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Abstract. This paper illustrates how GPU computing can be used to acceler-
ate computational fluid dynamics (CFD) simulations. For sparse linear systems
arising from finite volume discretization, we evaluate and optimize the perfor-
mance of Conjugate Gradient (CG) routines designed for manycore accelerators
and compare against an industrial CPU-based implementation. We also inves-
tigate how the recent advances in preconditioning, such as iterative Incomplete
Cholesky (IC, as symmetric case of ILU) preconditioning, match the require-
ments for solving real world problems.

1 Introduction

A significant gap exists in-between the availability of open-source software libraries for
sparse linear algebra computations on accelerators, and what is actually used in an in-
dustrial environment. An example is the Code_Saturne [5] package, a general purpose
Computational Fluid Dynamics (CFD) software developed and used at Electricité de
France (EDF). Among the main reasons behind this situation is the limited experience
of how open-source packages, often coming from an academic environment, fit the de-
mands of an industrial setting. Another concern is whether the accelerator hardware
specifications, in particular the limited memory bandwidth of graphics processing units
(GPUs), are suitable for real world applications. In this position paper, we address these
two concerns by evaluating the performance of different implementations of the Con-
jugate Gradient (CG) method for two benchmarks with a finite volume origin. As the
iterative solution process plays a key role in the simulation algorithm — it can account
for up to 80% of the computational time in Code_Saturne — the performance improve-
ments are quickly reflected in the overall runtime of the CFD simulation. Thus the main
contribution of this work is to show that the use of GPU-enabled sparse linear algebra
libraries in the framework of industrial applications allows for significant performance
improvements with minimal implementation effort.

The rest of the paper is organized as follows. In Section 2 we provide some back-
ground about the industrial code, the software libraries, and the benchmarks that we
consider. Section 3 reviews some strategies known to enhance the performance of itera-
tive solvers on GPUs. This includes the optimization of the sparse matrix vector product
(SpMV) which typically dominates the performance of Krylov solvers such as CG, and
the use of kernel fusion for enhanced data locality. We also review some of the latest



ideas on preconditioning techniques suitable for fine-grained hardware parallelism. In
Section 4, we report some experimental results obtained using the different software
packages to solve the CFD problems. We conclude in Section 5.

2 Problem setting and software framework

Code_Saturne [5] is a general purpose Computational Fluid Dynamics (CFD) software
package developed and used at Electricité de France (EDF). It is based on a co-located
finite volume approach, using a fractional time step method. This allows for any type
of polyhedral mesh, though best results are usually obtained with regular, hexahedral
meshes. The flux discretization uses a 2-point scheme, with contributions due to mesh
non-orthogonalities added at the right-hand side and solved through sub-iterations. The
matrix graph is thus based on face to cell adjacencies, leading to very sparse matri-
ces. For a scalar variable on a hexahedral mesh, we have 7 non-zero entries per row
(6 face neighbors + 1 diagonal). For a tetrahedral mesh, this even goes down to 5 non-
zero entries per row. The benchmark problems we consider in this paper originate from
Code_Saturne. As the problems are all symmetric and positive definite, they can be
solved efficiently with the CG iterative solver. Enhancing the CG with a Jacobi precon-
ditioner (diagonal scaling) typically improves both convergence and performance. We
note that, in Code_Saturne, parallelism is handled via MPI and OpenMP. However, in
our evaluation, we limit the parallelism to OpenMP, as we are considering single node
performance only.

The CUsparse [10] software library is a collection of routines for sparse linear
algebra computations on NVIDIA GPUs. It provides the main building blocks, such
as the sparse matrix vector product kernel, matrix conversion routines, and incomplete
LU (ILU) preconditioning techniques. Some basic iterative solvers such as CG are also
available. Developed by NVIDIA, this library typically achieves very good performance
on NVIDIA architectures.

MAGMA [8] is an accelerator-focused linear algebra library developed at the Uni-
versity of Tennessee. It provides backends for NVIDIA GPUs, Intel’s Xeon Phi many-
core accelerators (MIC), and any OpenCL-compatible system such as AMD GPUs. In
addition being well-known for the dense linear algebra routines, MAGMA also contains
a large variety of solvers, preconditioners, and eigensolvers for sparse linear systems.
Comprehensive support for NVIDIA GPUs is provided, some basic routines and func-
tionalities are also available in OpenCL and for the Xeon Phi.

