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Coriolis effect and the attachment of the leading
edge vortex

T. Jardin†
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31055 Toulouse CEDEX 4, France

The role of the Coriolis effect on the attachment of the leading edge vortex (LEV)
is investigated. Toward that end, the Navier–Stokes equations are solved in the
non-inertial reference frame of a high angle of attack α rotating wing with the
Coriolis term being artificially tuned. Reynolds numbers in the range Re ∈ [100; 750]
are considered to identify the interplay between Coriolis and viscous effects. Similarly,
artificial tuning of the centrifugal term is achieved to identify the interplay between
Coriolis and centrifugal effects. It is shown that (i) the Coriolis effect is the key
element in LEV stability for Re > 200, (ii) viscous effects are the key element for
Re < 200 and (iii) centrifugal effects have a marginal role. The Coriolis effect is
found to promote spanwise flow in the core and behind the LEV, which is known to
promote outboard vorticity transport and presumably contributes to stabilizing the aft
boundary layer. These mechanisms of LEV stabilization have increased authority as
α decreases.

Key words: low-Reynolds-number flows, swimming/flying, vortex flows

1. Introduction

At low angle of attack, the flow past a translating wing is attached, generating a
steady lift. This attached flow regime is the preferred one for conventional aircraft.
At high angle of attack, above the critical static stall angle, the flow separates at the
leading edge and rolls up into a leading edge vortex (LEV). In the absence of three-
dimensional effects, and above a critical Reynolds number, this LEV is unstable in
the sense that it is shed into the wake at some point. On the contrary, at similar high
angle of attack and similar Reynolds number, the LEV can be stabilized under the
influence of three-dimensional effects. It has been shown that three-dimensional effects
arising from the tip condition significantly affect the separated flow over a portion
of the wing roughly extending from the wing tip to approximately 1.5 chords away
from it (Ringuette, Milano & Gharib 2007; Jardin, Farcy & David 2012) and that the
LEV can be stabilized on low aspect ratio wings where these three-dimensional effects
become prominent (Taira & Colonius 2009).
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In the case of a rotating wing, it is known that the LEV can reach a stable state for
higher aspect ratios than those ensuring LEV stability on a translating wing (e.g. Kruyt
et al. 2015). That is, some other three-dimensional effects than those arising from the
tip condition must be responsible for LEV stability. These three-dimensional effects
may arise from (i) spanwise gradients in wing speed and (ii) rotational accelerations.

Spanwise gradients in wing speed are responsible for the development of a spanwise
flow in the core of the LEV (Jardin & David 2014). Through an analogy with
mechanisms of LEV stabilization on Delta wings, Ellington et al. (1996) and van
den Berg & Ellington (1997) suggest that the resulting spanwise flow tends to
drain vorticity out of the LEV core, hence balancing the production of vorticity at
the leading edge and preventing the LEV from reaching a critical size that would
trigger its shedding. Various studies explore this hypothesis using translating swept
wings (Lentink & Dickinson 2009; Beem, Rival & Triantafyllou 2012). In such
cases, the oncoming flow has a velocity component that is collinear to the LEV
axis, potentially contributing to vorticity drainage towards the wing tip. The collinear
velocity component increases as the sweep angle increases, suggesting that high
sweep angles are conducive to LEV attachment. Nonetheless, experiments reported
by Lentink & Dickinson (2009) and Beem et al. (2012) demonstrate that the LEV is
shed after a short distance of travel, even for high sweep angles. Thus, the analogy
introduced by Ellington et al. (1996) and van den Berg & Ellington (1997) to explain
stable LEV attachment on revolving wings is not strictly valid. This is not to say
that spanwise flow has no influence on LEV attachment. Recently, Jardin & David
(2014) explore the hypothesis under a new perspective. The authors analyse the LEV
that develops on a wing embedded in a spanwise varying oncoming flow. They show
that the attachment of the LEV is promoted by the spanwise flow that develops due
to spanwise gradients in wing speed, but that the LEV still tends to deviate from a
stable state.

Therefore, it is believed that LEV stabilization on revolving wings derives from
rotational accelerations. Lentink & Dickinson (2009) first formulated this hypothesis,
suggesting that the Rossby number is the relevant scaling parameter to describe
LEV stability. Recent work by Wolfinger & Rockwell (2014) provides a detailed
investigation on the relationship between the LEV structure and the Rossby number.
Together with general observations made by Kruyt et al. (2015), findings by Wolfinger
& Rockwell (2014) support the hypothesis that rotational accelerations mediate LEV
stability on revolving wings. Moreover, by numerically solving the Navier–Stokes
equations in the non-inertial reference frame of the wing, with and without Coriolis
and centrifugal terms, Jardin & David (2015) further suggest that the Coriolis effect
is the key ingredient in LEV stability.

