A continuum finite strain formulation of the equilibrium gap regularizer for finite element image correlation
Martin Genet, Lik Chuan Lee, Sebastian Kozerke

To cite this version:
Martin Genet, Lik Chuan Lee, Sebastian Kozerke. A continuum finite strain formulation of the equilibrium gap regularizer for finite element image correlation. 13e Colloque National en Calcul des Structures, Université Paris-Saclay, May 2017, Giens, Var, France. hal-01661810

HAL Id: hal-01661810
https://hal.archives-ouvertes.fr/hal-01661810
Submitted on 12 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A continuum finite strain formulation of the equilibrium gap regularizer for finite element image correlation

M. Genet¹, L. C. Lee², S. Kozerke³

¹ Laboratoire de Mécanique des Solides, École Polytechnique, Palaiseau (martin.genet@polytechnique.edu)
² Michigan State University, East Lansing, USA (lclee@egmsu.edu)
³ ETH Zurich, Switzerland (kozerke@biomed.ee.ethz.ch)

Résumé —
This abstract briefly describes a novel continuum finite strain formulation of the equilibrium gap principle, introduced in (Claire, Hild et Roux, 2004) at the discrete level for linearized elasticity, used as a regularizer for finite element-based image correlation problems. Consistent linearization and finite element discretization is provided. The method is implemented using FEniCS & VTK, in a freely available python library. The equilibrium gap constraint regularizes the image correlation problem, even in presence of noise, and without affecting strain measurement.

Mots clés — Finite elements, Image Correlation, Equilibrium Gap Regularization, Hyperelasticity.

1 Context

Image processing, in particular image correlation/registration, is playing an increasing role in many domains such as mechanical (Bornert et al., 2009) and biomedical (Tobon-Gomez et al., 2013; Lee et al., 2014) engineering. Despite important progress in the past decades, robustness, efficiency and precision of existing methods and tools must still be improved to translate them into medical and engineering applications. This abstract briefly describes a novel continuum finite strain formulation of the equilibrium gap principle, introduced in (Claire, Hild et Roux, 2004) at the discrete level for linearized elasticity and further developed for instance in (Leclerc et al., 2010), as a regularizer for finite element-based image correlation problems.

2 Problem

Let us denote \(I_0 \) & \(I_t \) as the intensity fields of two images representing an object occupying the domains \(\Omega_0 \) & \(\Omega_t \) in the reference and deformed states, respectively. The problem is to find the mapping \(\varphi \) between \(\Omega_0 \) & \(\Omega_t \), or equivalently the displacement field \(U = \varphi(X) = X + U(\varphi(X)) \), which is reformulated as a minimization problem written in the reference configuration :

\[
\text{find } U = \arg\min_{U^*} \left\{ J^2(U^*) = \frac{1 - \beta}{2} \int_{\Omega_0} \left(I_t \circ \varphi^* - I_0 \right)^2 d\Omega_0 + \beta \psi_{\text{reg}}(U^*) \right\},
\]

where \(\psi_{\text{reg}} \) is required to regularize the otherwise ill-posed problem, and \(\beta \) is the regularization strength. Many regularizers have been proposed, including fluid (Christensen, Rabbitt et Miller, 1996) and hyperelastic (Veress, Gullberg et Weiss, 2005; Phatak et al., 2009; Genet, Stoeck et al., 2016) constraints. Hyperelastic warping consists in using the strain energy potential directly as regularizer :

\[
\psi_{\text{reg, hyper}} = \int_{\Omega_0} \rho_0 \Psi,
\]

thus penalizing strain. Here we propose an alternate regularizer, which essentially penalizes any deviation from the solution of an hyperelastic body in equilibrium with arbitrary external loads :

\[
\psi_{\text{reg, equil}} = \frac{1}{2} \left\| \text{div}(P) \right\|_{L^2(\Omega_0)}^2,
\]

where \(P = \frac{d\rho_0}{d\varphi} \) is the first Piola-Kirchhoff stress tensor. However, we discretize Problem (1) using standard Lagrange elements, so that \(P \) belongs to \(L^2(\Omega_0) \) but not \(H(\text{div};\Omega_0) \). Thus, the
following equivalent norm is used instead:

$$\psi^{\text{reg,\,equil}} = \sum_{K} \frac{1}{2} \left\| \text{div} (P) \right\|_{L^2(K)}^2 + \sum_{F} \frac{1}{2h} \left[\left[\frac{P \cdot N}{L^2(K)} \right] \right]^2,$$

where K denotes the set of finite elements, F the set the interior faces, h a characteristic length of the mesh. As strain energy function, for both hyperelastic and equilibrated warping we use the classical Ciarlet-Geymonat (CIARLET ET GEYMONAT, 1982) potential:

$$\rho_0 \psi = \frac{K}{2} (J^2 - 1 - \ln (J)) + \frac{\mu}{2} (I_c - 3 - 2 \ln (J)),$$

where κ & μ denote bulk and shear modulus, $J = \det (F)$, $I_c = \text{tr} (C)$, $C = \frac{1}{2} F \cdot F$, $F = 1 + \text{grad} (U)$, and which makes sense for arbitrary deformation levels (LE TALLEC, 1994). In practice, we use a unit Young’s modulus and null Poisson’s ratio, so that $\kappa = \frac{1}{2}$ & $\mu = \frac{1}{2}$, the strength of the regularization being set by the parameter β.

