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Abstract

Random Forests (RFs) are strong machine learning tools for classification and regression.
However, they remain supervised algorithms, and no extension of RFs to the one-class
setting has been proposed, except for techniques based on second-class sampling. This work
fills this gap by proposing a natural methodology to extend standard splitting criteria to
the one-class setting, structurally generalizing RFs to one-class classification. An extensive
benchmark of seven state-of-the-art anomaly detection algorithms is also presented. This
empirically demonstrates the relevance of our approach.

Keywords: Random Forests, One-Class Classification, Anomaly Detection

1. Introduction

Anomalies, novelties or outliers are usually assumed to lie in low probability regions of
the data generating process. This assumption drives many statistical anomaly detection
methods. Parametric techniques Barnett and Lewis (1994); Eskin (2000) suppose that
the inliers are generated by a distribution belonging to some specific parametric model a
priori known. Here and hereafter, we denote by inliers the ‘not abnormal’ data, and by
outliers/anomalies/novelties the data from the abnormal class. Classical non-parametric
approaches are based on density (level set) estimation Schölkopf et al. (2001); Scott and
Nowak (2006); Breunig et al. (2000); Quinn and Sugiyama (2014), on dimensionality re-
duction Shyu et al. (2003); Aggarwal and Yu (2001) or on decision trees Liu et al. (2008);
Shi and Horvath (2012). Relevant overviews of current research on anomaly detection can
be found in Hodge and Austin (2004); Chandola et al. (2009); Patcha and Park (2007);
Markou and Singh (2003).

The algorithm proposed in this paper lies in the novelty detection setting, also called
one-class classification. In this framework, we assume that we only observe examples of one
class (referred to as the normal class, or inlier class). The second (hidden) class is called the
abnormal class, or outlier class. The goal is to identify characteristics of the inlier class, such
as its support or some density level sets with levels close to zero. This setup is for instance
used in some (non-parametric) kernel methods such as One-Class Support Vector Machine
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(OCSVM) Schölkopf et al. (2001), which extends the SVM methodology Cortes and Vapnik
(1995); Shawe-Taylor and Cristianini (2004) to handle training using only inliers. More
recently, Least Squares Anomaly Detection (LSAD) Quinn and Sugiyama (2014) similarly
extends a multi-class probabilistic classifier Sugiyama (2010) to the one-class setting.

Random Forests (RFs) are strong machine learning tools Breiman (2001), comparing
well with state-of-the-art methods such as SVM or boosting algorithms Freund et al. (1996),
and used in a wide range of domains Svetnik et al. (2003); Dı́az-Uriarte and De Andres
(2006); Genuer et al. (2010). These estimators fit a number of decision tree classifiers on
different random sub-samples of the dataset. Each tree is built recursively, according to a
splitting criterion based on some impurity measure of a node. The prediction is done by
an average over each tree prediction. In classification the averaging is based on a majority
vote. Practical and theoretical insights on RFs are given in Genuer et al. (2008); Biau et al.
(2008); Louppe (2014); Biau and Scornet (2016).

Yet few attempts have been made to transfer the idea of RFs to one-class classification
Liu et al. (2008); Shi and Horvath (2012); Désir et al. (2013); Guha and Schrijvers (2016). In
Liu et al. (2008), the novel concept of isolation is introduced: the Isolation Forest algorithm
isolates anomalies, instead of profiling the inlier behavior which is the usual approach. It
avoids adapting splitting rules to the one-class setting by using extremely randomized trees,
also named extra trees Geurts et al. (2006): isolation trees are built completely randomly,
without any splitting rule. Therefore, Isolation Forest is not really based on RFs, the base
estimators being extra trees instead of classical decision trees. Isolation Forest performs
very well in practice with low memory and time complexities. RecentlyGuha and Schrijvers
(2016) proposed an extension of Isolation Forest to streaming data. Weights on dimensions
are added to chose (still at random) the dimension to split on.

In Désir et al. (2013); Shi and Horvath (2012), outliers are generated to artificially
form a second class. In Désir et al. (2013) the authors propose a technique to reduce the
number of outliers needed by shrinking the dimension of the input space. The outliers are
then generated from the reduced space using a distribution complementary to the inlier
distribution. Thus their algorithm artificially generates a second class, in order to use
classical RFs. In Shi and Horvath (2012), two different outliers generating processes are
compared. In the first one, an artificial second class is created by randomly sampling
from the product of empirical marginal (inlier) distributions. In the second one outliers
are uniformly generated from the hyper-rectangle that contains the observed data. The
first option is claimed to work best in practice, which can be understood from the curse
of dimensionality argument: in large dimension Tax and Duin (2002), when the outliers
distribution is not tightly defined around the target set, the chance for an outlier to be in
the target set becomes very small, so that a huge number of outliers has to be sampled.

