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Abstract

The many methods which exist to characterise the quality of a powder mixture have been recently reviewed and linked with mixing mechanisms 
in current literature. In this paper, we try to develop a novel methodology for defining and characterising homogeneity using principal component 
analysis (PCA) as an alternative to well-known statistical methods, such as auto-correlation functions or variances. We apply this to image analysis 
for the case of a powder mixture flowing out of a continuous mixing device. An emphasis is placed on the calculation in real-time of the degree of 
homogeneity of loose materials on the conveyor belt, carrying this mixture. Mass flow disturbances applied to a binary mixture are studied by the 
proposed methodology, which is found to be sensitive to small structural defaults.
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1. Introduction—state of the art

Powder mixing is a widely used unit operation in the pharma-
ceutical, agro-food, cement or chemical industries. The process
is complex as it depends on many factors operating at vari-
ous scales: single particle properties, bulk particle properties,
general mixer design and operation, combination of operating
conditions, mixture formulation, etc. The quality of a mixture,
which may be the degree of homogeneity of loose material at
the outlet of a mixer, is important for end-user properties as
perceived by customers and/or for in-process properties used
by manufacturers for normative procedures. In addition, mixing
process optimisation is a matter of reducing mixing time and
saving electrical energy, especially for low added-value prod-
ucts.
The definition of mixture quality first requires the knowledge

of the scale at which it has to be defined, that is the scale of
scrutiny of a mixture. For example in the case of pharmaceutical
tablet the size of scrutiny is probably equal to a tablet size, that
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is to say the size of the patients dose. However, this may not
be so when the patient interferes, such as when he is allowed
to sample himself in the package (if the patient take a piece of
tablet for example).
The many methodologies that exist to characterise mixture

homogeneity and its structure were recently reviewed and linked
with mixing mechanisms by Gyenis [1]. A distinction must be
made between the techniques that calculate a structural crite-
rion and those which generate an overall criterion, which are
well known in industrial practice. The standard deviation of the
composition of a certain number of samples, as well as the cor-
responding variance, coefficient of variation, or mixing indices
belong to this latter category.Weinekotter [2] illustrated the lim-
its of such analyses by discussing two continuous processes
having the same variance but radically different organisation:
(a) 12 samples with compositions alternating on both sides of
the mean; (b) six samples of identical composition higher than
themean followed by six samples of identical composition lower
than the mean.When compared to each other from a “customer”
end-used property, it is obvious that process (b) is inadequate
while it may satisfy a pharmaceutical quality criterion.
On the other hand, fractal analysis, phase-space techniques

and the study of auto-correlation functions allows taking into



account the structure of a powder mixture, as the relative posi-
tions of the samples are not destroyed by the analysis. Danck-
werts [3] was probably the first to suggest the use of auto-
correlation functions to describe the scale of segregation of a
mixture, that is the maximum size of segregated regions in a
mixture · · · or the sample size above which powder homogene-
ity is only due to random effects. The auto-correlation function
R characterises the interdependence of the compositions of any
two samples of a series of samples, separated by a distance r (or
by a given number of samples). If no correlation exists, then the
value of R(r) is equal to zero and the mixture can be considered
as homogeneous at this scale. In other words, the scale of seg-
regation becomes equal to the scale of scrutiny. In practice, the
first “distance” r0 for whichR equals zero can be read from a plot
of R versus r, called a correlogram. This distance is the param-
eter for characterising the structure of the mixture, as it gives
a measure of the maximum length of no correlation between
samples. However, the determination of r0 is not always easy, at
least because a correlogram may exhibit asymptotic behaviour,
or because it is very sensitive to a small variations in the compo-
sition of the samples. Indeed, there is still a need for developing
new, meaningful, industry-pertinent methodologies for quanti-
fying the homogeneity of powder mixtures.
From the point of view of the techniques used for obtaining

