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Abstract. We consider optimization problems in graphs where the util-
ities of solutions depend on different scenarios. In this context, we study
incremental approaches for the determination of robust solutions, i.e. so-
lutions yielding good outcomes in all scenarios. Our approach consists
in interleaving adaptive preference elicitation methods aiming to assess
the attitude of the Decision Maker towards robustness or risk with com-
binatorial optimization algorithms aiming to determine a robust solu-
tion. Our work focuses on the use of ordered weighted average (OWA)
and weighted ordered weighted average (WOWA) to respectively model
preferences under uncertainty and risk while accounting for the idea of
robustness. These models are parameterized by weighting coefficients or
weighting functions that must be fitted to the value system of the Deci-
sion Maker. We introduce and justify anytime algorithms for the adaptive
elicitation of these parameters until a robust solution can be determined.
We also test these algorithms on the robust assignment problem.

Keywords: Robust optimization, Preference Elicitation, OWA, WOWA
Ranking Algorithms, Assignment Problem.

1 Introduction

The practice of decision support in complex environments has shown the impor-
tance of developing new models and algorithms for optimization under partial
information. Uncertainty is pervasive in discrete optimization and various con-
tributions concern robust optimization problems [11] in which multiple instances
of the same problem must be considered simultaneously. These instances corre-
spond to possible scenarios and the goal is to determine a feasible solution that
remains as good as possible in all scenarios.

In graph optimization, several problems have been revisited under this per-
spective. For example, assuming that uncertainty only impacts the valuation of
the graph (and not on its structure), several contributions address the discrete
scenario case, and propose various reformulations of shortest-path problems, as-
signment problems, minimum spanning tree problems, as a min-max or min-max
regret optimization problems, see [11,15,29,28,1,5]. For the same problems, a
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similar work has been carried out in the case of graphs valued with interval
data, which correponds to an infinity of possible scenarios [11,27,2,14,1,24]. In
this paper we consider the discrete scenario case and propose new (interactive)
approaches for robust optimization, with an implementation on the assignment
problem. Let us introduce an instance of the robust assignment problem, for
illustrative purpose:

Example 1 We consider a problem with 4 items that must be assigned to 4
agents (one item per agent and one agent per item). The utility of every item
for every agent depends on the context which remains unknown. Three scenarios
{s1, 52, 83} are considered leading to the following three utility matrices:

10364 1050 2 0280
10101 6714 2065
Ui=19g940] 2= 7073| V= |41942
4234 19102 7839

where Us is the utility matriz giving in row i and column j the utility uj; of item
j for agent i in scenario s, fori=1,...,4,j=1,...,4,s=1,...,3. We want
to find an assignment that remains as good as possible in all possible scenarios.

Any solution of an n x n assignment problem is characterized by a one-to-one
mapping « defined from the set of agents to the set of items and associating item
a(i) to agent ¢ for i = 1,...n. Equivalently assignment a will be represented by
the set of arcs {(¢,a(?)),i = 1,...,n} in the bi-partite assignment graph. Given
an assignment «, its total utility in scenario s is denoted as us(a) and defined
by us(a) = >0, Uy S=1,...,n. If ¢ distinct scenarios are considered, then
any assignment « is characterized by the utility vector u(a) = (ui(a), ..., uq())
representing the possible utilities in the ¢ scenarios. For example, in the problem
described in Example 1, the assignment o = {(1,3), (2,1), (3,2), (4,4)} leads to
the utility vector u(a) = (29,8,28) whereas o = {(1,3),(2,4),(3,1),(4,2)}
leads to the utility vector u(a’) = (18,20,25). Hence the comparison of o and
o/ amounts to comparing utility vectors u(a) and u(a’).

In order to be able to compare the utility vectors attached to feasible so-
lutions, we need to assess the attitude of the Decision Maker (DM) toward
uncertainty or risk (the latter situation occurring when the probabilities of the
scenarios are known), and to decide how the outcomes attached to the g scenar-
ios must be aggregated to define the overall value of a solution. One standard
criterion for decision making under uncertainty is the Laplace criterion that con-
sists in maximizing the average utility taken over all scenarios. In Example 1,
the optimal assignment w.r.t. the Laplace criterion is o with an average of 65/3.