Building on this last hypothesis, the present paper clarifies the role of the Coriolis
acceleration on the attachment of the LEV. Numerical simulations of the flow
past high angle of attack revolving wings are performed for different Reynolds
numbers, with the Coriolis acceleration being artificially reduced or increased in the
Navier–Stokes equations. A relatively high aspect ratio (9.5) is considered to allow
identifying the spanwise transition of the LEV from a stable to an unstable state
in the absence of any significant tip effects, which is different to most bio-oriented
studies that usually consider low aspect ratio wings, as found in nature. This set-up
ultimately leads to a quantified relationship between the spanwise location of the
transition of the LEV from a stable to an unstable state and the strength of the
Coriolis acceleration. Along with the analysis of relevant flow quantities, such as
spanwise velocities and pressure gradients, this quantification provides insight into
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FIGURE 1. (Colour online) Geometrical parameters of the rotating wing (a) and
computational domain (b). Not scaled for the sake of clarity.

the mechanisms that drive the attachment of the LEV on revolving wings. Because a
relatively high aspect ratio is considered, the results have outcomes that go beyond
the scope of bio-inspired flight and can help defining enhanced low-order models
(e.g. blade element models) taking into account rotational effects or open the path
towards the definition of new control strategies that mimic Coriolis effect to delay
stall.

2. Problem set-up
The problem consists of a finite-span rectangular planform wing that impulsively

rotates about an axis that is perpendicular to its span and that intersects the spanwise
wing axis located at mid-chord (figure 1a).

The wing has a radius R= 10c and an aspect ratio AR= b/c= (R− rco)/c= 9.5,
where c, b and rco are the lengths of the wing chord, wing span and root cutout
respectively (figure 1a). The wing profile is a 4 % thickness flat plate with sharp
leading and trailing edges. Unless otherwise indicated, the wing rotates through a
revolution angle φ = 180◦ at an angle of attack α = 45◦, far beyond the static stall
angle of the profile (cases with α = 15◦ and α = 30◦ are also briefly addressed). It
produces a thrust, T , and a rotational torque along the rotation axis, Q.

The wing is embedded in a cylindrical computational domain of diameter 60c and
length 40c (figure 1b). Note that for future purposes that go beyond the scope of
the present study, a cylindrical hole of diameter 0.25c runs through the domain along
the rotation axis – it was verified that such a hole has a negligible influence on the
results presented thereafter. The flow in the domain is computed by directly resolving
the incompressible Navier–Stokes equations in the non-inertial reference frame of the
wing:

∂u
∂t
+ u · ∇u=− 1

ρ
∇p−Ω × (Ω × r)− 2Ω × u+ ν∇2u, (2.1)

using a finite volume method. Momentum and continuity equations are uncoupled
and solved using a predictor–corrector approach. A co-located variable arrangement
and a Rhie-and-Chow-type pressure–velocity coupling combined with a SIMPLE-type
algorithm are used (Rhie & Chow 1993; Ferziger & Peric 2002). Second-order
schemes are employed for both spatial and temporal discretizations. The wing is
modelled as a fixed non-slip surface and a velocity Dirichlet condition −Ω × r
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is applied on all external boundaries (including the centre hole), where Ω is the
wing rotation speed and r is the radial distance from the wing axis of rotation. The
Reynolds number based on the wing chord c and the mean velocity along the wing
radius ΩR/2 is in the range Re ∈ [100; 750]. Recall that in (2.1), t, ν, ρ, u and p
stands for the time and for the kinematic viscosity, density, velocity and pressure of
the surrounding fluid respectively.

A Cartesian grid is used which consists of 25 million cells, with a typical grid
spacing in all three dimensions of 1s = 0.02c in the vicinity of the wing (refined
mesh region in figure 1b). The Cartesian cells are trimmed to fit the wing and the
external (cylindrical) boundaries. The time step is fixed to 1t= 2π/720Ω .

The configuration investigated here is comparable to that addressed in Jardin &
David (2014), Jardin & David (2015) and Jardin & David (2017). Convergence
tests in Jardin & David (2017) show that the Navier–Stokes solution of the flow
past a 45◦ angle of attack revolving wing at Reynolds number 500 is converged
with respect to spatial and temporal resolutions for 1s = 0.02c and 1t = 2π/360Ω .
For these tests, it is posited that convergence is achieved if an arbitrary increase
in spatial and temporal resolutions does not induce a variation in both mean and
instantaneous aerodynamic loads (both wing lift L and torque Q) of more than 0.5 %
and 2 % respectively. Moreover, the results obtained in Jardin & David (2017) show
reasonable agreement with experimental data. Finally, it should also be mentioned that
the finite volume method employed here has already proven its ability to accurately
predict the occurrence of flow instabilities at low Reynolds numbers (Bury & Jardin
2012).