such information, recent emphasis has been placed on on-line
methods which avoid the interference of thief sample probes
[4] and the related statistical problems. Optical measurement
techniques have received wide attention in the scientific com-
munity, especially in the past decade, from the pioneering work
of Harwood et al. [5], to that of Berntsson et al. [6] (one may
also refer to Weinekötter and Reh [7] or Steinmetz et al. [8]).
Near Infrared (NIR) spectroscopy is now beginning to be used in
industrial R&D for measuring powder blends. However, many
of the workers involved in such projects find difficulties in the
calibration procedures and time stability of the signals. Also
concerning these type of methods, but very much at the research
stage, we may cite laser induced fluorescence as a very promis-
ing tool for pharmaceutical mixtures [9]. Electrical capacitance
tomography (ECT) has been under rapid development since the
mid-nineties and has been applied to real cases in general pow-
der technology [10–12], and in powdermixing in particular [13].
While it seems to be a valuable alternative to optical methods,
it seems better suited for coherent pipe flows, that is to say with
low disturbance of the flow rates because porosity changes have
a strong influence on data reliability. In comparison to other
measurement techniques, image analysis is non-destructive and
is characterised by a great speed, which is very important in
on-line systems. In the recent scientific literature, Muerza et al.
[14] have proposed such a method. In this work the method is
applied to two free-flow powders differing in colour mixed by a
continuous static mixing unit and poured for transport by a belt
conveyorwithout disturbance.ACCDcamera placed on the con-
veying line captures images of themoving belt. These images are
then treated and analysed using the auto-correlation technique
to obtain the characteristic distance r0. Because this required a
critical analysis of the correlograms, with respect to their shape,
it was performed off-line from the measurement chain.

From the above, one may understand that a single method
cannot cover the whole range of possible powder blends. Also,
when considering its applicability to industrial problems, the
exactitude of the method comes after other type of considera-
tions, such as the stability of the measurement with time, easy
calibration procedures or no calibration required at all, sam-
pling needed or not, compatibility with industrial conditions,
real-time data analysis, . . .. Therefore, working on new on-line
methodologies for accurate data treatment in real-time is still
an important field of investigation. This paper proposes a novel
method based on real-time principal component analysis of pow-
der mixture images captured by a CCD camera with the claim
that thismethodology of data processingmay be adapted to other
types of on-line techniques, such as capacitance measurements
or NIR spectroscopy.

2. Powder mixture measurement based on image
analysis

The method developed in this paper aims to measure the
degree of homogeneity of loose materials on a conveyor
belt using image processing techniques. For this, one powder
(semolina; particle size, 100–250!m) and a tracer (semolina
coloured by iodine adsorption) were used as particulate systems
having identical properties except colour. The measurement
chain consists of a CCD camera placed over the conveyor belt
which transports the mixture of the loose materials, as well as a
PC computer. The schematic diagram of this system is presented
in Fig. 1.
A time sequence of images is captured by the camera and

represents the solid mixture on the belt during conveying. These
images are treated with specially designed computer software
to calculate the homogeneity ratio of the mixture. Each image
represents a two-dimensional sample of analysed mixture. The
pinhole camera model used (see Fig. 2) is detailed in Appendix
and provides a continuous brightness function corresponding
to each frame. Digitizing a frame consists in sampling and
quantifying the function, it gives a grey scale image contain-
ing information about tracer concentration. Indeed the black
tracer concentration is directly linked with the brightness as its
reflectance is different from that of the white particles.
In the example shown on Fig. 3, a sample and a quantized

binary mixture image is shown. The diameter φ of any particle
in the mixture is approximately equal to five pixels.

Fig. 1. Schematic diagram of the solid mixture analysing set-up.



Fig. 2. Pinhole camera model (1, image coordinates; 2, image plane; 3, pinhole
camera; 4, world coordinates).

Fig. 3. Example of sampled and quantized binary mixture image.

3. Homogeneity definition based on PCA

3.1. What is PCA?

Each image transformed as described above consists of rows
of pixels describing the solids concentration of the powder
stream. Taking into account the rows of an image that comprise
information about powder mixture we further assume that the

number of such rows is equal to N. Typical brightness changes
within any row have a probabilistic character, so that they can
be treated as any stochastic stationary process Xn(m), n= 0, . . .,
N − 1,m= 0, . . .,M − 1, whereM is a number of pixels for each
row, and n is a row number. Hence a mathematical model of an
image canbedefinedby a stochasticN-dimensional imagevector
X=[Xn(m)], n= 0, . . .,N − 1where each vector element is called
an elementary process (EP). Statistical relationships among EP
processes have been determined by a covariance matrix CX of
size N × N, where a matrix term Cij is determined as