A more cautious approach consists in choosing a solution maximizing the util-
ity measured in its worst scenario. This corresponds to max-min optimization, a
standard approach in robust optimization (equivalent to min-max optimization
when costs are considered). In Example 1, the max-min optimal assignment is
o introduced above. It can be seen as more robust than « since it guarantees a
utility greater or equal to 18 whereas we could obtain 8 with « in scenario ss.
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However the max-min criterion is often considered as overpessimistic and poorly
discriminating. In particular, we may obtain solutions having a much lower aver-
age utility than with the Laplace criterion. On the other hand, by compensating
high and low utilities, the Laplace criterion does not provide any guarantee on
the robustness of solutions. In order to have a better flexibility in modelling the
DM’s attitude toward uncertainty, and to find compromise attitudes between
overpessimism and full compensation, we will use an ordered weighted average
(OWA) to aggregate the utilities obtained in the different scenarios. OWA op-
erators have been introduced by Yager [26] and axiomatically justified in the
context of robust discrete optimization in [18]. They are also widely used in fair
multiagent optimization for their ability to generate Pareto-optimal solutions
with well-balanced profiles [17,12, 8].

As we shall see later more formally, the OWA of a given vector is a kind of
weighted sum where the weights are not attached to positions of components
in the vector but to their ranks. This allows the importance attached to good
or bad outcomes to be controlled and provides a continuum of attitudes in the
aggregation, ranging from the Laplace criterion (modelled by the average) to
pure pessimism (modelled by the min). These various attitudes are defined by
the weighting vector parameterizing the OWA model.

When the probabilities of the scenarios are known, the scenarios do not play
symmetric roles. In this case we will use the WOWA model [22] also known as
Yaari’s model [25] which is a non-symmetric extension of OWA allowing weights
to be attached to components (here scenarios). In the latter model, the DM’s
attitude toward risk is controlled by a probability weighting function.

Whether OWA or WOWA is used, assessing the weighting parameter of the
model is a critical issue. The aim of this paper is to propose an incremental
elicitation method for facilitating the parametrization of these models in order
to determine solutions that are well fitted to the value system of the DM. Our
aim is not to determine precise values of these parameters for the DM, prior to
the optimization stage. Instead, we propose to interleave preference queries with
the exploration of solutions in order to progressively reduce the uncertainty
attached to these weighting parameters until a robust solution can be found.
These preference queries consist in asking the DM to compare between pairs of
solutions, his preferences can then be easily translated into linear constraints
that we can add to our model. By integrating the elicitation to the exploration,
we aim to save a large part of the elicitation burden.

The paper is organized as follows: we introduce in Section 2 some background
on OWA and WOWA. Then we present in Section 3 a ranking algorithm for the
determination of possibly optimal solutions when the weighting parameters of
OWA or WOWA are imprecise. In Section 4 we present an incremental elicita-
tion algorithm to determine or approximate an OWA-optimal or WOWA-optimal
solution. In Section 5 we implement the proposed approach on the robust assign-
ment problem and present numerical tests, as well as some preliminary results
on the robust shortest path problem.
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2 DModels for Robust Optimization

In this section, we consider a general robust optimization problem involving ¢
distinct scenarios and we discuss the evaluation of solutions represented by vec-
tors of type (z1,...,x4) where x; represents the utility of solution  in scenario
i. In particular we recall some background on OWA and WOWA operators.

OWA Optimization. In robust optimization problems with discrete scenarios,
one basically looks for Pareto-optimal solutions having a well-balanced utility
profile. This vision of robustness in the context of uncertainty can be related to
the notion of fairness in social choice (the scenarios acting as different agents
providing different views on solutions). In particular, the preference > of the DM
is expected to satisfy monotonicity w.r.t. e-transfers, a standard axiom used in
inequality measurement that reads as follows: for all j, k j # k, for all € such that
O<ap—x; <€ (21,...,25+€. ..., Tpx—¢€...,8q) > (T1,..., Zj, .., Thy.-.,Tq)-

Moving from a solution to another one using such e-transfers contributes to
reducing the utility gap between pairs of scenarios and thus makes the DM better
off. It is well known that the minimal preference relation satisfying this condition
is the Lorenz dominance relation (L-dominance) [13] defined by = >, vy if and
only if L(x) »p L(y) where > p is the Pareto dominance and L(x) is the Lorenz
vector the i'" component of which is defined by L;(z) = Y, _, y(x), where o
is the permutation of (1,...,¢q) that reorders the components of x by increasing
order (2,(;) < Ty(i+1), = 1,...,q—1). However, L-dominance is a partial order
and many solutions remain incomparable. A natural way to extend this partial
order, axiomatically justified in the context of robust optimization [18], is to
resort to Ordered Weighted Averages (OWA for short).

OWA is an aggregation function that weights the components of a vector in
function of their rank. Let w € RY be a weighting vector. The OWA defined
by w reads: f(z,w) = i, W;Ty(;)- This function is symmetric because the
weights are not attached to the components of x but to the components of the
reordered vector (Zg(1),...,%To(q)). The OWA family of aggregation functions
f(z,w),w € RY includes the minimum, the maximmum, the median and all
order statistics as particular cases.