Looking beyond the RF literature, Scott and Nowak (2006) proposes a methodology to
build dyadic decision trees to estimate minimum-volume sets Polonik (1997); Einmahl and
Mason (1992). This is done by reformulating their structural risk minimization problem to
be able to use the algorithm in Blanchard et al. (2004). While this methodology can also be
used for non-dyadic trees pruning (assuming such a tree has been previously constructed,
e.g. using some greedy heuristic), it does not allow to grow such trees. Also, the theoretical
guaranties derived there relies on the dyadic structure assumption. In the same spirit,
Clémençon and Robbiano (2014) proposes to use the two-class splitting criterion defined
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in Clémençon and Vayatis (2009). This two-class splitting rule aims at producing oriented
decision trees with a ‘left-to-right’ structure to address the bipartite ranking task. Extension
to the one-class setting is done by assuming a uniform distribution for the outlier class.
Consistency and rate bounds relies also on this left-to-right structure. Thus, these two
references Scott and Nowak (2006); Clémençon and Robbiano (2014) impose constraints
on the tree structure (designed to allow a statistical study) which differs then significantly
from the general structure of the base estimators in RF. The price to pay is a lack of
flexibility of the model affecting its ability to capture complex broader patterns or structural
characteristics from the data.

In this paper, we make the choice to stick to the RF framework. We do not assume any
structure for the binary decision trees. The price to pay is a lack of statistical guaranties
– the consistency of RFs has only been proved in the context of regression additive models
Scornet et al. (2015). The gain is that we preserve the flexibility and strength of RFs,
the algorithm presented here being able to compete well with state-of-the-art anomaly
detection algorithms. Besides, we do not assume any (fixed in advance) outlier distribution
as in Clémençon and Robbiano (2014), but define it in an adaptive way during the tree
building process.

To the best of our knowledge, no algorithm structurally extends (without second class
sampling and without alternative base estimators) RFs to one-class classification. Here
we precisely introduce such a methodology. It builds on a natural adaptation of two-class
splitting criteria to the one-class setting, as well as an adaptation of the two-class majority
vote.

Basic idea. To split a node without second class examples (outliers), we proceed as
follows. Each time we look for the best split for a node t, we simply replace (in the two-class
impurity decrease to be maximized) the second class proportion going to the left child node
tL by the proportion expectation Leb(tL)/Leb(t) (idem for the right node), Leb(t) being
the volume of the rectangular cell corresponding to node t. It ensures that one child node
manages to capture the maximum number of observations with a minimal volume, while
the other child looks for the opposite.

This simple idea corresponds to an adaptive modeling of the outlier distribution. The
proportion expectation mentioned above is weighted proportionally to the number of inliers
in node t. Thus, the resulting outlier distribution is tightly concentrated around the inliers.
This resulting outlier distribution can be seen as a ‘worse case’ / ‘most difficult’ distribution,
used to learn accurately the inlier distribution. Besides, and this attests the consistency of
our approach with the two-class framework, it turns out that the one-class model promoted
here corresponds to the asymptotic behavior of an adaptive outliers generating methodology.

This paper is structured as follows. Section 2 provides the reader with necessary back-
ground, to address Section 3 which proposes an adaptation of RFs to the one-class setting
and describes a generic one-class random forest algorithm. The latter is compared empir-
ically with state-of-the-art anomaly detection methods in Section 4. Finally a theoretical
justification of the one-class criterion is given in Section 5.
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2. Background on decision trees

Let us denote by X ⊂ Rd the d-dimensional hyper-rectangle containing all the observations.
Consider a binary tree on X whose node values are subsets of X , iteratively produced by
splitting X into two disjoint subsets. Each internal node t with value Xt is labeled with
a split feature mt and split value ct (along that feature), in such a way that it divides Xt
into two disjoint spaces XtL := {x ∈ Xt, xmt < ct} and XtR := {x ∈ Xt, xmt ≥ ct}, where
tL (resp. tR) denotes the left (resp. right) children of node t, and xj denotes the jth
coordinate of vector x. Such a binary tree is grown from a sample X1, . . . , Xn (∀i, Xi ∈ X )
and its finite depth is determined either by a fixed maximum depth value or by a stopping
criterion evaluated on the nodes (e.g. based on an impurity measure). The external nodes
(the leaves) form a partition of X .