Cij = 1
M

M− 1∑

m=0
(Xi[m] · Xj[m]), i, j = 0, . . . N − 1 (1)

In this,Xi[m],Xj[m] are denoted as theEPi and theEPj processes.
Furthermore, we suggest assuming that each EP process is a
stationary process and its statistical parameters are constant for
single sample.
For defining a homogeneity criterion we propose using the

principle component analysis (PCA) of EP processes [15]. The
PCA technique, which uses the singular-value decomposition
method, detects a ratio correlation among the EPs processes.
The PCA has been chosen for its high efficiency for categorizing
and classifying huge data sets such those of EP processes.
The PCA technique consists of finding linear transforma-

tions called clouds of data of the original processes {EPn}
n= 0, . . ., N − 1, that have the property of being uncorrelated.
This transformation is done by first normalizing the variables
so that they have means of zero and a variance of one. The
PCA determines the perpendicular axes (called eigenvectors),
which are defined by the dimensions of a covariance matrix.
The principal components are the eigenvectors obtained from an
eigenvector–eigenvalue decomposition of the covariance matrix
of the EP processes. The eigenvalue λr corresponding to an
eigenvector represents the amount of variability between EP
processes explained by that eigenvector. The eigenvector of the
largest eigenvalue is the first principal component. The eigen-
vector of the second largest eigenvalue is the second principal
component and so on. There will be the same number of axes
as variables (dimensions). The longest axis is the first principle
component (PC1), and next major axis is the second principle
component (PC2). We make a slice through the cloud of EP pro-
cesses using the R-dimensional space defined by PCr, r= 1, . . .,
R and project all of the EP processes onto this space, then obtain
aR-dimensional representation of the EP processes retaining the
maximum variation (information) contained in the multivariate
data. The space PCr provides maximum separation between the
EP processes. The percentage cr of the variability explained by
the rth principal component is:

cr (%) = λr

λ1 + λ2 + · · · + λR
× 100 (2)

For analysis of EP processes we choose those of PCr, with the
greatest percentages cr.



Fig. 4. Photograph of the binary powder layer as seen by the CCD camera.

3.2. Application of PCA to powder mixtures

Analysing a solid mixture involves the formation of a pow-
der layer of constant width and thickness which is continuously
filmed by a CCD camera. The recorded film is further treated
to obtain an unlimited series of frames that represents the sur-
face of the mixture layer (15 frames per second). Fig. 4 shows a
typical example frame as captured by our set-up.
Matlab 5.2 was used for image analysis. First, the mixture

sample is divided up into L rectangular areas of the same size
(Fig. 5b), L value being fixed empirically. Next we perform the

Table 1
Percentages cr, r= 1, 2, 3 of the variability explained by first, second and third
principal component for some rectangular areas

Rectangular area number, l c1 (%) c2 (%) c3 (%)

1 97.892 1.691 0.212
2 97.027 1.807 0.685
3 94.871 4.211 0.483
4 97.648 1.795 0.446
70 99.322 0.559 0.088
80 98.205 1.107 0.488
90 99.314 0.303 0.18
100 98.722 1.03 0.152

PCA analysis for each rectangular area. Area row data (EP pro-
cesses) enable the calculation of eigenvalues λr and eigenvectors
of {Xn(m)} n= 0, . . .,K − 1, whereK is the number of rows anal-
ysed in a rectangular area.
Then we present EP processes of analysed areas onto three-

dimensional (3D) space. To do this, we choose PCr, r= 1, 2,
3 only because they ensure the percentage cr of the variability
greater than 98%. The example values of cr for three princi-
pal components are presented in Table 1. In Fig. 5c, examples
of the distributions of EP processes into the 3D space for two
rectangular areas are also depicted.
A mixture can be defined as homogenous if any test element

of the mixture has the same composition and properties as any
other. In our approach, we use rectangular areas of analysed
mixture sample as mixture test elements (scale of scrutiny of
the mixture).

Fig. 5. (a) Mixture sample no. 125; (b) rectangular areas, L= 50; (c) representation of EP processes into 3D space for first and fiftieth rectangular area.



For the definition of a criterion of homogeneity of a powder
mixture in any frame, we first compare each rectangular area
of the analysed mixture sample to another using the similarity
index sl which we define as

sl = 1
L · K

L∑

j=1

K∑

i=1

×
√
(PCpi

1 − PCji
1 )
2
+ (PCpi

2 − PCji
2 )
2
+ (PCpi

3 − PCji
3 )
2
.