OWA is widely used in fair optimization because it enables a linear extension
of the Lorenz Dominance order. Remark indeed that x,;y = L;(2) — L;—1(x) for
all i > 1. Hence we have: f(z,w) = Zf:_ll (wi —wiy1)Li(x)+wqLg(x). Thus, func-
tion f is nothing else but a linear combination of the components of the Lorenz
vector. Then, if the weights are decreasing (i.e. w; > w;41 foralli=1,...,¢—1),
then the coefficients w; — w; 1 are strictly positive. Therefore, an f-optimal so-
lution is necessary L-non-dominated. Thus, OWA used with strictly decreasing
weights w; leads to Pareto-optimal solutions that cannot be improved in terms of
e-transfers reducing inequalities. This favours solutions having a well-balanced
utility vector. Considering the properties of OWA recalled above, robust op-
timization under uncertainty can soundly be reformulated as the problem of
maximizing f(z,w) for some w with decreasing components.
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Example 1 (continued) Let us compare solutions o and o such that u(a) =
(29, 8,28) and u(a’) = (18,20,25) using f(.,w) with w = (1/2,1/3,1/6) we ob-
tain f(u(a),w) = 8/2+28/3+29/6 = 18.17 and similarily f(u(a/), w) = 119/6 =
19.83. Here, we observe that o' is preferred to o because the average loss in utility
incurred when passing form u(a’) to u(«) is compensated by the improvement of
the minimum (18 against 8). Remark that, although o' is the maz-min optimal
solution in Example 1, it is not OWA-optimal. The OWA-optimal assignment for
the chosen weights is o = {(1,1),(2,4), (3,2), (4,3)} with u(a”) = (23,24, 17)
and f(u(a”),w) = 121/6 = 20.17. This is a compromise between o and o' that
improves the average utility of o' but slightly downgrades the worst case utility.

WOWA Optimization. As explained before, one typical property of OWA
is to be a symmetric aggregator. This property seems natural when the same
attention or importance is attached to every scenario. This is no longer the case
when the probabilities (pi1,...,pq) of the scenarios are known. In such cases we
may naturally consider a weighted extension of OWA defined as follows:

9(2,0) = [To(i) = Ta(i=1))(>_ Do) (1)
1=1 k=i

q

2> potr) — (D Poi))Tot) (2)

1 k=i k=i+1

|
M=

.
Il

where x, () = 0; function ¢ is strictly increasing on the unit interval. A solution
x is as least as good as a solution y when g(z,¢) > g(y, ). This formulation
is known as the Yaari’s model in the literature on decision under risk because
it has been introduced and axiomatically justified by Yaari [25] in this context.
Since ¢ is increasing on the unit interval, the preferences induced by the Yaari’s
model are monotonic with respect to first-order stochastic dominance (FSD).
This means that if two solutions z and y are such that the probability G (t) =
Plu(x) > t] is greater or equal than the probability G, (t) = Plu(y) > t] for all ¢
then g(x, @) > g(y, ). Moreover, a necessary and sufficient condition for these
preferences to be monotonic with respect to second order stochastic dominance
(SSD) is the convexity of . This means that z SSD y implies g(x, ¢) > g(y, ¢)
whenever ¢ is convex, where z SSD y means that [" G, (t)dt > [* G, (t)dt
for all u. This property established in [9] has a major importance in the context
of robust optimization since monotonicity with respect to SSD is the standard
model of strong risk aversion. This is due to the fact that SSD is strongly related
to the existence of mean-preserving spread of the utility distribution increasing
the risk attached to a solution (just as Lorenz dominance relates to the existence
of e-transfers reducing inequalities); for more details see [21]. For this reason, we
shall use convex functions ¢ to account for risk aversion in robust optimization
problem with probabilities over scenarios.

Example 2 We come back to Example 1 and assume now that the probabilities
of the 3 scenarios are given by p = (1/2,1/6,1/3). Let us compare solutions «
and o such that u(a) = (29,8,28) and u(a’) = (18,20, 25) using Yaari’s model
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with o(x) = z?. We have: g(a, @) = 8+ (28 —8)(5/6) + (29 — 28)p(1/2) = 22.1
and g(a/, @) = 18 + (20 — 18)¢(1/2) + (25 — 20)p(1/3) = 19.1. Therefore «
s preferred to o'. The fact that scenario s has a high probability compared
to the others gives the advantage to o even if it is more risky than o'. Note
that the conclusion would be different if the requirement of risk-aversion were
strengthened, using a function o of higher convexity. For example, if ¢(z) = x*
we have g(«, @) = 17.7 whereas g(', ) = 18.2. In this case o' is preferred to «.

