∥∥∥∫ t

0

hν(t−s) ∗ P(div(−→u 1 ⊗−→u 1))ds

∥∥∥∥
E

= sup
0<t<T1

∥∥∥∥eα√t√−∆

(∫ t

0

hν(t−s) ∗ P(div(−→u 1 ⊗−→u 1))ds

)∥∥∥∥
Ḣ1

x

≤ sup
0<t<T1

c

∥∥∥∥|ξ|2 ∫ t

0

e−ν(t−s)|ξ|2eα
√
t|ξ| |(F [−→u 1] ∗ F [−→u 1]) (s, ·)| ds

∥∥∥∥
L2
x

.
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Since we have the pointwise inequality

eα
√
t|ξ| |(F [−→u 1] ∗ F [−→u 1]) (s, ξ)| ≤

[(
eα
√
t|ξ||F [−→u 1]|

)
∗
(
eα
√
t|ξ||F [−→u 1]|

)]
(s, ξ), (9)

due to the fact that eα
√
t|ξ| ≤ eα

√
t||ξ−η|eα

√
t|η| for all ξ, η ∈ R3, then we obtain

(I) ≤ sup
0<t<T1

c

∫ t

0

∥∥∥|ξ| 32 e−ν(t−s)|ξ|2|ξ|
1
2

∣∣∣[(eα√t|ξ||F [−→u 1]|
)
∗
(
eα
√
t|ξ||F [−→u 1]|

)]∣∣∣∥∥∥
L2
x

ds.

Getting back to the spatial variable we can write

(I) ≤ sup
0<t<T1

c

∫ t

0

∥∥∥(−∆)
3
4hν(t−s) ∗ (−∆)

1
4

{(
F−1

[
eα
√
t|ξ||F [−→u 1]|

])
⊗(

F−1
[
eα
√
t|ξ||F [−→u 1]|

])}∥∥∥
L2
x

ds

≤
(
c

∫ T1

0

∥∥∥(−∆)
3
4hν(t−s)

∥∥∥
L1
ds

)∥∥∥(F−1
[
eα
√
t|ξ||F [−→u 1]|

])
⊗(

F−1
[
eα
√
t|ξ||F [−→u 1]|

])∥∥∥
L∞
t Ḣ

1
2
x

≤ c
T

1
4

ν
3
4

∥∥∥F−1
[
eα
√
t|ξ||F [−→u 1]|

]∥∥∥
L∞
t Ḣ1

x

∥∥∥F−1
[
eα
√
t|ξ||F [−→u 1]|

]∥∥∥
L∞
t Ḣ1

x

≤ c
T

1
4

1

ν
3
4

‖−→u 1‖E‖−→u 1‖E. (10)

With estimates (8) and (10) at hand, we fix T1 small enough in order to apply Picard’s con-
traction principle and we obtain a solution −→u 1 ∈ E of (6). Since E ⊂ C(]0, T1[, Ḣ1(R3)) we
have −→u 1 ∈ C(]0, T1[, Ḣ1(R3)) and by uniqueness of the solution −→u we have −→u 1 = −→u , and thus
−→u ∈ E. �

Now, we come back to the stationary Navier-Stokes equations (1) and we will prove that the

solution
−→
U ∈ Ḣ1(R3) (given by Lemma 2.1) satisfies the exponential frequency decay given in

(2). In the space C(]0, 1[, Ḣ1(R3)) we consider the evolution problem (6) with the initial data
−→u 0 =

−→
U where the external force

−→
f is now given by with the expression

−→
f = e−α

√
t
√
−∆(eα

√
t
√
−∆−→F ),

for the particular value α = 2
3
ε0 > 0 where ε0 > 0 is given in the hypothesis of the force

−→
F . To

obtain a unique solution −→u ∈ C(]0, 1[, Ḣ1(R3)) to the equations (6) such that

eα
√
t
√
−∆−→u ∈ C(]0, 1[, Ḣ1(R3)),
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we prove that the external force
−→
f verifies the hypotheses of Lemma 2.2 and Proposition 2.1

above: ∥∥∥eα√t√−∆−→F
∥∥∥2

L∞
t Ḣ1

x

= sup
0<t<1

∫
R3

|ξ|2e2α
√
t|ξ|∣∣−̂→F (ξ)

∣∣2dξ
≤ 1

α4

∫
R3

(α|ξ|)4e2α|ξ|∣∣−̂→F (ξ)
∣∣2 |ξ|−2dξ

≤ 1

α4

∫
R3

e3α|ξ|∣∣−̂→F (ξ)
∣∣2 |ξ|−2dξ

≤ 1

α4

∫
R3

e2ε0|ξ|
∣∣−̂→F (ξ)

∣∣2 |ξ|−2dξ < +∞.

Thus, once we have eα
√
t
√
−∆−→F ∈ C(]0, 1[, Ḣ1(R3)), since the operator e−α

√
t
√
−∆ is bounded in

the space C(]0, 1[, Ḣ1(R3)) we have

−→
f = e−α

√
t
√
−∆(eα

√
t
√
−∆−→F ) ∈ C(]0, 1[, Ḣ1(R3)).