(3)

In the above, l= 1, . . ., L; l ̸= j, K is the number of rows in
the analysed rectangular areas, L the number of areas of the
mixture sample and PCji

k is the kth principle component calcu-
lated for ith row in jth rectangular area. Comparing rectangular
areas is fast and easy by PCA which is an important feature
with respect to other methods cited in the Section 1 of this
paper.

Fig. 6. (a) Mixture sample no. 104; (b) similarity indexes as grey scale values
of a) (L= 426).

We confirm that the s value is smaller for similar rectangles
and higher when differences between them are greater. For an
ideal homogeneous mixture s all rectangular areas are identical
and sl calculated for every area is equal to 0. In Fig. 6b, simi-
larity indexes sl are presented for the mixture sample no. 104 as
grey scale images. They were rescaled to range [0, . . ., 1]. For
instance, in Fig. 6a region A is more homogeneous than region
B.

Fig. 7. Mixture samples and calculated homogeneity ratios (L= 100), showing a small structural default (circle line).



Then we calculate the sum S of the sl values specified for all
rectangular areas of nth mixture sample:

Sn =
L∑

l=1
sl[n]. (4)

Finally for nth mixture sample, we define a homogeneity crite-
rion hn as

hn (%) =
(
1 − Sn

S0

)
× 100. (5)

In Eq. (5), S0 is a sum of sl values which are calculated for the
perfectly segregated mixture sample, which is used as hetero-
geneity pattern.

4. Experimental results

The loose material transported on the conveyor belt and cap-
tured by the CCD camera arrangement was analysed in terms
of the above homogeneity criterion (Eq. (5)). Fig. 7 presents the
results for 21 mixtures corresponding to the motion of the belt.
As it can be seen in Fig. 7, a part of conveyor belt does not

contain any particle of the mixture (samples from 84 to 104).
The samples ranging from no. 108 to 164 correspond to a mix-
ture as leaving a continuous mixer, or at the discharge of a batch
mixer. The part of conveyor belt without a mixture can be inter-
preted as area of one mixture component, therefore it disturbs
homogeneity of the tested mixture. The value of the homogene-
ity ratio is the lowest for 84th mixture sample and it increases
for the following samples because the part of the belt without
mixture becomes smaller.
To calculate a homogeneity ratiowe first choose a rectangular

area numbered L. The single rectangular area should represent
quality of the mixture and its size must be adapted to the dimen-
sions of the loose material particles and to a specified scale of
scrutiny.Choice of rectangular area number is important because
measurement results are dependent on it. Homogeneity ratio val-
ues calculated for different L values are presented in Fig. 8. The
homogeneity ratio decreases when L decreases, meaning that
mixtures are always worse when analysed at a smaller scale of

Fig. 8. Homogeneity ratios calculated for different rectangular area number L,
showing the effect of the small structural default (circle line).

scrutiny, as common sense would suggest. Indeed, the intensity
of segregation (variance) of a random mixture is known to be
inversely proportional to the number of particles per sample.
Furthermore, one can also focus on a small area that contains
practically no coloured particles and located in the middle of
sample no. 96. This area disappears for sample no. 124 and can
only be detected for the three lowest L values (L= 30–100) in
Fig. 7 by a small rise of homogeneity. For the highest value of L,
the scale of scrutiny is much higher than the scale of segregation
(that of the segregated area) and nothing can be detected. This
seems to indicate that the methodology employed is sensitive to
the structure of the mixture, so that a structural defect can be
detected and perhaps withdrawn from the production line.