In a supervised classification setting, these binary trees are called classification trees and
prediction is made by assigning to new observation x ∈ X the majority class of the leaves
containing x. This is called the majority vote. Classification trees are usually built using
an impurity measure i(t) whose decrease is maximized at each split of a node t, yielding an
optimal split (m∗t , c

∗
t ). The decrease of impurity (also called goodness of split) ∆i(t, tL, tR)

w.r.t. the split (mt, ct) and corresponding to the partition Xt = XtL t XtR of the node t is
defined as

∆i(t, tL, tR) = i(t)− pLi(tL)− pRi(tR), (1)

where pL = pL(t) (resp. pR = pR(t)) is the proportion of samples from Xt going to XtL
(resp. to XtR). The impurity measure i(t) reflects the goodness of node t: the smaller i(t),
the purer the node t and the better the prediction by majority vote on this node. Usual
choices for i(t) are the Gini index Gini (1912) or the Shannon entropy Shannon (2001).
To produce a randomized tree, these optimization steps are usually partially randomized
(conditionally on the data, splits (m∗t , c

∗
t )’s become random variables). A classification tree

can even be grown totally randomly Geurts et al. (2006). In a two-class classification setup,
the Gini index is

iG(t) = 2

(
nt

nt + n′t

)(
n′t

nt + n′t

)
(2)

where nt (resp. n′t) stands for the number of observations with label 0 (resp. 1) in node
t. The Gini index is maximal when nt/(nt + n′t) = n′t/(nt + n′t) = 0.5, namely when the
conditional probability to have label 0 given that we are in node t is the same as to have
label 0 unconditionally: the node t does not discriminate at all between the two classes.

For a node t, maximizing the impurity decrease (1) is equivalent to minimizing pLi(tL)+
pRi(tR). Since pL = (ntL +n′tL)/(nt +n′t) and pR = (ntR +n′tR)/(nt +n′t), and the quantity
(nt + n′t) being constant in the optimization problem, this is equivalent to minimizing the
following proxy of the impurity decrease,

I(tL, tR) = (ntL + n′tL)i(tL) + (ntR + n′tR)i(tR). (3)

Note that with the Gini index iG(t) given in (2), the corresponding proxy of the impurity
decrease is

IG(tL, tR) =
ntLn

′
tL

ntL + n′tL
+

ntRn
′
tR

ntR + n′tR
. (4)
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in Clémençon and Vayatis (2009). This two-class splitting rule aims at producing oriented
decision trees with a ‘left-to-right’ structure to address the bipartite ranking task. Extension
to the one-class setting is done by assuming a uniform distribution for the outlier class.
Consistency and rate bounds relies also on this left-to-right structure. Thus, these two
references Scott and Nowak (2006); Clémençon and Robbiano (2014) impose constraints
on the tree structure (designed to allow a statistical study) which differs then significantly
from the general structure of the base estimators in RF. The price to pay is a lack of
flexibility of the model affecting its ability to capture complex broader patterns or structural
characteristics from the data.

In this paper, we make the choice to stick to the RF framework. We do not assume any
structure for the binary decision trees. The price to pay is a lack of statistical guaranties
– the consistency of RFs has only been proved in the context of regression additive models
Scornet et al. (2015). The gain is that we preserve the flexibility and strength of RFs,
the algorithm presented here being able to compete well with state-of-the-art anomaly
detection algorithms. Besides, we do not assume any (fixed in advance) outlier distribution
as in Clémençon and Robbiano (2014), but define it in an adaptive way during the tree
building process.

To the best of our knowledge, no algorithm structurally extends (without second class
sampling and without alternative base estimators) RFs to one-class classification. Here
we precisely introduce such a methodology. It builds on a natural adaptation of two-class
splitting criteria to the one-class setting, as well as an adaptation of the two-class majority
vote.

Basic idea. To split a node without second class examples (outliers), we proceed as
follows. Each time we look for the best split for a node t, we simply replace (in the two-class
impurity decrease to be maximized) the second class proportion going to the left child node
tL by the proportion expectation Leb(tL)/Leb(t) (idem for the right node), Leb(t) being
the volume of the rectangular cell corresponding to node t. It ensures that one child node
manages to capture the maximum number of observations with a minimal volume, while
the other child looks for the opposite.

This simple idea corresponds to an adaptive modeling of the outlier distribution. The
proportion expectation mentioned above is weighted proportionally to the number of inliers
in node t. Thus, the resulting outlier distribution is tightly concentrated around the inliers.
This resulting outlier distribution can be seen as a ‘worse case’ / ‘most difficult’ distribution,
used to learn accurately the inlier distribution. Besides, and this attests the consistency of
our approach with the two-class framework, it turns out that the one-class model promoted
here corresponds to the asymptotic behavior of an adaptive outliers generating methodology.