3 Variational formulation

After derivation and linearization, Problem (1) becomes:

$$\text{find } \Delta U / (1 - \beta) a^{\text{cor}} (U; \Delta U, V) + \beta a^{\text{reg}}(U; \Delta U, \nabla V) = (1 - \beta) b^{\text{cor}} (U; V) + \beta b^{\text{reg}}(U; V) \forall V,$$

where (without image hessian terms)

$$\begin{cases}
\begin{align*}
\bar{a}^{\text{cor}} (U; \Delta U, V) & = \int_{\Omega_0} \left(\nabla I_1 \cdot \psi (U) \right) \cdot \Delta U \cdot \left(\nabla I_1 \cdot \psi (U) \right) \cdot V \, d\Omega_0 \\
\bar{b}^{\text{cor}} (U; V) & = \int_{\Omega_0} \left(\left(I_1 \cdot \psi (U) \right) - I_0 \right) \cdot \left(\nabla I_1 \cdot \psi (U) \right) \cdot V \, d\Omega_0
\end{align*}
\end{cases}$$

In case of hyperelastic warping, one has:

$$\begin{cases}
\bar{a}^{\text{reg,\,hyper}} (U; \Delta U, V) = \int_{\Omega_0} \frac{\partial \rho_0 W}{\partial E_{\text{m}}} (U) : \delta E (U, \Delta U) + \delta E (U, \Delta U) : \frac{\partial^2 \rho_0 W}{\partial E_{\text{m}}^2} (U) : \delta E (U, V) \, d\Omega_0 \\
\bar{b}^{\text{reg,\,hyper}} (U; V) = \int_{\Omega_0} \frac{\partial \rho_0 W}{\partial E_{\text{m}}} (U) : \delta E (U, V) \, d\Omega_0
\end{cases}$$

And in case of equilibrated warping, one has:

$$\begin{cases}
\bar{a}^{\text{reg,\,equil}} (U; \Delta U, V) = \sum_{K} \int_{K} \frac{\partial \rho_0 W}{\partial E_{\text{m}}} (U) + F (U) \cdot \left(\frac{\partial^2 \rho_0 W}{\partial E_{\text{m}}^2} (U) : \delta E (U, \Delta U) \right) \right) \cdot \frac{\partial \rho_0 W}{\partial E_{\text{m}}} (U) + F (U) \cdot \left(\frac{\partial^2 \rho_0 W}{\partial E_{\text{m}}^2} (U) : \delta E (U, \Delta U) \right) \right)
\end{cases}$$
4 Resolution

Problem (5) is discretized using continuous Galerkin elements, and solved in FEniCS. Integration of image terms (6) is done using VTK. Code is freely available at https://bitbucket.org/mgenet/dolfin_dic.

Since the resolution has proven unstable on in vivo images (especially because (i) in current VTK implementation, interpolated gradients are not the actual gradients of the interpolated images; and (ii) the mechanical term is very steep), a gradient-free golden section line search has been implemented, where the initial interval is taken as $\left[\frac{1-\phi}{2-\phi}, \frac{1}{2-\phi}\right]$ (with $\phi = \frac{1+\sqrt{5}}{2}$) such that the two initially tested values are 0 & 1.

5 Results on synthetic data

Here we consider the simple problem of a uniformly deforming square domain, and study the influence of the regularization strength β on the computed strain. Figure 1 shows the initial and final images with superimposed undeformed and deformed mesh, for three levels of noise, as well as the final measured strain for both methods.

In case of hyperelastic warping, if the regularization strength is close to 1, the mesh does not deform. And when regularization strength decreases, measured strain tends to converge toward the exact value. For noise-free images, it does converge exactly. For noisy images, there is an optimum where the mean strain is close to the exact solution and standard deviation is still limited.

Conversely, with equilibrated warping, the registration is almost perfect, over a wide range of regularization strengths, even on noisy images.

Figure 1 – Results on synthetic data. Left : hyperelastic (white mesh) vs. equilibrated (black mesh) warping, for a regularization strength of 0.1. Right : influence of regularization strength on hyperelastic (top) and equilibrated (bottom) warping strains. Ground truth is -15% homogeneous strain.

1. https://fenicsproject.org
6 Results on in vivo images

Here we consider 3DCSPAMM (STOECK et al., 2012) cardiac magnetic resonance images of a healthy human subject. Pipeline for image acquisition and segmentation has been described in (GENET, LEE, NGUYEN et al., 2014; GENET, LEE, GE et al., 2015). Figure 2 shows the resulting strains computed by both methods. Main features of left ventricular deformation are well captured, including radial thickening as well as circumferential and longitudinal shortening, though radial strains are somewhat smaller than expected, as has already been noted in (TOBON-GOMEZ et al., 2013). Equilibrated warping produces larger absolute strain values than hyperelastic warping, closer to expected values (TOBON-GOMEZ et al., 2013).

![Figure 2](image1)

Figure 2 – Results on in vivo data, hyperelastic (red) vs. equilibrated (blue) warping. Top: Sequence of 3D CSPAMM images with superimposed mesh. Bottom: Sequence of local strain components.

7 Conclusion

Equilibrated warping is a powerful method for non-rigid registration of images involving large deformation. The equilibrium gap constraint regularizes the image correlation problem, even in presence of noise, and without affecting strain measurement. The method has been implemented based on FEniCS and VTK, providing an efficient tool for 2D & 3D images registration.

Références