5. Concluding remarks

This paper presents a methodology based on principle com-
ponent analysis for defining and characterising powder mixture
homogeneity as it flows out of a continuous mixer or at the dis-
charge of a batch process. Image analysis is used here and seems
to be well suited to illustrate the method, but the method can be
applied to other measuring techniques (electrical capacitance,
NIR, etc.).
Images of a mixture of black and white particles of semolina

transported on a conveyor belt are taken by CCD camera. These
are treated with a classical pinhole model and digitized on a grey
scale to give information about the concentration of black par-
ticles. Each image is considered to be a series of rows of pixels.
Each row is treated as a stochastic process. PCA methodol-
ogy leads to a three-dimensional representation of the processes
retaining the maximum variation (information) contained in the
multivariate row data. The similarity index values, which are
derived from this data treatment, allow the calculation of a cri-
terion of mixture homogeneity.
Themixture is decomposed into rectangular areas whose size

corresponds to the scale of scrutiny. First results show that the
homogeneity criterion is dependent on the scale of scrutiny cho-
sen. Themethod allows the detection of small structural defaults
in the mixture – that may lead to rejection of part of a production
– in an easier way than other types of analysis (auto-correlation
or phase portrait).
The use of image analysis illustrates the concepts of scales

of segregation and scrutiny, as well as being relatively easy to
perform in real-time with few calibration procedures. However,
the sensitivity should be verified if it is to be used for industrial
applications. Because of the complex phenomena at play and
the diversity of powder properties, there is no doubt that no
single technique will be able to treat all kinds of powder blend.
Therefore, focussing on the development of a range of different
techniques and trying to define their domain of applicability for
a single and sensitive methodology for data treatment (such as
PCA) should be encouraged.

Appendix

The pinhole camera consists of a non-transparent plane with
a small hole. The model used is equivalent to simply describing



the image formation with such a lens system. The image plane is
located parallel to the plane of the camera at a distance d. Light
radiated by themixture of loosematerial passes through the hole
and illuminates the image plane.
The relationship between world co-ordinates (x, y) on the

initial frame and image co-ordinates (x′, y′) on a plane situated
at the distance z is as follows:

x′ = − x · d

z − d
and y′ = − y · d

z − d
. (6)

Using Eq. (6) it is easy to prove that the relationship between a
length r in world co-ordinates and the corresponding length r′

in image co-ordinates is:

r′ = d · r

|z − d|
. (7)

From Eq. (7) it follows that r′ is dependent on r but
also on distances z and d.A typical image formation model
can be described by a continuous image function g(x′, y′),
whose value corresponds to the brightness at image points
[16].

g(x′, y′) =
∫

x

∫

y
h(x′ − x, y′ − y) · f (x, y) dx dy (8)

where f(x, y) represent the radiant intensity of the surface of an
object and h(x′ − x, y′ − y) is the point spread function.
The point spread function reflects the response of the imag-

ing device to a single point source. Indeed, this function takes
into account the effect that objects lose their sharpness in the
image.
Brightness at the image point (x′, y′) depends on the radiance

emitted by the surface of an object in the scene. It is determined
by two factors: the illumination falling on the surface and illumi-
nation reflected by the surface of the object, which is dependent
on its material properties (e.g. reflectance). In our experiments
illumination reflected by the mixture depends on the properties
of its components. It directly affects the brightness of the image
points, therefore we can use images as a data source to analyse
solid concentration.
To make a digital image from a continuous-tone image, it

must be divided up into individual points of brightness. The
process of breaking up a continuous-tone image is referred to
as sampling. The 2D continuous image g(x′, y′) is divided into
N rows and M columns. The intersection of a row and a col-
umn is termed a pixel. The appropriate digital brightness data
value is assigned to the integer coordinates [n,m] with n= 0, . . .,
N − 1 and m= 0, . . ., M − 1 is p[n, m]. The quality of a digital
image is directly related to the number of pixels and the range of
brightness values. A continuous image function g(x′, y′) can be
sampled using a discrete grid of sampling points x= n∆, y=m∆

in the plane. Two neighbouring sampling points are separated
by distance∆ along x axis and along y axis. The ideal sampling
s(x′, y′) in the regular grid can be represented using a collection

of Dirac distributions:

s(x′, y′) =
N− 1∑

n=0

M− 1∑

m=0
δ(x′ − n∆, y′ − m∆) (9)

where∆ is the sampling distance or interval and δ(·, ·) is the ideal
impulse function. The sampled imagegs[n,m] is then the product
of the continuous image g(x′, y′) and the sampling function s(x′,
y′):

gs[n, m] = g(x′, y′) ·
N− 1∑

n=0

M− 1∑

m=0
δ(x′ − n∆, y′ − m∆) (10)

The process of determining digital brightness values ranging
from black, through grey tones, to white is referred to as quanti-
zation. The combination of sampling and quantization processes
is referred to as image digitization.
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