Note that when scenarios are equiprobable then p; =1 /q and the coefficient
of z,(;y in Equation(2) becomes: w; = [@(%) —¢(4*)] which is now constant
(independent of ¢). In this case the Yaari’s model reduces to a standard OWA.
Hence Yaari’s model can be seen as a weighted generalization of OWA which
explains the name WOWA due to Torra [22] and used in this paper.

Considering the properties of WOWA recalled above, robust optimization
under multiple scenarios of known probabilities can soundly be reformulated as
the problem of maximizing g(z, ¢) for some proper convex weighting function ¢.
The determination of an f-optimal or g-optimal solution in graph optimization
is generally a challenging problem. Standard constructive algorithms based on
dynamic programming or greedy search do not apply directly because neither
f-optimality nor g-optimality satisfy the Bellman principle. An f-optimal solu-
tion for a given vector w can include sub-optimal subsolutions due to the non-
linearity of f with respect to outcomes. For example, when w = {(1,0,...,0)},
f-optimization is nothing else but Y -min maximization (> -max minimization
for costs) which is known to be NP-hard for assignment problems but also for
shortest-path problems [11,1]. The same remarks holds for g-optimality. Yet
some solution methods are available both for OWA and WOWA optimization,
c.g., [17,12].

3 Optimization with Imprecise Parameters

Possibly OWA-optimal Solutions. It is often difficult to precisely determine
the weighting vector w to be used in the OWA model. Indeed, the only prior in-
formation we have is that the weighting vector is positive and strictly decreasing,
providing an exponential number of possible weights, and then an exponential
number of preference queries to be assessed. Yet, in most cases, some preference
information is available, putting some constraints on the set of admissible weight-
ing vectors. Note that, any judgment of type “i prefer x to y” (where x and y are
two feasible utility vectors) translates into the following inequality: f(z,w) >
f(y,w), which is a linear constraint in w bounding the set of admissible weight-
ing vectors W. Thus, we define the uncertainty set W as a convex polyhedron
including all weighting vectors compatible with the preference information col-
lected so far. Given the uncertainty set W and a set X of utility vectors attached
to feasible solutions, we define POy (X) as the set of possibly f-optimal solu-
tions in X, i.e., the elements of X which are f-optimal for some weighting vector
w in W. More formally: VX C R", POw (X) = J, ey arg maxzex f(z, w).
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The uncertainty set W allows a W-dominance relation over utility vectors to
be defined as follows: z = y <= [Vw € W, f(z,w) > f(y,w)]. This relation
can be extended to set-wise dominance: a solution x € X is said to be dominated
by a set Y C X (denoted Y >y x) if there exists y € Y such that y =y . 'Y
is explicitly defined, we can decide whether a solution x is dominated by Y in
polynomial time by testing whether min, ey maxyecy f(y, w)—f(z, w) > 0 which
is done by solving a linear program. Hence, when X is given explicitly, POy (X)
can be computed in polynomial time. It is sufficient to iteratively remove from
X any solution z; dominated by X, for ¢ = 1,...,n. This was shown in [3] for
decision models based on the minimization of a weighted sum. We kept the same
idea while adapting the algorithm for the OWA maximization problem.

In robust optimization problems, the set X is only implicitly defined and
computing POy (X) is more difficult. To overcome the problem we now intro-
duce a ranking approach to compute POy (X). This approach consists of three
steps: 1) linear scalarization: a scalar valued instance of the problem is con-
structed by replacing utility vectors attached to the edges of the graph by their
average over all scenarios. 2) ranking: we perform an enumeration of solutions
by decreasing order of utilities; several algorithms are available in the literature
to rank the solutions of an optimization problem by decreasing order of prefer-
ences, e.g., Murty algorithm [16] for assignment problems or Eppstein algorithm
[6] for shortest path problems. 3) stopping condition: we stop the enumeration
when we can prove that all possibly optimal solutions have been enumerated.
The stopping condition used in step 3 is justified by the following propositions:

Proposition 1 For any weighting vector w € RY. with decreasing weights such
that Y1 w; =1, we have, for all z € RY, f(z,w) < %Zgzl z;.

Proposition 1, that directly derives from the result presented in proposition
3 of [7], allows us to establish the following result:

Proposition 2 Let X be the set of all feasible vectors, and let X* = {x!,... z*}
be the list of the k best elements of X ordered by decreasing average. We have:
MaX,e poy, (x*) Mingew f(z,w) > éz,?:l % = POw(X) C POw (X%).