ViennaCL [11] is a free open-source linear algebra and solver library written in
C++. The functionality provided by ViennaCL overlaps significantly with the function-
ality provided by MAGMA. However, ViennaCL provides a unified interface for three
fully supported compute backends using CUDA (for NVIDIA GPUs), OpenCL (for
cross-vendor GPU-support), and OpenMP (for multi-core CPUs). Also, in contrast to
MAGMA, the compute backends in ViennaCL can be switched at runtime.

In the experimental evaluation, we consider two benchmarks from the EDF appli-
cation:

— The bundle problem is generated using one regular hexahedral mesh. The matri-
ces are built from a matrix of size 16384 (average nnz per row is 7) for which we



duplicate the initial mesh to obtain larger systems and study the scalability. Fig. 1
(left) shows the geometry of the domain in the numerical simulation.

— The bora problem originates from a mostly hexahedral mesh, but includes face
subdivisions at non-conformal mesh joining interfaces. As a result, most matrix
rows have 7 non-zero entries, but some rows have a higher number of non-zero
entries. In this benchmark, we solve a linear system of size 10196476 and the ge-
ometry of the compute domain is shown in Fig. 1 (right).

For both benchmarks, the bundle and bora, the linear system to be solved is
extracted from the Laplacian operator within the pressure correction step, with a right-
hand side corresponding to the flow initialization. The matrix structure does not change
over time, but the coefficients may change whenever the fluid properties vary. For these
test matrices, we assume constant temperature and constant fluid properties, which
means that the matrix coefficients remain constant.
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Fig. 1: Domain representation of bundle (left) and bora (right). The middle figure is

a close-up of the upper part of the right figure. The discretization in this part is different
from the rest of the domain, leading to a sparse matrix with an irregular pattern.

3 Sparse linear algebra on GPUs

The performance of Krylov methods like the Conjugate Gradient is generally bounded
by the memory bandwidth of the hardware architecture used. Hence, optimizing the
performance for these solvers is usually equivalent to optimizing the access to the GPU
main memory. The implication is twofold: reducing the total amount of data that is
read and written to the main memory, and organizing the memory access as coalescent
reads [9]. As the CG and its preconditioned variant arise as a combination of matrix-
vector and vector-operations, the optimization for coalescent memory reads boils down
to the sparse matrix vector product. There exists extensive work on optimizing storage
format and sparse matrix vector performance for GPUs, and in this work we focus on
using the CSR, ELL, and SELLP formats, known to provide good performance [4].
To reduce the memory traffic, it is necessary to use algorithm-specific kernels that ap-
ply kernel-fusion to the basic linear algebra operations whenever possible [1]. More
precisely, consecutive vector operations sharing some of the input or output data are
merged into a single kernel, such that data, once loaded into the fast multiprocessor
memory, is reused. See [2] for details on how this is achieved for the Conjugate Gradi-
ent solver used in this study. The Magma library implementations feature kernel fusion



for the basic CG as well as the preconditioned variant. In ViennaCL, the concept of
kernel fusion is applied to the basic CG, not yet for the preconditioned variant. This
optimization will be included in a future release, which will bring the performance of
ViennaCL closer to that of MAGMA for the preconditioned CG as well. Beside Jacobi,
another preconditioner suitable for a large variety of problems is an incomplete LU fac-
torization [12]. A drawback of ILU preconditioners is the sequential nature of both the
preconditioner generation via Gaussian-Elimination, and the sparse triangular solves in
the preconditioner application. Also, approaches using level-scheduling or multi-color
ordering for enhancing the concurrency often fail to exploit the fine grained parallelism
provided by manycore architectures. Given this background, the recently proposed iter-
ative approach to ILU preconditioning has attracted much attention [6, 7]. On GPUs in
particular, the forward and backward substitutions traditionally used to solve the sparse
triangular systems in every outer Krylov iteration are expensive. Replacing those with
a few Jacobi sweeps can accelerate the overall solution process significantly [3]. Vien-
naCL and MAGMA both provide an iterative ILU, and we include this option in the ex-
perimental evaluation although, the Code_Saturne reference software does not contain
an ILU preconditioner. In the experiments, as we are dealing with symmetric positive
definite systems, we use the symmetric variant of ILU, the Incomplete Cholesky (IC).