Although previous tests provide confidence in the accuracy of the present approach,
and since the maximum Reynolds number addressed here is slightly higher than
that addressed in these previous studies, additional tests are performed at Re = 750,
confirming the independency of the results to both spatial and temporal resolutions.
Figure 2 compares the instantaneous lift and torque coefficients obtained using the
reported spatial resolution 1s = 0.02c with those obtained by increasing the total
number of cells by approximately a factor of 2 (1s= 0.015c), 4 (1s= 0.0125c) and
8 (1s = 0.01c). It can be seen that slight discrepancies exist for revolution angles
larger than φ = 90◦, i.e. when initial transients have decayed and a large portion of
the wing, outboard, exhibits unsteady flow structures (see flow description in § 4.1.1).
In all cases, the curves lie within ±6 % bounds around the values obtained using
spatial resolution 1s = 0.01c (indicated by the grey area). Moreover, the mean lift
and torque coefficients obtained with 1s= 0.02c are only 1 % and 1.2 % away from
the Richardson extrapolated solutions respectively (Roache 1998). Figure 3 displays
iso-surfaces of q-criterion (see Jeong & Hussain 1995) obtained for spatial resolutions
corresponding to those in figure 2, at φ= 180◦. It can be seen that the flow structure
is very similar for all cases, revealing a quasi-steady flow inboard and an unsteady
flow outboard (see flow description in § 4.1.1). More importantly, the frontier between
quasi-steady and unsteady flows does not change with 1s. Figure 4 shows q-criterion
iso-lines and contours of vorticity magnitude in a spanwise cross-section located
in the quasi-steady region, 2 chords away from the axis of rotation. Here again,
the comparison reveals negligible changes with 1s. Finally, it was verified that the
reported results are converged with respect to the temporal resolution. A figure that
compares the instantaneous lift and torque coefficients obtained using the reported
temporal resolution 1t= 2π/720 with those obtained by decreasing the time step by
a factor of 2 (1t= 2π/1440), 4 (1t= 2π/2880) and 8 (1t= 2π/5760) is provided in
appendix A (figure 25). Here again, it is shown that the reported temporal resolution
is sufficient to capture the main features of the flow with reasonable accuracy.
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FIGURE 2. (Colour online) Coefficients of lift CL and torque CQ as a function of the
revolution angle φ for different spatial resolutions 1s.
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FIGURE 3. Iso-surfaces of q-criterion obtained at revolution angle φ = 180◦ for different
spatial resolutions 1s.

For the sake of completeness, the results obtained using the present approach (1s=
0.02c, 1t= 2π/720) are compared with those obtained in Garmann, Visbal & Orkwis
(2013) for a revolving wing with aspect ratio AR = 1 and root cutout rco = 0.52c
(i.e. radius R = 1.02c). The Reynolds number based on the wing speed at midspan
is 500, which is within the range of Re considered in the present paper. Figure 5
shows this comparison in terms of mean lift C̄L and drag C̄D coefficients over angles
of attacks ranging from 0◦ to 60◦, which encompass angles of attack tested here. Note
that mean values are computed by integrating instantaneous values over revolution
angles φ ∈ [45◦ − 315◦]. It can be seen that relatively good agreement is achieved
between both approaches.
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FIGURE 4. Iso-lines of q-criterion and contours of vorticity magnitude obtained in a
spanwise cross-section located 2 chords away from the axis of rotation at revolution angle
φ = 180◦ for different spatial resolutions 1s.
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FIGURE 5. (Colour online) Mean coefficients of lift C̄L and drag C̄D as a function of the
angle of attack α obtained for a wing with aspect ratio 1. Comparison between results
obtained using the present approach with those obtained by Garmann et al. (2013).

In order to unravel the role of the Coriolis effect on the flow that develops around
the rotating wing, and more specifically on the attachment of the LEV, the Coriolis
factor Fco is introduced in the Navier–Stokes equations:

∂u
∂t
+ u · ∇u=− 1

ρ
∇p−ΩFce × (Ω × r)︸ ︷︷ ︸

centrifugal

− 2ΩFco × u︸ ︷︷ ︸
Coriolis

+ν∇2u. (2.2)

Numerical simulations are performed for Fco values ranging from 0.5 to 2. As such,
it is possible to tune the relative strength of the Coriolis term keeping all other terms
constant. Therefore, cases where Fco 6=0 and Fco 6=1 do not correspond to any realistic
flow. They constitute the only way to analyse the influence of the Coriolis effect
without changing any other flow characteritics, such as the local Reynolds number,
the wing aspect ratio or the spanwise gradient in flow speed induced by the rotation.
Similarly, the centrifugal factor Fce is introduced.