Proof. We show that when the “if” condition holds at step k, then any element
that does not belong to X* cannot be optimal. Let us consider z € X \ X*.
Then if max,cpo,, (x+) Minepew f(x, w) > ézgzl x¥ then there exists y € X*
such that min,ew f(y,w) > é -7, 2¥. Moreover since x comes after z* in the

ordered enumeration, we have % E xf > % x> f(z,w) for any w e W.
Hence, for any w € W we have f(y,w) > f(x,w) and therefore z ¢ POy (X).
This shows that POy (X) C X*. Moreover an element in POy (X) cannot be

w-dominated in X* since X* C X. Hence POw (X) C POy (X%). O

Proposition 2 provides a stopping condition for a ranking algorithm based on
the mean of utilities to determine the set POy (X). If at step k of the ranking
algorithm the condition is fulfilled, then all solutions that would be enumerated
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after step k are W-dominated by a solution in POy (X*). The enumeration can
be stopped since the elements we are looking for are all included in POy (X*)
which can easily be computed (as previously explained) since X* is explicitly
known at step k. To summarize, when X is implicitly defined, the set POy (X)
can still be determined by ranking its elements by increasing average utilities.
This ranking is stopped as soon as the condition described above is activated.
Remark that, for the robust version of assignment problem [11,1], we cannot
expect the stopping condition to be activated within a polynomial number of
steps since the problem of determining POy, (X) is already NP-hard when W is
reduced to the single vector {(1,...,0)}. Nevertheless, we shall see in the section
dedicated to numerical tests that the stopping condition is activated after a
reasonable number of iterations on average. Moreover, the stopping condition
can be relaxed into £ 3¢ | 2¥ — max,c po,, (x+) Minyew f(2,w) < 6 where 4 is
a positive threshold representing the maximum admissible error. This possibly
saves multiple iterations while providing good approximations of POy (X).

Possibly WOWA-optimal Solutions. The ranking approach described above
can also be adapted to compute POg(X) for g-optimization under strong risk
aversion. In this case ¢ is assumed to be convex. Consistently with the ap-
proach proposed for OWA, we consider now an uncertainty set @ of admis-
sible convex functions (functions compatible with the preferences observed so
far). We will show later that, under mild hypothesis, ¢ can also be represented
by a convex polyhedron. Given the uncertainty set @, we define POg(X) as
the set of possibly g-optimal solutions in X, i.e., the elements of X which
are g-optimal for at least one function ¢ in @. More formally: VX C R",
POg(X) = U,cqparg max,cx g(z, ¢). The associated dominance relation is de-
fined by: « ¢ y < [Vo € @, g9(x,p) > g(y, p)]- This relation obviously extends
to set-wise dominance. Deciding whether a solution y is dominated by a set X
amounts to testing whether ming,ce max,ex 9(X, ¢) —g(y, ) > 0 which may be
done by linear programming provided that @ is represented by a convex poly-
hedron. Moreover, when X is explicitly defined, the set POg(X) can easily be
computed by iteratively eliminating dominated elements, as done for POy (X).
Now, in order to install a ranking procedure to determine POg(X) when X is
implicitly defined, we need to establish a counterpart of Propositions 1 and 2 for
g-optimization. This is exactly the role of the two following propositions:

Proposition 3 For any convex function ¢ : [0,1] — [0, 1] such that ¢(0) = 0
and p(1) =1 we have, for all z € R, g(x, ) < Y% px;.

Proof. Since ¢ is convex we have ¢(ta + (1 — t)b) < tep(a) + (1 — t)p(b) for
all a,b,t € [0,1]. Setting a = 1 and b = 0 we obtain: ¢(¢) < ¢ for all ¢ € [0, 1].
Hence (35— Po(k) < Done; Po(k) for i = 1,...,q. Therefore we have: g(x, ¢) <
S [%ot) = To(i—1)] 2ot—i Pok) by Equation (1) since z,(;) — T (i—1) = 0 for
i=1,...,q. Hence we obtain : g(z, ) < 37 1 D21, Do(k) — Yoteist Po(k)] Ta(i)
= 2im1 Po()Tali) = 2zt Pillis 0
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Proposition 4 Let X be the set of all feasible vectors and X* = {x!,... z*}
be the list of the k best elements of X ordered by decreasing expected utility. Let
Di,-.-,Pq be the probabilities of the q scenarios. The following property holds:
MaX,e POy (x*) Millgea §(2, ) > D1 piz} = POg(X) C POs(X*).

The proof is very similar to the one of Proposition 2 and is deliberately
omitted. To complete the parallel with the approach proposed for computing
POw (X), when X implicitly defined, the set POg(X) can be determined by
ranking the solutions of the instance obtained by replacing the utility vectors
attached to the edges of the graph by their expected utility. This approach applies
to problems for which a ranking algorithm is available, in particular, assignment
problems, shortest path and minimum spanning tree problems.

