A. Abdulle, W. E. , B. Engquist, and E. Vanden-eijnden, The heterogeneous multiscale method, Acta Numerica, vol.21, pp.1-87, 2012.
DOI : 10.1017/S0962492912000025

URL : https://hal.archives-ouvertes.fr/hal-00746811

G. Allaire and R. Brizzi, A Multiscale Finite Element Method for Numerical Homogenization, Multiscale Modeling & Simulation, vol.4, issue.3, pp.790-812, 2005.
DOI : 10.1137/040611239

M. Cicuttin, A. Ern, and S. Lemaire, A Hybrid High-Order method for highly oscillatory elliptic problems

M. Cicuttin, D. A. Di-pietro, and A. Ern, Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming, Journal of Computational and Applied Mathematics
DOI : 10.1016/j.cam.2017.09.017

URL : https://hal.archives-ouvertes.fr/hal-01429292

B. Cockburn, D. A. Di-pietro, and A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods, ESAIM: Mathematical Modelling and Numerical Analysis, vol.50, issue.3, pp.635-650, 2016.
DOI : 10.1007/978-3-642-22980-0

URL : https://hal.archives-ouvertes.fr/hal-01115318

D. A. Di-pietro, A. Ern, and S. Lemaire, An arbitrary-order and compactstencil discretization of diffusion on general meshes based on local reconstruction operators, Comput. Meth. Appl. Math, vol.14, issue.4, pp.461-472, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00978198

D. A. Di-pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Computer Methods in Applied Mechanics and Engineering, vol.283, pp.1-21, 2015.
DOI : 10.1016/j.cma.2014.09.009

URL : https://hal.archives-ouvertes.fr/hal-00979435

Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods -Theory and Applications, of Surveys and Tutorials in the Applied Mathematical Sciences, 2009.

Y. Efendiev, R. Lazarov, and K. Shi, A Multiscale HDG Method for Second Order Elliptic Equations. Part I. Polynomial and Homogenization-Based Multiscale Spaces, SIAM Journal on Numerical Analysis, vol.53, issue.1, pp.342-369, 2015.
DOI : 10.1137/13094089X

URL : http://arxiv.org/pdf/1310.2827

C. , L. Bris, F. Legoll, and A. Lozinski, MsFEMàMsFEM`MsFEMà la Crouzeix?Raviart for highly oscillatory elliptic problems, Chinese Annals of Mathematics, Series B, vol.34, issue.1, pp.113-138, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00789102

L. Mu, J. Wang, and X. Ye, A weak Galerkin generalized multiscale finite element method, Journal of Computational and Applied Mathematics, vol.305, pp.68-81, 2016.
DOI : 10.1016/j.cam.2016.03.017

D. Paredes, F. Valentin, and H. M. Versieux, On the robustness of multiscale hybrid-mixed methods, Mathematics of Computation, vol.86, issue.304, pp.525-548, 2017.
DOI : 10.1090/mcom/3108

URL : https://hal.archives-ouvertes.fr/hal-01394241