This paper is structured as follows. Section 2 provides the reader with necessary back-
ground, to address Section 3 which proposes an adaptation of RFs to the one-class setting
and describes a generic one-class random forest algorithm. The latter is compared empir-
ically with state-of-the-art anomaly detection methods in Section 4. Finally a theoretical
justification of the one-class criterion is given in Section 5.
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of inliers, the same (reversed) problem of unbalanced classes appears on nodes with small
depth.

Adaptive approach. Our solution is to remove the uniform assumption on the outliers,
and to choose their distribution adaptively in such a way it is tightly concentrated around
the inlier distribution. Formally, the idea is to maintain constant the class ratio γt := n′t/nt
on each node t: before looking for the best split, we update the number of outliers to be
equal (up to a scaling constant γ) to the number of inliers, n′t = γnt, i.e. γt ≡ γ. These
(hidden) outliers are uniformly distributed on node t. The parameter γ is typically set to
γ = 1, see supplementary material Section A.1 for a discussion on the relevance of this
choice (in a nutshell, γ has an influence on optimal splits).

G

F naive
approach

adaptive
approach

−→
F

G
F

−→
G

Figure 1: Outliers distribution G in the naive and adaptive approach. In the naive approach, G does
not depend on the tree and is constant on the input space. In the adaptive approach the
distribution depends on the inlier distribution F through the tree. The outliers density
is constant and equal to the average of F on each node before splitting it.

X Xt
Xt

γ = 1 γt ' 0

tγ

adaptivity

Figure 2: The left part represents the dataset under study and the underlying density. The node
Xt obtained after some splits is illustrated in the right part of this figure: without the
proposed adaptive approach, the class ratio γt becomes too small and yields poor splits
(all the data are in the ‘inlier side’ of the split, which thus does not discriminate at all).
Contrariwise, setting γ to one, i.e. using the adaptive approach, is far preferable.

With this methodology, one cannot derive a one-class version of the Gini index (2),
but we can define a one-class version of the proxy of the impurity decrease (4), by simply
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replacing n′tL (resp. n′tR) by n′tλL (resp. n′tλR), where λL := Leb(XtL)/Leb(Xt) and λR :=
Leb(XtR)/Leb(Xt) are the volume proportion of the two child nodes:

IOC−adG (tL, tR) =
ntLγntλL
ntL + γntλL

+
ntRγntλR
ntR + γntλR

. (5)

Minimization of the one-class Gini improvement proxy (5) is illustrated in Figure 2. Note
that n′tλL (resp. n′tλR) is the expectation of the number of uniform observations (on Xt)
among n′t (fixed to n′t = γnt) falling into the left (resp. right) node.

Choosing the split minimizing IOC−adG (tL, tR) at each step of the tree building process,
corresponds to generating n′t = γnt outliers each time the best split has to be chosen for
node t, and then using the classical two-class Gini proxy (4). The only difference is that
n′tL and n′tR are replaced by their expectations n′tλtL and n′tλtR in our method.

Resulting outlier distribution. Figure 1 shows the corresponding outlier density G
(we drop the dependence in the number of splits to keep the notations uncluttered). Note
that G is a piece-wise constant approximation of the inlier distribution F . Considering
the Neyman-Pearson test X ∼ F vs. X ∼ G instead of X ∼ F vs. X ∼ Unif may seem
surprising at first sight. Let us try to give some intuition on why this works in practice.
First, there exists (at each step) ε > 0 such that G > ε on the entire input space, since
the density G is constant on each node and equal to the average of F on this node before
splitting it. If the average of F was estimated to be zero (no inlier in the node), the node
would obviously not have been splitted, from where the existence of ε. Thus, at each step,
one can also view G as a piece-wise approximation of Fε := (1 − ε)F + εUnif, which is a
mixture of F and the uniform distribution. Yet, one can easily show that optimal tests for
the Neyman-Pearson problem H0 : X ∼ F vs. H1 : X ∼ Fε are identical to the optimal
tests for H0 : X ∼ F vs. H1 : X ∼ Unif, since the corresponding likelihood ratios are
related by a monotone transformation, see Scott and Blanchard (2009) for instance (in fact,
this reference shows that these two problems are even equivalent in terms of consistency
and rates of convergence of the learning rules). An other intuitive justification is as follows.
In the first step, the algorithm tries to discriminate F from Unif. When going deeper in the
tree, splits manage to discriminate F from a (more and more accurate) approximation of
F . Asymptotically, splits become unrelevant since they are trying to discriminate F from
itself (a perfect approximation, ε→ 0).