4 Interleaving Elicitation and Ranking

Incremental Elicitation. As shown in Example 1, preferences induced by
f(-,w) or g(-, ) models may be sensitive to variations of their respective param-
eters, w and . It is therefore necessary to design elicitation procedures aiming
to reduce the uncertainty set W (resp. @) introduced in the previous section.
The elicitation of these parameters may require numerous preference queries if
it is performed independently on the problem instance to be solved. For this
reason, it is preferable to interleave elicitation and search. We suggest inserting
preference queries in the ranking algorithm presented above in order to progres-
sively enrich the set of preference statements and the list of constraints defining
W (resp. ). This will iteratively reduce the W (resp. @), and therefore the set
POw (X) (resp. POg(X)) until the obtention of a necessarily optimal solution,
i.e., a solution that is f-optimal (resp. g-optimal) for all remaining parameter
values in the uncertainty set. This incremental elicitation process should save a
large part of the elicitation burden since an optimal solution can be identified
although the parameters of the models remain largely imprecise.

Regret Minimization. We want to design an anytime algorithm that can
return a valid solution to the problem even if it is interrupted before it ends. To
make such a recommendation upon request at any step of the algorithm we use a
standard regret based elicitation approach [23] based on the following definitions:

PMR(.’L‘, Y, W) = z%leav)é{f(y’ w) - f(l‘, ’U})} (3)
MR(z, X, W) = max PMR(z,y) (4)
MMR(X, W) = min MR(z, X, ) (5)

The pairwise regret PMR(x, y, W) is the maximum regret of choosing x instead
of y, defined as the maximum gap of OWA values. When X is explicitly known,
this regret can easily be computed by linear programming since f is linear in
w. The maximum regret (MR) attached to a solution z is the maximum regret
of choosing z instead of any other solution. Finally, the minimax regret (MMR)
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is the minimal MR regret over X. If the algorithm is stopped at a given step
with a set X of possibly optimal solutions, then we shall recommend an ele-
ment z in X that achieves the MMR. This solution will be named the MMR
solution hereafter. As suggested in [23], these regrets can also be used to select
informative preference queries during an incremental elicitation process to itera-
tively reduce the MMR to zero. An efficient strategy introduced in [4] under the
name the Current Solution Strategy (CSS for short) consists in asking the DM
to compare the current MMR solution z* with its strongest challenger defined
by y*=arg max,cx PMR(z*,y, W). Whatever the answer to this query, a new
constraint will be derived, further restricting the set W.

A similar approach could be implemented for WOWA optimization, using re-
grets PMR(z, y, ®), MR(z, X, ®) and MMR(X, @) that simply derive from (3-5)
by substituting f(-, w) by g(+, ¢). However the optimization of such regrets might
be challenging because we have to optimize over a continuous set of weighting
functions. To overcome this problem, we use a spline representation of function
. Spline functions are piecewise polynomials whose elements connect with a
high degree of smoothness. They are widely used in data interpolation due to
their ability to approximate complex shapes [20]. Interestingly enough, spline
functions can be generated by linear combinations of basis spline functions. This
allows to reduce the elicitation of a spline function to the determination of its
weights in the spline basis. The use of spline representations for function ¢ in
WOWA model has been recently introduced in [19]. It enables an efficient incre-
mental elicitation of the model to describe DM’s preferences over probabilistic
distributions. The proposed construction relies on the definition of ¢ as a convex
combination of m basis spline functions of degree 3, increasing from 0 to 1 on
the unit interval, and known as I-spline functions [20]. More precisely we have:
o(x) = Y00, bjI;(x) where I;j(x),j = 1,...,m are the basic spline functions
(see [19, 2OT for a formal definition of ).

Note however that this construction does not completely fit to our context
because we have the additional constraint that ¢ must be convex, in order to
enforce strong risk aversion, as explained in the previous section. To overcome
this problem, we use another spline basis to generate spline functions that are
both increasing and convex on the unit interval. To this end, ¢(x) is defined
by p(x) = 37, 6;Cj(x),j = 1,...,m where C; are C-spline functions defined
as the normalized integrals of the I-spline functions. More precisely: C;(z) =
Jy I;(t)dt/ fol I;(t)dt. As the integrals of positive and increasing functions, C;
functions are increasing and convex. Moreover we have C;(0) = 0 and C;(1) =1
for all j. Therefore, ¢(z) will also be increasing and convex since coefficients
¢; will be constrained to be non-negative. This is the model we use hereafter
because g defined in this way is a linear function of coefficients ¢;,j =1,...,m,
a key property for regret optimization. Hence, any preference constraint of type
g(x, ) > g(y, ) translates into a linear equation in coefficients ¢;; thus ¢ can
be soundly defined as the convex polyhedron of vectors (¢1, ..., ¢,,) compatible
with the preference statements collected so far. We give below on Figure 1 the
I-spline basis and the associated C-spline basis used to generate .
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Fig. 1. I-spline and C-spline cubic functions [;(x) and Cj(z) for m =5