3. Non-dimensionalization
Results in the following section are analysed in terms of non-dimensional global and

local quantities. Global quantities are non-dimensionalized using the wing chord c and
the mean speed along the wing radius ΩR/2 as reference length and velocity scales

https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.222


Quantity Dimensional Ref. scales Non-dimensional Property

Coriolis term (streamwise) Cox c, ΩR/2 Co+x Global
q-criterion q c, ΩR/2 q+ Global
Vorticity magnitude ω c, ΩR/2 ω+ Global
Spanwise velocity vz ΩR/2 v+z Global
Spanwise pressure gradients ∂p/∂z ρ, c, ΩR/2 ∂p+/∂z Global
Lift L ρ, c, b, ΩR/2 CL Global
Torque Q ρ, c, b, ΩR/2 CQ Global
Local radius r c r+ Local
Time t c, Ωr t+ Local
Sectional pressure (normal) force N ρ, c, Ωr CN Local
Sectional shear (tangential) force T ρ, c, Ωr CT Local

TABLE 1. Non-dimensionalization of the quantities used for the analysis of the results.

respectively. Local quantities are non-dimensionalized using the local wing chord c
and the local wing speed Ωr at the corresponding spanwise cross-section of the wing.
Table 1 provides an overview of these quantities.

4. Results
4.1. Baseline case

This section focuses on the baseline case, where Fco= 1, Fce= 1 and Re=ΩRc/2ν=
500. This case corresponds to the realistic case of a wing rotating about its rotation
axis.

4.1.1. Flow structure
Figure 6 shows iso-surfaces of q-criterion at 6 instants corresponding to revolution

angles φ = 30◦, 60◦, 90◦, 120◦ and 180◦. The wing is shown from the top with the
span oriented horizontally and the wing root and wing tip on the left- and right-hand
side respectively. As the flow is impulsively started, a LEV, a starting trailing edge
vortex (sTEV) and a tip vortex (TV) develop. While the sTEV is immediately shed
and advects downstream into the wake, the LEV develops close to the wing surface
during the initial stages of the wing motion. At some point, the LEV detaches in the
outboard region of the wing and forms an arch-like structure that is very common to
impulsively started revolving wing flows (e.g. Garmann et al. 2013; Harbig, Sheridan
& Thompson 2013; Venkata & Jones 2013; Carr, DeVoria & Ringuette 2015; Percin &
van Oudheusden 2015). Note that, since there is no consensus on the precise definition
of shedding (or detachment), shedding here refers to a cut in the q-criterion iso-surface
used to identify a specific vortex. The arch-like structure is visible in figure 6 at
φ = 30◦, which also highlights the vortex loop structure formed by the connections
between the LEV, sTEV and TV. In addition, while the LEV detaches in the outboard
region of the wing, it remains attached in the inboard region. It is shown that the cut
in the LEV q-criterion iso-surface occurs around midspan at φ = 30◦ but propagates
towards the wing root as the revolution angle reaches φ = 60◦. At φ = 60◦, the LEV
is shed along most of the span, except in the very inboard region. As it advects
downstream, the shed LEV rotates under the effects of rotational shear (i.e. spanwise
gradients in flow speed) with its inner end pinned to the wing. LEV formation and
shedding is followed by TEV and secondary LEV formation and shedding. These
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FIGURE 6. Iso-surfaces of q-criterion (q+= 0.25 and 2.5) obtained at 6 revolution angles
φ. Baseline case: Fco = Fce = 1 and Re= 500. Dash-dotted and plain lines indicate shed
LEVs and TEVs respectively.

structures evolve in a relatively similar way to that observed for the initial LEV such
that the flow in the outboard region of the wing at φ = 90◦ exhibits a vortex street
that is inclined with respect to the wing. In contrast to this highly unsteady pattern,
the flow in the inboard region of the wing still exhibits LEV attachment. Moreover,
the extent of this stable region is not significantly reduced with respect to its extent at
φ= 60◦. As such, the flow seems to have reached a limit cycle at φ= 120◦, which is
consistent with previous experimental and numerical studies (Carr et al. 2015; Percin
& van Oudheusden 2015; Jardin & David 2017). The flow fields at φ = 120◦, 150◦
and 180◦ exhibit roughly similar patterns with (i) an unsteady outboard region and (ii)
a quasi-steady inboard region. The next section aims at correlating the flow in these
regions with global and sectional aerodynamic forces.