Remark 1 (Consistency with the two-class framework) Consider the following
method to generate outliers – tightly concentrated around the support of the inlier distribu-
tion. Sample uniformly n′ = γn outliers on the rectangular cell containing all the inliers.
Split this root node using classical two-class impurity criterion ( e.g. minimizing (4)). Apply
recursively the three following steps: for each node t, remove the potential outliers inside
Xt, re-sample n′t = γnt uniform outliers on Xt, and use the latter to find the best split using
(4). Then, each optimization problem (4) we have solved is equivalent (in expectation) to its
one-class version (5). In other words, by generating outliers adaptively, we can recover (in
average) a tree grown using the one-class impurity, from a tree grown using the two-class
impurity.

Remark 2 (Extension to other impurity criteria) Our extension to the one-class
setting also applies to other impurity criteria. For instance, in the case of the Shan-

7



Goix Drougard Brault Chiapino

non entropy defined in the two-class setup by iS(t) = nt
nt+n′

t
log2

nt+n′
t

nt
+

n′
t

nt+n′
t

log2
nt+n′

t
n′
t
,

the one-class impurity improvement proxy becomes IOC−adS (tL, tR) = ntL log2
ntL+γntλL

ntL
+

ntR log2
ntR+γntλR

ntR
.

3.2. Prediction: scoring function of the forest

Now that RFs can be grown in the one-class setting using the one-class splitting criterion,
the forest has to return a prediction adapted to this framework. In other words we also need
to extend the concept of majority vote. Most usual one-class (or more generally anomaly

Figure 3: OneClassRF with one tree: level-sets of the scoring function.

detection) algorithms actually provide more than just a level-set estimate or a predicted
label for any new observation, abnormal vs. normal. Instead, they return a real valued
function, termed scoring function, defining a pre-order/ranking on the input space. Such
a function s : Rd → R allows to rank any observations according to their supposed ‘degree
of abnormality’. Thresholding it provides level-set estimates, as well as a decision rule
that splits the input space into inlier/normal and outlier/abnormal regions. The scoring
function s(x) we use is the one defined in Liu et al. (2008) in view of its established high
performance. It is a decreasing function of the average depth of the leaves containing x in
the forest. An average term is added to each node containing more than one sample, say
containing N samples. This term c(N) is the average depth of an extremely randomized
tree Geurts et al. (2006) (i.e. built without minimizing any criterion, by randomly choosing
one feature and one uniform value over this feature to split on) on N samples. Formally,

log2 s(x) = −

( ∑
t leaves

1{x∈t}dt + c(nt)

)
/ c(n), (6)

8
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where dt is the depth of node t, and c(n) = 2H(n − 1) − 2(n − 1)/n, H(i) being the
harmonic number. Alternative scoring functions can be defined for this one-class setting
(cf. supplementary material Section A.2).

3.3. OneClassRF: a Generic One-Class Random Forest algorithm

Let us summarize the One Class Random Forest (OneClassRF) algorithm, based on
generic RFs Breiman (2001). It has 6 parameters: max samples, max features tree,
max features node, γ, max depth, n trees. Each tree is classically grown on a random
subset of both the input samples and the input features Ho (1998); Panov and Džeroski
(2007). This random subset is a sub-sample of size max samples, with max features tree
variables chosen at random without replacement (replacement is only done after the tree
is grown). The tree is built by minimizing (5) for each split, using parameter γ (recall
that n′t := γnt), until either the maximal depth max depth is achieved or the node con-
tains only one point. Minimizing (5) is done as introduced in Amit and Geman (1997):
at each node, we search the best split over a random selection of features with fixed size
max features node. The forest is composed of a number n trees of trees. The predicted
score of a point x is given by s(x), with s defined by (6). Remarks on alternative stopping
criteria and variable importances are available in supplementary material Section A.3.

Figure 3 represents the level sets of the scoring function produced by OneClassRF, with
only one tree of maximal depth 4, without sub-sampling, and using the Gini-based one-class
splitting criterion with γ = 1.

4. Benchmark

In this section, we compare the OneClassRF algorithm described above to seven state-of-art
anomaly detection algorithms 1: the isolation forest algorithm Liu et al. (2008) (iForest), a
one-class RFs algorithm based on sampling a second-class Désir et al. (2013) (OCRFsam-
pling), one class SVM Schölkopf et al. (2001) (OCSVM), local outlier factor Breunig et al.
(2000) (LOF), Orca Bay and Schwabacher (2003), Least Squares Anomaly Detection Quinn
and Sugiyama (2014) (LSAD), Random Forest Clustering Shi and Horvath (2012) (RFC).