Moreover, we have

eα
√
t
√
−∆−→f = eα

√
t
√
−∆−→F ∈ C(]0, 1[, Ḣ1(R3)).

By Lemma 2.2 there exists a time 0 < T1 < 1 and a unique solution −→u ∈ C(]0, T1[, Ḣ1(R3))

to the equation (6). Moreover, since eα
√
t
√
−∆−→f ∈ C(]0, 1[, Ḣ1(R3)) by Proposition 2.1 we have

eα
√
t
√
−∆−→u ∈ C(]0, T1[, Ḣ1(R3)). Since the solution

−→
U ∈ Ḣ1(R3) of the stationary Navier-Stokes

equations (1) is a constant in time, we have
−→
U ∈ C(]0, T1[, Ḣ1(R3)) and since ∂t

−→
U ≡ 0 and

−→
f = e−α

√
t
√
−∆(eα

√
t
√
−∆−→F ) =

−→
F ,

we find that
−→
U ∈ C(]0, T1[, Ḣ1(R3)) is also a solution to the equation (6) and thus, by uniqueness

we get
−→
U = −→u . Then, since eα

√
t
√
−∆−→u ∈ C(]0, T1[, Ḣ1(R3)) we have

eα
√
t
√
−∆−→U ∈ C(]0, T1[, Ḣ1(R3)),

for all time t ∈ [0, T1[. Thus, if ε1 = α
√

T1
2
> 0, we have

∫
R3

e2ε1|ξ||
−→
U (ξ)|2|ξ|2dξ =

∥∥eα√T1
2

√
−∆−→U

∥∥2

Ḣ1
x
≤ sup

0<t<T1

‖eα
√
t
√
−∆−→U ‖2

Ḣ1
x
< +∞,

and we obtain the frequency decay given in (2). �
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3 Proof of Theorem 1.2

We consider now the space A =
{−→
U ∈ PM2 : e

√
−∆−→U ∈ PM2

}
, endowed with the norm

‖ · ‖A = ‖e
√
−∆(·)‖PM2 , (11)

and in this space we study the existence of a solution of equations (1) under the hypotheses of
Theorem 1.2. For this we study the quantity

∥∥−→U ∥∥
A

=

∥∥∥∥1

ν
P
(

1

∆
div(
−→
U ⊗

−→
U )

)
− 1

ν

1

∆

−→
F

∥∥∥∥
A

≤ 1

ν

∥∥∥∥P( 1

∆
div(
−→
U ⊗

−→
U )

)∥∥∥∥
A

+
1

ν

∥∥∥∥ 1

∆

−→
F

∥∥∥∥
A

, (12)

where, for the first term of the inequality above we have the following estimate:

1

ν

∥∥∥∥P( 1

∆
div(
−→
U ⊗

−→
U )

)∥∥∥∥
A

≤ c

ν
‖
−→
U ‖A‖

−→
U ‖A. (13)

Indeed, by the expression (11) and by the continuity of the Leray projector we have

1

ν

∥∥∥∥P( 1

∆
div(
−→
U ⊗

−→
U )

)∥∥∥∥
A

=
1

ν

∥∥∥∥|ξ|2e|ξ|F [P( 1

∆
div(
−→
U ⊗

−→
U )

)]∥∥∥∥
L∞

≤ c

ν

∥∥∥∥|ξ|2e|ξ| 1

|ξ|

∣∣∣F [−→U ] ∗ F [−→U ]∣∣∣∥∥∥∥
L∞

≤ c

ν

∥∥∥|ξ| [(e|ξ|F [|−→U |]) ∗ (e|ξ|F [|−→U |])]∥∥∥
L∞

, (14)

where the last inequality can be deduced from (9). Now we remark that[(
e|ξ|F

[
|
−→
U |
])
∗
(
e|ξ|F

[
|
−→
U |
])]

(ξ) =

∫
R3

e|ξ−η|F
[
|
−→
U |
]

(ξ − η)e|η|F
[
|
−→
U |
]

(η)dη

≤ ‖
−→
U ‖A ‖

−→
U ‖A

∫
R3

dη

|ξ − η|2|η|2
≤ c

|ξ|
‖
−→
U ‖A ‖

−→
U ‖A,

and thus, using this inequality in (14) we easily obtain the estimate (13). For the second term
in the RHS of (12) we have

1

ν

∥∥∥∥ 1

∆

−→
F

∥∥∥∥
A

=
1

ν

∥∥∥∥e√−∆

(
1

∆

−→
F

)∥∥∥∥
PM2

=
c1

ν
sup
ξ∈R3

|ξ|2e|ξ| 1

|ξ|2
|
−→
F (ξ)| = c1

ν
sup
ξ∈R3

e|ξ||
−→
F (ξ)|.

