Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search

Guillaume Bosc 1 Jean-François Boulicaut 1 Chedy Raïssi 2 Mehdi Kaytoue 1
1 DM2L - Data Mining and Machine Learning
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
2 ORPAILLEUR - Knowledge representation, reasonning
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : The discovery of patterns that accurately discriminate one class label from another remains a challenging data mining task. Subgroup discovery (SD) is one of the frameworks that enables to elicit such interesting patterns from labeled data. A question remains fairly open: How to select an accurate heuristic search technique when exhaustive enumeration of the pattern space is infeasible? Existing approaches make use of beam-search, sampling, and genetic algorithms for discovering a pattern set that is non-redundant and of high quality w.r.t. a pattern quality measure. We argue that such approaches produce pattern sets that lack of diversity: Only few patterns of high quality, and different enough, are discovered. Our main contribution is then to formally define pattern mining as a game and to solve it with Monte Carlo tree search (MCTS). It can be seen as an exhaustive search guided by random simulations which can be stopped early (limited budget) by virtue of its best-first search property. We show through a comprehensive set of experiments how MCTS enables the anytime discovery of a diverse pattern set of high quality. It out-performs other approaches when dealing with a large pattern search space and for different quality measures. Thanks to its genericity, our MCTS approach can be used for SD but also for many other pattern mining tasks.
Type de document :
Article dans une revue
Data Mining and Knowledge Discovery, Springer Verlag, 2017, 〈10.1007/s10618-017-0547-5〉
Liste complète des métadonnées

Littérature citée [48 références]  Voir  Masquer  Télécharger
Contributeur : Mehdi Kaytoue <>
Soumis le : mercredi 13 décembre 2017 - 14:56:14
Dernière modification le : mardi 16 janvier 2018 - 16:29:33


Fichiers produits par l'(les) auteur(s)



Guillaume Bosc, Jean-François Boulicaut, Chedy Raïssi, Mehdi Kaytoue. Anytime Discovery of a Diverse Set of Patterns with Monte Carlo Tree Search. Data Mining and Knowledge Discovery, Springer Verlag, 2017, 〈10.1007/s10618-017-0547-5〉. 〈hal-01662857〉



Consultations de la notice


Téléchargements de fichiers