4.1. Default parameters of OneClassRF

The default parameters taken for our algorithm are the followings. max samples is fixed
to 20% of the training sample size (with a minimum of 100); max features tree is fixed to
50% of the total number of features with a minimum of 5 (i.e. each tree is built on 50% of
the total number of features); max features node is fixed to 5; γ is fixed to 1; max depth
is fixed to log2 (logarithm in base 2) of the training sample size as in Liu et al. (2008);
n trees is fixed to 100 as in the previous reference.

The other algorithms in the benchmark are trained with their recommended (default)
hyper-parameters as seen in their respective paper or author’s implementation. See supple-
mentary material Section B for details. The characteristics of the twelve reference datasets
considered here are summarized in Table 1. They are all available on the UCI repository

1. For the sake of reproducibility, all the code used to obtain the numerical results of this section is available
at: https://github.com/ngoix/OCRF
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Table 1: Original datasets characteristics

Datasets nb of samples nb of features anomaly class

adult 48842 6 class ‘> 50K’ (23.9%)
annthyroid 7200 6 classes 6= 3 (7.42%)
arrhythmia 452 164 classes 6= 1 (features 10-14 removed) (45.8%)
forestcover 286048 10 class 4 (vs. class 2 ) (0.96%)
http 567498 3 attack (0.39%)
ionosphere 351 32 bad (35.9%)
pendigits 10992 16 class 4 (10.4%)
pima 768 8 pos (class 1) (34.9%)
shuttle 85849 9 classes 6= 1 (class 4 removed) (7.17%)
smtp 95156 3 attack (0.03%)
spambase 4601 57 spam (39.4%)
wilt 4839 5 class ‘w’ (diseased trees) (5.39%)

Lichman (2013) and the preprocessing is done as usually in the litterature (see supplemen-
tary material Section C).

Table 2: Results for the novelty detection setting (novelty detection framework).
Datasets OneClassRF iForest OCRFsampl. OCSVM LOF Orca LSAD RFC

ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR ROC PR
adult 0.665 0.278 0.661 0.227 NA NA 0.638 0.201 0.615 0.188 0.606 0.218 0.647 0.258 NA NA
annthyroid 0.936 0.468 0.913 0.456 0.918 0.532 0.706 0.242 0.832 0.446 0.587 0.181 0.810 0.327 NA NA
arrhythmia 0.684 0.510 0.763 0.492 0.639 0.249 0.922 0.639 0.761 0.473 0.720 0.466 0.778 0.514 0.716 0.299
forestcover 0.968 0.457 0.863 0.046 NA NA NA NA 0.990 0.795 0.946 0.558 0.952 0.166 NA NA
http 0.999 0.838 0.994 0.197 NA NA NA NA NA NA 0.999 0.812 0.981 0.537 NA NA
ionosphere 0.909 0.643 0.902 0.535 0.859 0.609 0.973 0.849 0.959 0.807 0.928 0.910 0.978 0.893 0.950 0.754
pendigits 0.960 0.559 0.810 0.197 0.968 0.694 0.603 0.110 0.983 0.827 0.993 0.925 0.983 0.752 NA NA
pima 0.719 0.247 0.726 0.183 0.759 0.266 0.716 0.237 0.700 0.152 0.588 0.175 0.713 0.216 0.506 0.090
shuttle 0.999 0.998 0.996 0.973 NA NA 0.992 0.924 0.999 0.995 0.890 0.782 0.996 0.956 NA NA
smtp 0.922 0.499 0.907 0.005 NA NA 0.881 0.656 0.924 0.149 0.782 0.142 0.877 0.381 NA NA
spambase 0.850 0.373 0.824 0.372 0.797 0.485 0.737 0.208 0.746 0.160 0.631 0.252 0.806 0.330 0.723 0.151
wilt 0.593 0.070 0.491 0.045 0.442 0.038 0.323 0.036 0.697 0.092 0.441 0.030 0.677 0.074 0.896 0.631

average: 0.850 0.495 0.821 0.311 0.769 0.410 0.749 0.410 0.837 0.462 0.759 0.454 0.850 0.450 0.758 0.385
cum. train time: 61s 68s NA NA NA 2232s 73s NA

4.2. Results

The experiments are performed in the novelty detection framework, where the training set
consists of inliers only. For each algorithm, 10 experiments on random training and testing
datasets are performed, yielding averaged ROC and Precision-Recall curves whose AUCs
are summarized in Table 2 (higher is better). The training time of each algorithm has
been limited (for each experiment among the 10 performed for each dataset) to 30 minutes,
where ‘NA’ indicates that the algorithm could not finish training within the allowed time
limit. In average on all the datasets, our proposed algorithm ‘OneClassRF’ achieves both
best AUC ROC and AUC PR scores (with LSAD for AUC ROC). It also achieves the
lowest cumulative training time. For further insights on the benchmarks cf. supplementary
material Section A.
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It appears that OneClassRF has the best performance on five datasets in terms of
ROC AUCs, and is also the best in average. Computation times (training plus testing)
of OneClassRF are also very competitive. Experiments in an outlier detection framework
(the training set is polluted by outliers) have also been made (see supplementary material
Section D). The anomaly rate is arbitrarily bounded to 10% max (before splitting data into
training and testing sets).