4 Experimental results

In this section, we analyze the convergence and performance of the Conjugate Gradi-
ent method using different preconditioners when solving the real-world CFD bench-
marks previously described. The solvers are taken from different software libraries:
Code_Saturne version 4.0.0 is compared against MAGMA release 2.0.0 and ViennaCL
version 1.7.0. The GPU implementations are based on CUDA and CUsparse version
7.5 [10], and use an NVIDIA Tesla K40c GPU. The default block size is 256, which is
also the size of the matrix slices in the SELLP format. Code_Saturne is using a 6-core
Intel Xeon E5-2620 (Ivy Bridge) with hyperthreading enabled. In our experiments, we
use 8 or 10 OpenMP threads, whichever provides the best performance.

In Figure 2, we analyze how well the different CG implementations scale with re-
spect to the problem size. As described in Section 2, we replicate the bundle problem
to generate linear systems of larger dimensions. For a comprehensive evaluation, we use
the MAGMA and ViennaCL solvers with different matrix storage formats. The intention
is to identify the most suitable format for this problem. The right side shows the runtime
of 100 iterations using a Jacobi-preconditioned CG (JCG). In this case, the precondi-
tioner setup time is included as well. Note that CUsparse does not contain a pre-coded
JCG implementation. ViennaCL only allows for the use of the CSR format, and does
not provide a JCG version featuring kernel fusion in version 1.7.0. This explains the
larger difference between the JCG runtime for ViennaCL and MAGMA when using the
CSR format. As expected, SELLP again gives the best performance. A Jacobi precon-
ditioner increases the pressure on the memory bandwidth, which is the performance-
limiting factor for the GPU implementations. Nevertheless, the MAGMA JCG using
SELLP format solves the largest problem about 8 times faster than Code_Saturne. For
the small problems, the multicore JCG should be preferred. As SELLP gives also the
best performance for the bora problem, we choose this format for the CG implementa-



tions of MAGMA and ViennaCL. On the left side, we show the time needed to execute
100 CG iterations using different combinations of software and matrix formats. For the
GPU-based solvers (CUsparse, ViennaCL, MAGMA), the time needed for transferring
the matrix and vectors between host and GPU is also included. 100 iterations are typi-
cally insufficient for convergence (also for this problem), which emphasizes the impact
of these data transfers.
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Fig. 2: Solver execution time for 100 iterations of different implementations of CG (left)
and JCG (right). The target problem is the replicated bundle. Solid lines (with circle
marker) are for CSR format , dotted lines (with star marker) for SELLP.

For small problems, the overhead of the data transfers plays an important role. Also,
the parallel compute power of the GPU cannot be exploited, as the size of the linear sys-
tem is smaller than the parallelism provided. For these problems, Code_Saturne is much
faster than all GPU codes. With increasing problem size, the runtime of Code_Saturne
grows much faster than for the GPU implementations, and for the largest problem (2
million unknowns), ViennaCL, CUsparse ,and MAGMA run between 5 and 10 times
faster than the multicore CG. NVIDIA’s CUsparse implementation is highly optimized,
and its performance for the CSR format is unmatched by either MAGMA or ViennaCL.
At the same time, it does not support the ELL and the SELLP matrix format, which
gives much better performance for this class of test matrices. For MAGMA and Vien-
naCL, using SELLP gives the fastest CG execution time. The higher backend flexibility
of ViennaCL comes along with some performance decrease. The MAGMA implemen-
tation of CG is optimized in CUDA, and using the SELLP format in this routine is the
overall winner for larger problems (15000 unknowns).

In Figure 3, we compare the runtime for the different software libraries and solver
settings when solving the bora problem. Notice that, in contrast to Figure 2, we do not
show the execution time for a fixed number of iterations, but show the timings of the
preconditioner setup phase, the data transfer, and the iteration phase when solving the
linear system for a relative residual stopping criterion of 10~1°. This implies that us-
ing a Jacobi preconditioner improves convergence, but makes every CG iteration more
expensive. The validity of the results is ensured as the iteration counts are consistent
across the different software libraries.
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Fig. 3: Execution time of different implementations of CG and JCG for bora.

Despite the additional cost of the preconditioner setup, all implementations bene-
fit from using a Jacobi preconditioner. The execution time for Code_Saturne improves
by a factor of 4. Similarly, the ViennaCL and MAGMA JCG solve bora significantly
faster than the corresponding CG implementations. The acceleration is smaller for Vi-
ennaCL, as the JCG is not enhanced with kernel fusion in the current release. All the
GPU implementations are significantly faster than the multicore implementation. The
overall winners are the MAGMA implementations for CG and JCG. Compared to the
multicore Code_Saturne implementation, MAGMA improves the execution times of
CG and JCG from 34.81s to 6.36s and from 8.64s to 1.61s, respectively. This includes
the expensive preconditioner setup phase. In a scenario where a sequence of similar
problems has to be solved, the reuse of a generated preconditioner would provide even
larger benefits.