4.1.2. Global and sectional forces
Figure 7 shows the lift CL and torque CQ coefficients of the wing and the lift-to-

torque coefficient ratio CL/CQ as a function of the revolution angle φ. It is observed
that both CL and CQ exhibit a narrow plateau during the initial stages of the motion,
which correspond to the build-up phase of the LEV. Rapid shedding of the LEV in the
outboard region of the wing then leads to a drop in CL and CQ around φ = 20◦. The
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FIGURE 7. Coefficients of lift CL, torque CQ and lift-to-torque ratio CL/CQ as a function
of the revolution angle φ. Baseline case: Fco = Fce = 1 and Re= 500.

subsequent valley is followed by a bump which marks the build-up of the secondary
LEV observed in the outboard region of the wing. Although CL and CQ undergo a
slight decrease at φ = 120◦, they seem to stabilize near φ = 60◦ around values of the
order of 2 and 3 respectively. This suggests that, although changes in the flow fields
are observed from φ = 60◦ to φ = 120◦, prominent transients have decayed around
φ= 60◦. Overall, CL and CQ have very similar trends because they derive from vortex
force which applies normal to the wing surface. As a consequence, the CL/CQ ratio
is roughly constant during the whole revolving phase and stabilizes around values of
the order of 0.7.

Figure 8 provides further insight into transients decay and the evolution of the flow
towards a limit cycle. The sectional pressure force coefficient CN (where the sectional,
normal, pressure force N is computed by integrating the pressure chordwise) obtained
in four different spanwise sections located at r+ = 2, 4, 6 and 8 is plotted as a
function of φ. A striking feature here is the different trends in CN observed for the
r+ = 2 section on the one hand and for the r+ = 4, 6 and 8 sections on the other
hand. First, while the r+ = 2 sectional CN slowly converges towards a quasi-steady
state (reached near φ = 120◦), the CN at r+ = 4, 6 and 8 rapidly oscillates around
its converged mean value. Second, levels in sectional CN at r+ = 2 are much higher
than those at r+= 4, 6 and 8. These two very distinct trends reflect differences in the
flow structure previously observed between the quasi-steady inboard region and the
unsteady outboard region.

Yet, the representation used in figure 8 may introduce bias in the analysis of the
flow. Indeed, differences in the evolution of CN as a function of φ may partly result
from non-uniform local distance of travel along the span. That is, at a given φ,
spanwise sections near the wing tip have travelled a longer non-dimensional distance
than spanwise sections near the root. Therefore, it is straightforward that spanwise
sections near the wing tip converge more rapidly (with respect to φ) towards a limit
cycle than spanwise sections near the wing root. To alleviate this potential bias, the
non-dimensional local distance of travel (or local convective time) t+ =Ωr× t/c= 2
is indicated on each curve by a five-pointed star symbol. It is effectively seen
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FIGURE 8. (Colour online) Sectional pressure coefficient CN as a function of the
revolution angle φ in 4 spanwise sections located at r+ = 2, 4, 6 and 8. Baseline case:
Fco = Fce = 1 and Re= 500. Five-pointed star symbols indicate t+ = 2.

that while these symbols mark a drop in CN for the r+ = 4, 6 and 8 sections, the
CN at r+ = 2 still undergoes sustained growth. The drop in CN obtained around
t+ = 2 is consistent with what can be observed on 45◦ angle of attack translating
wings (Taira & Colonius 2009), which suggest that the flow in the r+ = 4, 6 and 8
sections approaches a nominally two-dimensional flow. That is, the flow physics is
driven by similar mechanisms to those found on nominally two-dimensional wings
(i.e. vortex shedding and spanwise dislocations due to spanwise instabilities) with
three-dimensional mechanisms arising from rotation being weak in comparison. On
the contrary, these three-dimensional effects in the r+=2 section are prominent, which
promotes the attachment of the LEV and a globally quasi-steady flow structure.

Finally, it can be observed that the trend in r+ = 8 sectional CN highly resembles
that observed for the overall CL. Obviously, sectional aerodynamic loads in the most
outboard region of the wing have a greater impact on global aerodynamic loads than
the most inboard region due to a higher local wing speed. Since global aerodynamic
coefficients are obtained by non-dimensionalizing global aerodynamic loads using
one global reference speed (ΩR/2 in this paper), as opposed to non-dimensionalizing
sectional aerodynamic loads using sectional speeds, they do not reflect the trend in
sectional CN obtained in the most inboard region (e.g. r+= 2 section) where the local
wing speed is weak. In other words, high levels of CN obtained in the most inboard
region of the wing are somehow hidden by the weak local wing speed. Note that,
accordingly, loads obtained at 0.75R are usually employed as an approximation of
global loads on helicopter blades.

As initial transients have decayed, fluctuating values of the sectional pressure
coefficient can provide additional evidence of the spanwise transition between the
quasi-steady inboard region and the unsteady outboard region. Figure 9 shows the
distribution in |C′N|/C̄N (in per cent) along the wing span, where C′N and C̄N are the
fluctuating and mean values of CN computed over the time interval φ ∈ [120◦; 180◦],
respectively.