Adaptative Elicitation in a Ranking Algorithm. Our adaptive elicita-
tion procedure of OWA’s weights uses progressive reductions of MMR values
to discriminate between the solutions generated by the ranking algorithm. The
baseline of our algorithm is a ranking procedure enumerating the solutions by
decreasing average utilities (or increasing average costs). During the enumera-
tion, if the current solution is not dominated by the previous ones, it is inserted
in a bag of solution named X. When |X| = sb, preferences queries are generated
to discriminate between the element of X and W is reduced accordingly until
MMR(X,W) = 0. Then all solutions with a strictly positive MR value are re-
moved from X. The process is iterated until the stopping condition introduced
in Proposition 2 holds. Due to this proposition, we know that, at this point,
X includes all possibly optimal solutions. Moreover, since there exists z* € X
such that MR(z*, X, W) = 0 (since MMR(X, W) = 0), z* dominates all other
solutions in X for all w € W and is therefore necessarily optimal. This is the
solution returned by the algorithm. The pseudo-code is given in Algorithm 1.

Function next(G, k) generates the k' best solution #* in the ranking process
and returns its outcome vector (one component per scenario) or the empty vector
if there are no solutions left. Function MMR(X, W) returns the best MR value
in X for the uncertainty set W. We keep asking queries, applying CSS, until the
MMR becomes zero. The stopping condition of the ranking process holds when
current-distance = 0 where current-distance is defined in line 20. So § should be
set to 0. However, in practice, the stopping condition can be relaxed by using
a positive tolerance threshold ¢ in line 4 in order to save many iterations. More
generally the algorithm can be stopped at any step k of the ranking (anytime
property). The current MMR solution z* will be returned as the current best
solution. It is necessarily optimal within the set {z!,...,z*} of solutions enu-
merated so far. Moreover, all solutions coming after z* in the ranking have an
f-value lower than the average utility of z*. Hence current-distance provides an
upper bound on the gap to optimality in the case of an early interruption of the
ranking process. Consequently, when current-distance is less than 4, the gap to
optimality for x* is at most §.
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Algorithm 1: MMR based elicitation in ranking for OWA optimization
Input: G = (V, E) undirected graph; u;(e) > 0 edge utility in scenario 4;
q: number of scenarios, sb: size of bags; J: tolerance threshold
Output: z*: a near-optimal solution

1 X+ {3 W {weRl: 3L w; =1}, 2' <+ next(G,0), k + 2,
2 current-distance «— %Zg:l ¥ — mingew f(z', w)
3 enumeration-completed < false
4 while (current-distance > ¢ and enumeration-completed = false) do
5 2 next(G,k —1)
6 if 2% = emptyVector then enumeration-completed <« true
7 else
8 if not (X =w {z*}) then
9 X «— X U {z*}
10 if |X|=sb and MMR(X,W) > 0 then
11 repeat
12 ask a preference query to the DM (selected by CSS)
13 restrict W according to the answer
14 update regrets PMR, MR and MMR
15 until MMR(X,W) =0
16 X +{z € X: MR(z,W) =0}
17 end
18 end
19 current-distance < %23:1 ¥ — maxgex E)rél&l/ flz,w)
20 E—k+1
21 end
22 end

23 return z* = arg mingex M R(z, X, W), current-distance

Example 1 (continued) Let us briefly illustrate the behavior of Algorithm 1 on
Ezample 1. We use bags of size 5 (sb =15) and simulate the answers of the DM
using an OWA with w = (1/2,1/3,1/6). The best solution according to the mean
value is z' = {(1,3),(2,1),(3,2), (4,4)} with utility vector u(z') = (29,8,28)
and a mean at 21.67. Then, a lower bound of the OWA wvalue of x' is obtained
by minimizing f(u(x!), w) = 8wy + 28wy + 29ws3 over all possible weighting vec-
tors. We obtain 8, hence current-distance = 21.67 — 8 > 0 and another iteration
is necessary. The ordered enumeration continues until step 5 where the algo-
rithm computes the MMR value which is strictlty positive. So a preference query
is asked to the DM: the MMR solution 2% = {(1,1),(2,4), (3,2), (4,3)} such that
u(x?) = (23,24,17) must be compared to its best challenger x* chosen as ex-
plained before and such that u(z*) = (18,20,25). The DM prefers x* therefore
x* is removed from X and the constraint f(x?,w) > f(y*,w) is added to the
definition of polyhedron W i.e. 17wy + 23wq + 24ws > 18w + 20wy + 25ws or
equivalently —wy + 3wy — w3 > 0. At this time, the MMR is still positive so the
algorithm asks another query, this time between x? and x' (chosen in the same
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way as x*), the DM still prefers x2, the algorithm proceeds similarly, removing x*
and adding a constraint according to this preference. After this second question,
the MMR is equal to 0, therefore all solutions but x2 are removed from X. Then
the ranking algorithm continues until step 15 without inserting new solutions in
X because all of them are dominated by x*. At step 15, the stopping condition
is activated and the algorithm returns the optimal solution x2.