5. Theoretical analysis

This section aims at recovering (5) from a natural modeling of the one-class framework,
along with a theoretical study of the problem raised by the naive approach.

5.1. Underlying model

In order to generalize the two-class framework to the one-class one, we need to consider
the population versions associated to empirical quantities (1), (2) and (3), as well as the
underlying model assumption. The latter can be described as follows.

Existing Two-Class Model (n, α). We consider a r.v. X : Ω → Rd w.r.t. a
probability space (Ω,F ,P). The law of X depends on another r.v. y ∈ {0, 1}, verifying
P(y = 1) = 1− P(y = 0) = α. We assume that conditionally on y = 0, X follows a law F ,
and conditionally on y = 1 a law G;

X | y = 0 ∼ F, P(y = 0) = 1− α,
X | y = 1 ∼ G, P(y = 1) = α.

Then, considering p(tL|t) = P(X ∈ XtL |X ∈ Xt), p(tR|t) = P(X ∈ XtR |X ∈ Xt), the
population version (probabilistic version) of (1) is

∆itheo(t, tL, tR) = itheo(t) − p(tL|t)itheo(tL)− p(tR|t)itheo(tR). (7)

It can be used with the Gini index itheoG ,

itheoG (t) = 2P(y = 0|X ∈ Xt) · P(y = 1|X ∈ Xt) (8)

which is the population version of (2).
One-Class-Model (n, α). We model the one-class framework as follows. Among the

n i .i .d . observations, we only observe those with y = 0 (the inliers), namely N realizations
of (X | y = 0), where N is itself a realization of a r.v. N of law N ∼ Bin

(
n, (1 − α)

)
.

Here and hereafter, Bin(n, p) denotes the binomial distribution with parameters (n, p). As
outliers are not observed, it is natural to assume that G follows a uniform distribution
on the hyper-rectangle X containing all the observations, so that G has a constant density
g(x) ≡ 1/Leb(X ) on X . Note that this assumption will be removed in the adaptive approach
described below – which aims at maintaining a non-negligible proportion of (hidden) outliers
in every nodes.

Let us define Lt = Leb(Xt)/Leb(X ). Then, P(X ∈ Xt, y = 1) = P(y = 1)P(X ∈ Xt| y =
1) = αLt. Replacing P(X ∈ Xt, y = 0) by its empirical version nt/n in (8), we obtain the
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one-class empirical Gini index

iOCG (t) =
ntαnLt

(nt + αnLt)2
. (9)

This one-class index can be seen as a semi-empirical version of (8), in the sense that it is ob-
tained by considering empirical quantities for the (observed) inlier behavior and population
quantities for the (non-observed) outlier behavior. Now, maximizing the population version
of the impurity decrease ∆itheoG (t, tL, tR) as defined in (7) is equivalent to minimizing

p(tL|t) itheoG (tL) + p(tR|t) itheoG (tR). (10)

Considering semi-empirical versions of p(tL|t) and p(tR|t), as for (9), gives pn(tL|t) = (ntL +
αnLtL)/(nt + αnLt) and pn(tR|t) = (ntR + αnLtR)/(nt + αnLt). Then, the semi-empirical
version of (10) is

pn(tL|t) iOCG (tL) + pn(tR|t) iOCG (tR) =
1

(nt + αnLt)

(
ntLαnLtL
ntL + αnLtL

+
ntRαnLtR
ntR + αnLtR

)
(11)

where 1/(nt + αnLt) is constant when the split varies. This means that finding the split
minimizing (11) is equivalent to finding the split minimizing

IOCG (tL, tR) =
ntLαnLtL
ntL + αnLtL

+
ntRαnLtR
ntR + αnLtR

. (12)

Note that (12) can be obtained from the two-class impurity decrease (4) as described in the
naive approach paragraph in Section 3. In other words, it is the naive one-class version of
(4).

Remark 3 (Direct link with the two-class framework) The two-class proxy of
the Gini impurity decrease (4) is recovered from (12) by replacing αnLtL (resp. αnLtR) by
n′tL (resp. n′tR), the number of second class instances in tL (resp. in tR). When generating
αn of them uniformly on X , αnLt is the expectation of n′t .