At r+ values below 2, the |C′N|/C̄N curve exhibits very weak levels, which is
indicative of quasi-steady behaviour. As r+ increases, |C′N|/C̄N smoothly increases to
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FIGURE 9. (Colour online) Fluctuating-to-mean sectional pressure coefficients ratio
|C′N |/C̄N as a function of the spanwise location r+. Baseline case: Fco = Fce = 1 and
Re = 500. The red line indicates the |C′N |/C̄N = 3.5 % value and the grey area indicates
the ±1 % bounds around this value. C′N and C̄N are computed over the time interval
φ ∈ [120◦; 180◦].

reach values of the order of 3.5 % at approximately r+= 3, indicating the progressive
departure from quasi-steady behaviour. Note that the 3.5 % value is displayed in
figure 9 using a red horizontal line. Beyond r+ = 3, oscillations in |C′N|/C̄N around
the 3.5 % value highlight spanwise changes in the flow structure. These are followed
by a drastic increase in |C′N|/C̄N at approximately r+ = 4.9. The |C′N|/C̄N curve then
peaks at r+= 6.7 and drops to oscillate again around the 3.5 % value beyond r+= 7.6.

As such, while the flow can be divided into the quasi-steady inboard region and the
unsteady outboard region, with a frontier roughly located around r+ = 3, it is further
observed that the outboard region comprises two weakly unsteady three-dimensional
subregions at each end, where levels of |C′N|/C̄N are of the order of 3.5 %. These
highlight the influence of relatively strong streamwise vortices (see figure 6) – the
TV at the wing tip and the initially shed outboard LEV at the transition between
quasi-steady and unsteady regions – which locally damp pressure fluctuations. On the
contrary to these three-dimensional weakly unsteady subregions, the nominally two-
dimensional-like unsteady subregion between r+=4.9 and r+=7.6 exhibits high levels
of |C′N|/C̄N . Figure 10 provides an alternative way of representing these (sub) regions
by mapping contours of CN as a function of r+ and φ. Regions of high unsteadiness
appear where iso-lines are predominantly in the horizontal direction and, accordingly,
where strongest variations in colour contours occur in the vertical direction.

4.1.3. Spanwise transition from quasi-steady state to unsteady state
The previous sections put into evidence two distinct regions of the flow: (i) an

unsteady outboard region and (ii) a quasi-steady inboard region. For comparison
purposes, the frontier between these two regions needs to be rigorously determined.
Since there is no consensus on the definition of vortex shedding (and to a larger
extent on the definition of a vortex), choosing a criterion that targets the spanwise
transition from a stable to an unstable LEV (i.e. from quasi-steady state to unsteady
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FIGURE 10. (Colour online) Sectional chordwise pressure coefficient CN as a function of
the spanwise location r+ and the revolution angle φ. Baseline case: Fco = Fce = 1 and
Re= 500.

state) is a challenging task. In the previous section, |C′N|/C̄N levels were found to
provide a reasonable estimation of the spanwise location of this transition. However,
because an arbitrary threshold on |C′N|/C̄N levels need to be set to discriminate
between quasi-steady and unsteady states, no criterion based on |C′N|/C̄N levels was
found to be sufficiently robust over the whole range of cases tested in this paper.

In view of defining a robust criterion for the precise determination of quasi-steady
to unsteady states transition, figure 11 maps the absolute sectional chordwise shear
coefficient |CT | as a function of the sectional non-dimensional blade radius r+ and
the revolution angle φ. It can be seen that the inboard region is characterized by
vertical |CT | iso-lines which indicate quasi-steady shear forces associated with the
attachment of the LEV. Conversely, the outboard region is characterized by strongly
inclined |CT | iso-lines which indicate shear force fluctuations associated with LEV
shedding. Note that a purely two-dimensional (unsteady) flow would lead to strictly
horizontal iso-lines. In fact, it can be shown that mapping |CT | as a function of t+
rather than φ leads to horizontal iso-lines in the two-dimensional-like region. Also
note that, although it is strongly correlated here, unsteadiness in the LEV imprint on
the surface does not necessarily (in the general sense) constitute detachment of the
structure. Yet, the representation used in figure 11 suggests that spatial variations in
|CT | are dominant in the inboard region while temporal variations are dominant in
the outboard region. From a topological perspective, this transition between regions
dominated by spatial variations on the one hand and temporal variations on the other
hand is reflected by saddle points in the |CT | map.

On this basis, it is posited that the r+ value for which the flow evolves from a
quasi-steady to an unsteady state (i.e. from a stable to an unstable LEV) is the r+
value corresponding to the first saddle point encountered as r+ is increased from the
wing root to the wing tip. The search for this saddle point is performed once initial
transients have sufficiently decayed, typically for φ values above 120◦. This value
may however be larger for lower Reynolds number cases, which requires numerical
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FIGURE 11. (Colour online) Absolute sectional chordwise shear coefficient |CT | as a
function of the spanwise location r+ and the revolution angle φ. Baseline case: Fco =
Fce= 1 and Re= 500. The black circle indicates the saddle point at the transition between
quasi-steady and unsteady regions. The dash-dotted line indicates the corresponding
frontier.

simulations at Re = 100 and 125 to be continued up to φ = 270◦. In addition, the
search is performed over r+ ∈ [2; 8] to avoid any potential bias introduced by root
and tip effects.