Thus, if the external force
−→
F satisfies sup

ξ∈R3

e|ξ||
−→
F (ξ)| < η, for η small enough, we obtain

−→
U ∈ A a

solution to the stationary Navier-Stokes equations (1) for which we have the pointwise estimate
(3). �
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4 Proof of Theorem 1.3

For α > 0 and under the hypotheses of Theorem 1.3, the existence of solutions of equation (4)

is given by applying the Scheafer fixed point theorem. Now, for −→u 0 ∈ PM
5
2 we consider the

non-stationary damped Navier-Stokes equations

∂t
−→u + P(div(−→u ⊗−→u ))− ν∆−→u =

−→
f − α−→u , div(−→u ) = 0, −→u (0, ·) = −→u 0, (15)

where the divergence-free external force
−→
f belongs to the space C([0, T0[,PM

5
2 ). For this prob-

lem there exists a unique solution −→u ∈ C([0, T1[,PM
5
2 ) with 0 < T1 < T0. For existence issues

for equations (4) and (15) see the details in [5].

Following essentially the same lines of Proposition 2.1 above, we prove that if the external

force is such that eβ
√
t
√
−∆−→f ∈ C([0, T0[,PM

5
2 ) then the unique solution of (15) is such that

eβ
√
t
√
−∆−→u ∈ C([0, T1[,PM

5
2 ). As in the proof of Theorem 1.2, we consider

−→
f = e−β

√
t
√
−∆
(
eβ
√
t
√
−∆−→F

)
=
−→
F ,

and for a suitable value of the parameter β > 0 we can prove that
−→
f ∈ C([0, 1[,PM

5
2 ) and

eβ
√
t
√
−∆−→f ∈ C([0, 1[,PM

5
2 ).

In order to link the stationary solution to the non-stationary problem, we must prove that

the solution
−→
U ∈ H1(R3) of (4) is such that

−→
U ∈ PM

5
2 , and in this step we use the extra

damping term. Indeed, rewriting (4) we consider the equation

−→
U =

−ν∆

αId− ν∆

(
P
(

1

ν∆
div(
−→
U ⊗

−→
U )

))
+

1

αId− ν∆

(−→
F
)
, (16)

and we obtain

‖
−→
U ‖

Ḣ
3
2
≤

∥∥∥ −ν∆
αId−ν∆

(
P
(

1
ν∆
div(
−→
U ⊗

−→
U )
))∥∥∥

Ḣ
3
2

+
∥∥∥ 1
αId−ν∆

(−→
F
)∥∥∥

Ḣ
3
2
.

Since the operator −ν∆
αId−ν∆

is bounded in Ḣ
3
2 (R3) and by the properties of

−→
F we can write

‖
−→
U ‖

Ḣ
3
2
≤

∥∥∥∥ 1

ν∆
div(
−→
U ⊗

−→
U )

∥∥∥∥
Ḣ

3
2

+

∥∥∥∥ 1

αId − ν∆

(−→
F
)∥∥∥∥

H2

≤ c‖
−→
U ⊗

−→
U ‖

Ḣ
1
2

+ c(α)‖
−→
F ‖L2

≤ c‖
−→
U ‖H1‖

−→
U ‖H1 + c(α)‖

−→
F ‖L2 .
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We thus have
−→
U ∈ Ḣ 3

2 (R3) and we prove now
−→
U ∈ PM

5
2 : from equation (16) we obtain∣∣∣F [−→U ] (ξ)

∣∣∣ ≤ c
1

ν|ξ|
|
(
F
[−→
U
]
∗ F

[−→
U
])

(ξ)|+ 1

ν|ξ|2
|F
[−→
F
]

(ξ)|,

and then, multiplying by |ξ| 52 and by hypothesis on
−→
F we get the estimate

|ξ|
5
2

∣∣∣F [−→U ] (ξ)
∣∣∣ ≤ ∫

R3

|ξ|
3
2

∣∣∣F [−→U ] (ξ − η)
∣∣∣ ∣∣∣F [−→U ] (η)

∣∣∣ dη +
1

ν
|ξ|

1
2

∣∣∣F [−→F ] (ξ)
∣∣∣

≤ 2‖
−→
U ‖

Ḣ
3
2
‖
−→
U ‖L2 +

1

ν
|ξ|

1
2 e−ε0|ξ|,

from which we deduce that
−→
U ∈ PM

5
2 . Then, we study (15) with −→u 0 =

−→
U and we have

−→
U ∈ C([0, T1[,PM

5
2 ), but since

−→
U verifies the equations (4), ∂t

−→
U ≡ 0 and

−→
f =

−→
F , we

obtain that
−→
U is also a solution of (15) and by uniqueness we have

−→
U = −→u . Finally, we have

eβ
√
t
√
−∆−→U ∈ C([0, T1[,PM

5
2 ) for 0 < t < T1 and if ε1 = β

√
T1
2

we can write

‖eε1
√
−∆−→U ‖

PM
5
2
≤ ‖eβ

√
t
√
−∆−→U ‖

L∞([0,T1[,PM
5
2 )
< +∞,

and we obtain the frequency decay stated in the formula (5). �
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