Although not available in Code_Saturne, we want to investigate whether the recent
advances in iterative ILU preconditioning are suitable for the given real-world prob-
lems. ILU preconditioners are well-known to significantly reduce the iteration count
for a large range of problems, and replacing the exact sparse triangular solves in the
preconditioner application with approximate triangular solves can also make incom-
plete factorization preconditioners attractive for GPUs [3].

In Figure 4, we compare iteration count (left) and execution time (right) for solving
the bora problem with different preconditioners. Although also available in ViennaCL,
in this experiment we focus on the MAGMA software package, as we exclusively target
NVIDIA GPUs, and previously identified the implementations in MAGMA as perfor-
mance winners for this problem. As previously mentioned, despite the ILU-notation,
we internally use an incomplete Cholesky factorization, the symmetric variant of the
incomplete LU factorization [12].

The left side shows the iteration count needed for the relative residual stopping cri-
terion of 1071 when using a plain CG, a Jacobi preconditioner (JCG), an exact ILU
preconditioner, or the variant using approximate triangular solves. The incomplete fac-
torization preconditioners are generated as level-ILU [12] using different fill-in levels.
For simplicity, the factorizations themselves are generated as exact factorizations, de-
spite MAGMA also providing the functionality for iterative ILU-factor generation [6].
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Fig. 4: CG iteration count (left) and execution time (right) for solving bora with dif-
ferent preconditioner configurations available in the MAGMA library. For the ILU pre-
conditioner, solid lines are ILU(0), dashed lines are ILU(1), dotted lines are ILU(2).
Exact ILU uses exact triangular solves based on level scheduling, approximate ILU
uses different numbers of Jacobi sweeps.

Using a Jacobi preconditioner decreases the number of iterations significantly, from
547 to 90. An exact factorization preconditioner provides even larger convergence im-
provement, reducing the iteration count to 26, 18, and 15, for ILU(0), ILU(1), and
ILU(2), respectively. Using approximate triangular solves requires some additional it-
erations of the outer CG solver, but depending on the fill-in level, 3-6 sweeps in the
approximate triangular solves are sufficient to bring the CG iteration count close to the
exact ILU.

More relevant than the iteration count is the execution time, as this is the metric
of interest when optimizing CFD simulations. The right side of Figure 4 shows the
corresponding execution time of the different configurations. Despite the higher itera-
tion count, approximate triangular solves accelerate the ILU-preconditioned CG. Also,
the lower iteration count for higher fill-in levels is not reflected in execution time, and
despite the significantly lower iteration count (15 vs. 547), the ILU(2) using exact tri-
angular solves needs about 8 times longer than the unpreconditioned CG. This comes
partly from the higher cost of the preconditioner setup and data transfers. Also, higher
fill-in levels make the sparse triangular solves (exact and approximate) more expen-
sive. For using an incomplete factorization preconditioner, the runtime winner is the
setting of an ILU(0) and two Jacobi sweeps in the approximate triangular solves. This
configuration needs 3.55s for the preconditioner setup, 0.37s for the data transfers, and
2.38s for the PCG iterations. In the execution time of the iterations, 1.97s are needed
for the approximate triangular solves. Due to the expensive preconditioner setup, the
overall performance hardly matches the performance of the unpreconditioned CG. Us-
ing the iterative ILU generation would improve the results, but real benefits can only
be expected when solving a sequence of linear systems that allow for reusing a gener-
ated preconditioner. In the end, it is the Jacobi-preconditioned CG that gives the best
performance when solving the bora problem.



S Summary and future work

In this position paper, we evaluated whether the available open-source software libraries
for sparse linear algebra computations on GPUs are suitable for real-world problems
arising from an industrial application. For two CFD simulations, we compared the per-
formance of the solvers from Code_Saturne, an in-house developed multicore compu-
tational fluid dynamics code from EDF, to that of CUsparse, MAGMA and ViennaCL.
The results reveal the superiority of Code_Saturne for small problems. For large prob-
lems, the GPU codes run up to 5x faster. In the future, we will address sequences of
linear systems and evaluate the benefits of reusing a preconditioner for problems with
similar properties. We will also address non-symmetric problems, where the benefits
of the Jacobi preconditioner are typically smaller, and the iterative ILU preconditioner
may become the method of choice.
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