The dash-dotted line in figure 11 marks the frontier between quasi-steady and
unsteady regions obtained using this criterion (the circle indicates the saddle point),
which is estimated to be at r+crit=3.1 for the baseline case. It is seen that the transition
between vertical to inclined iso-lines is well captured. This is also found to be the
case for the whole range of configurations tested in the following section. In addition,
it was verified that, for all cases, the position of this saddle point qualitatively matches
the transition as observed from q-criterion iso-surfaces. Examples of |CT | maps for
other configurations are provided in appendix B. It is also interesting to note that
a local minimum in |CT | is found slightly prior to r+crit, i.e. for r+ of the order of
2.7. However, while this local minimum is a clear indication of the transition from
quasi-steady to unsteady regions for the higher Reynolds number cases, it diverges
from the actual transition for the lower Reynolds number cases.

4.2. The Coriolis effect
From the above analysis, it appears that the attachment of the LEV is promoted in
the inboard region of the wing, leading to a locally quasi-steady flow. Lentink &
Dickinson (2009), Jardin & David (2014, 2015) suggested that this attachment and the
associated high levels of lift are related to rotational effects, with the Coriolis effect
being a key ingredient. In order to provide insight into the influence of the Coriolis
effect on the flow topology and on the resulting aerodynamic loads, the Navier–Stokes
equations are here manipulated to increase or reduce the relative importance of the
Coriolis term with respect to other terms. This is achieved by varying the Fco factor
introduced in § 2.
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FIGURE 12. Iso-surfaces of q-criterion (q+ = 0.25 and 2.5) obtained at revolution angle
φ = 120◦. Cases Fco = 0.5 (a), 1 (b), 1.5 (c) and 2 (d) at Re= 500 and with Fce = 1.

4.2.1. Influence on the flow structure
Figure 12 shows iso-surfaces of q-criterion obtained at φ = 120◦ for Fco = 0.5, 1,

1.5 and 2. As previously, Fce= 1 and Re= 500. Recall that Fco= 1 corresponds to the
baseline case.

The overall comparison seems to indicate that LEV attachment is maintained at
higher r+ values as Fco is increased and vice versa. While small-scale structures nearly
cover the entire wing span in the Fco= 0.5 case, they hardly extend over the midspan
in the Fco= 2 case. These small-scale structures indicate unsteadiness in the outboard
region of the wing, as opposed to a stably attached LEV in the inboard region. For the
sake of comparison, the reader can refer to the position of the initially shed outboard
LEV that was previously found to approximate the location of the transition from the
quasi-steady region to the unsteady region. Therefore, there is clear evidence that the
Coriolis effect is a key element in LEV stability observed in the inboard region of
revolving wings.

Figure 13 shows corresponding iso-contours of vorticity magnitude obtained
in a spanwise cross-section located 2 chords away from the axis of rotation
(i.e. quasi-steady region), at revolution angles φ= 30◦, 60◦, 90◦, 120◦ and 180◦. It can
be seen that increasing Fco leads to a more compact LEV that remains closer to the
wing surface. This more compact pattern is associated with slightly higher vorticity
levels. In particular, the most striking differences appear through a stronger shear
layer emanating from the leading edge, an increased vorticity magnitude in the core
of the LEV and, consequently, a stronger boundary layer on the wing upper surface
with increasing Fco. In addition, it appears that the LEV reaches a quasi-steady state
more rapidly as Fco increases. Because strong spanwise velocities mostly develop in
the core of the LEV, the distribution of spanwise velocity displayed in figure 14 also
exhibits a more compact pattern as Fco is increased. Note that figure 14 only displays
contours for φ 6 90◦ , which correspond to the growth phase of the LEV. Spanwise
flow in the core of the LEV is principally driven by spanwise gradients in flow
speed (Jardin & David 2014) and resulting spanwise pressure gradients. Evidence of
strong spanwise pressure gradients in the core of the LEV are provided in figure 15.
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FIGURE 13. Contours of non-dimensional vorticity magnitude ω+ obtained in a spanwise
cross-section located 2 chords away from the axis of rotation at 6 revolution angles (from
top to bottom). Cases Fco= 0.5, 1, 1.5 and 2 (from a to d) at Re= 500 and with Fce= 1.