As detailed in Section 3.1, this approach suffers from the curse of dimensionality. We can
summarize the problem as follows. Note that when setting n′t := αnLt, the class ratio
γt = n′t/nt is then equal to

γt = αnLt / nt. (13)

This class ratio is close to 0 for many nodes t, which makes the Gini criterion unable
to discriminate accurately between the (hidden) outliers and the inliers. Minimizing this
criterion produces splits corresponding to γt ' 0 in Figure 2: one of the two child nodes,
say tL contains almost all the data.

12
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5.2. Adaptive approach

The solution presented Section 3 is to remove the uniform assumption for the outlier class.
From the theoretical point of view, the idea is to choose in an adaptive way (w.r.t. the
volume of Xt) the number αn, which can be interpreted as the number of (hidden) outliers.
Doing so, we aim at avoiding αnLt � nt when Lt is too small. Namely, with γt defined in
(13), we aim at avoiding γt ' 0 when Lt ' 0. The idea is to consider α(Lt) and n(Lt) such
that α(Lt)→ 1, n(Lt)→∞ when Lt → 0. We then define the one-class adaptive proxy of
the impurity decrease by

IOC−adG (tL, tR) =
ntLα(Lt) · n(Lt) · LtL
ntL + α(Lt) · n(Lt) · LtL

+
ntRα(Lt) · n(Lt) · LtR
ntR + α(Lt) · n(Lt) · LtR

. (14)

In other words, instead of considering one general model One-Class-Model(n, α) defined
in Section 5.1, we adapt it to each node t, considering One-Class-Model(n(Lt), α(Lt))
before computing the best split. When growing the tree, using One-Class-Model(n(Lt),
α(Lt)) allows to maintain a non-negligible expected proportion of outliers in the node to
be splitted, despite Lt becomes close to zero. Of course, constraints have to be imposed
to ensure consistency between these models. Recalling that the number N of inliers is a
realization of N following a Binomial distribution with parameters (n, 1−α), a first natural
constraint on

(
n(Lt), α(Lt)

)
is

(1− α)n =
(
1− α(Lt)

)
· n(Lt) for all t, (15)

so that the expectation of N remains unchanged.

Remark 4 In our adaptive model One-Class-Model(n(Lt), α(Lt)) which varies when we
grow the tree, let us denote by N(Lt) ∼ Bin

(
n(Lt), 1 − α(Lt)

)
the r.v. ruling the number

of inliers. The number of inliers N is still viewed as a realization of it. Note that the
distribution of N(Lt) converges in distribution to P

(
(1 − α)n

)
a Poisson distribution with

parameter (1−α)n when Lt → 0, while the distribution Bin
(
n(Lt), α(Lt)

)
of the r.v. n(Lt)−

N(Lt) ruling the number of (hidden) outliers goes to infinity almost surely. In other words,
the asymptotic model (when Lt → 0) consists in assuming that the number of inliers N we
observed is a realization of N∞ ∼ P

(
(1−α)n

)
, and that an infinite number of outliers have

been hidden.

A second natural constraint on
(
α(Lt), n(Lt)

)
is related to the class ratio γt. As explained

in Section 3.1, we do not want γt to go to zero when Lt does. Let us say we want γt to be
constant for all node t, equal to γ > 0. From the constraint γt = γ and (13), we get

α(Lt) · n(Lt) · Lt = γnt := n′t. (16)

The constant γ is a parameter ruling the expected proportion of outliers in each node.
Typically, γ = 1 so that there is as much expected uniform (hidden) outliers than inliers
at each time we want to find the best split minimizing (14). Equations (15) and (16)
allow to explicitly determine α(Lt) and n(Lt): α(Lt) = n′t/

(
(1− α)nLt + n′t

)
and n(Lt) =(

(1−α)nLt +n′t
)
/Lt. Regarding (14), α(Lt) ·n(Lt) ·LtL =

n′
t
Lt
LtL = n′t

Leb(XtL )
Leb(Xt) by (16) and

α(Lt) · n(Lt) · LtR = n′t
Leb(XtR )

Leb(Xt) , so that we recover (5).
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6. Conclusion

Through a natural adaptation of both (two-class) splitting criteria and majority vote, this
paper introduces a methodology to structurally extend RFs to the one-class setting. Our
one-class splitting criteria correspond to the asymptotic behavior of an adaptive outliers
generating methodology, so that consistency with two-class RFs seems respected. While
no statistical guaranties have been derived in this paper, a strong empirical performance
attests the relevance of this methodology.
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