A variant of Algorithm 1 can be used for WOWA optimization. It is suffi-
cient to replace f by g and to modify the definition of regrets accordingly. The
definition of the current distance must also be adapted not only by substituting
f by g but also by replacing the weighted average by > 7, p;z¥. The correctness
of this variant derives from Proposition 4 instead of Proposition 2.

5 Numerical Tests

We have implemented Algorithm 1 on the robust assignment problem using both
OWA and WOWA models. For these tests, function next(G, k) (line 5) was im-
plemented with Murty’s algorithm [16]. The complexity of Murthy’s algorithm
to rank assignments by increasing utility is O(Kn?) for n agents and K enumer-
ations. We used the Gurobi library of Python to solve the linear programs re-
quired for dominance tests and regret minimization. During the elicitation steps,
the DM’s answers to preference queries are simulated using a hidden OWA or
WOWA model. We evaluate the performance of the algorithm in terms of com-
putation time, number of preference queries and number of ranking steps, we
performed tests on multiple instances of different size and number of scenarios.
For every case, performances are averaged over 20 runs. The tests are performed
on a Intel Core i7-4770 CPU with 11GB of RAM. Table 1 shows the results
obtained for OWA and WOWA elicitation and optimization. The performance
are obtained for an error threshold § set to 10% of the initial error (obtained for
solution z!), with a bag size of 10 and a timeout of 20 minutes (1200s). Time is
given in seconds in the tables and the gap is the maximal error attached to the
returned solution, expressed as a percentage of the range of the valuation scale.

Table 1. Tests for OWA and WOWA optimization on the robust assignment problem

Number of q=3 q=>5 q=10

agents |time steps queries gap ||time steps queries gap ||[time steps queries gap
20 274 13607 1.3 0 || 719 34009 2.3 0.5 940 37739 2 1.4
60 1200 7236 4 1.1 {1200 6945 6.7 5 |[1200 6382 11.6 4.7
100 |[1200 2075 5.1 2 {[1200 2550 11.3 6 ||1200 2216 17.5 7.5

20 270 5338 10.3 1 |[475 4657 9.45 1.1|865 6743 9.2 1.7

60 1200 5446 8.95 8.1(|1200 3192 5.3 7.6 (|1200 4381 5.4 6.5
100 ||1200 2978 6.15 10.3||1200 2302 5 15.9}|1200 1901 4.9 11.3

WOWA|| OWA
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To test the generality of the approach, we also made some preliminary tests
on the robust shortest path problem. In this problem, the arcs of the graph are
valued by cost vectors with ¢ components corresponding to the cost of the arc in
the different scenarios. The definition of OWA and WOWA aggregators as well as
Algorithm 1 have been modified to fit to minimization problems. For ranking the
paths by increasing average costs, we used a lazy version of Eppstein’s algorithm
introduced in [10] with a complexity of O(m + nlogn) in the worst case for a
graph with n nodes and m arcs. To give an idea of the performance of Algorithm
1 on robust shortest path problems, we solve instances including 500 nodes and
5 scenarios in 548 seconds and 5 preference queries with a gap of 0.1 on average
(after 28460 steps on average). In the case of 10 scenarios, the algorithm needs
681 seconds on average on similar graphs, 6.3 queries with a gap of 0.1 on average
(after 41796 steps on average).

6 Conclusion

We have introduced a new adaptive elicitation approach for OWA and WOWA
optimization and tested its practical efficiency on robust assignment problems
and on robust shortest path problems in the discrete scenarios case. Our ap-
proach is quite general and applies to any other optimization problem for which
an efficient ranking algorithm is known. An interesting extension of this work
would be to design a similar approach for the incremental elicitation of Choquet
integrals under the constraint of convex capacity (this is a more general model
to account for robustness in optimization under uncertainty, including OWA and
WOWA as special cases). The implementation of the ranking approach for Cho-
quet integrals and the definition of a valid stopping condition are challenging
questions because the capacity is imprecisely known.
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