However, it appears that the Coriolis effect also plays a non-negligible role in levels
of spanwise pressure gradients, hence in the development of the core flow. It can
be seen from figure 15 that levels of ∂p+/∂z increase with Fco and that this effect
appears early in the motion (e.g. see φ= 30◦). Thus, the Coriolis effect contributes to
outboard vorticity transport in the core of the LEV, hence limiting LEV growth early
in the motion and promoting LEV stability. This augments previous observations by
Jardin & David (2014) who showed that rotational effects (Coriolis and centrifugal)
increase spanwise velocity in the core of the LEV in comparison to that observe
in the sole presence of spanwise gradients in flow speed (i.e. without Coriolis and
centrifugal effects). Furthermore, another striking feature is the development of a
region of spanwise flow immediately downstream the LEV, close to the wing surface,
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FIGURE 14. Contours of non-dimensional spanwise velocity v+z obtained in a spanwise
cross-section located 2 chords away from the axis of rotation at 3 revolution angles (from
top to bottom). Cases Fco= 0.5, 1, 1.5 and 2 (from a to d) at Re= 500 and with Fce= 1.
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FIGURE 15. Contours of non-dimensional spanwise pressure gradients ∂p+/∂z obtained in
a spanwise cross-section located 2 chords away from the axis of rotation at 3 revolution
angles (from top to bottom). Cases Fco= 0.5, 1, 1.5 and 2 (from a to d) at Re= 500 and
with Fce = 1.
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FIGURE 16. Contours of non-dimensional spanwise Coriolis acceleration Co+z obtained in
a spanwise cross-section located 2 chords away from the axis of rotation at 3 revolution
angles (from top to bottom). Cases Fco= 0.5, 1, 1.5 and 2 (from a to d) at Re= 500 and
with Fce = 1.

with increasing Fco. This region, indicated by an ellipse in figure 14, has also been
observed in previous works (Birch & Dickinson 2001; Birch, Dickson & Dickinson
2004; Poelma, Dickson & Dickinson 2006; Aono, Liang & Liu 2008). Interestingly,
Lentink & Dickinson (2009) hypothesized that the Coriolis effect is a necessary
condition for this spanwise flow to develop, based on theoretical considerations.
It is here shown that the Coriolis effect does promote spanwise flow behind the
LEV (visible early in the motion), which may contribute to both outboard vorticity
drainage and increased momentum in the aft boundary layer. It is believed that
outboard vorticity drainage helps balance the production of vorticity at the leading
edge (Ellington et al. 1996) and increased momentum behind the LEV helps stabilize
the aft boundary layer, thereby promoting the attachment of the LEV.

The correlation between the Coriolis effect and outboard flow can be explained as
follows. Consider still air. In a non-inertial frame of reference with rotation speed
Ω , the flow velocity can simply be expressed as u=−Ω × r, where r is the radial
distance from the rotation axis. Centrifugal and Coriolis accelerations apply in this
non-inertial reference frame. The Coriolis acceleration −2Ω × u is oriented radially,
towards the rotation axis. Although a fluid particle experiences this radial acceleration,
it has no radial velocity. Now if a wing that rotates with the non-inertial, rotating
frame is introduced (i.e. its speed in the non-inertial frame of reference is zero), then
u will be modified, which in turn modifies the Coriolis acceleration. Specifically, in
recirculation regions where the magnitude of u is reduced (or where u changes sign),
the magnitude of the Coriolis acceleration is reduced (or the Coriolis acceleration
changes sign). Hence, when compared with the ‘still air’ case where there is no
radial velocity, fluid particles in regions of reduced u (induced by the wing) will tend
to move outboard. As such, reduced velocity in the LEV promotes outboard flow
through the Coriolis term. Figure 16 shows iso-contours of the spanwise Coriolis
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FIGURE 17. Contours of non-dimensional streamwise Coriolis acceleration Co+x obtained
in a spanwise cross-section located 2 chords away from the axis of rotation at 3 revolution
angles (from top to bottom). Cases Fco= 0.5, 1, 1.5 and 2 (from a to d) at Re= 500 and
with Fce = 1.

acceleration in a spanwise cross-section located 2 chords away from the axis of
rotation, at revolution angles φ = 30◦, 60◦ and 90◦. To clearly reveal the Coriolis
effect induced by the presence of the wing, the Coriolis acceleration that applies in
the ‘still air’ case is subtracted: i.e. Coz = −2ΩFco × (u + Ω × r) is displayed. It
can be seen that regions where the magnitude of the streamwise flow velocity in the
non-inertial frame of reference is reduced (or where the streamwise velocity changes
sign) – in the core, below and behind the LEV – are associated with an increase
in Coriolis acceleration that can be correlated with the extent of outboard velocity
and pressure gradients in figures 14 and 15. The enhancement of outboard velocity
in turn increases the streamwise component of the Coriolis acceleration (figure 17),
oriented towards the trailing edge (i.e. opposed to the adverse pressure gradient).
Interestingly, because the centrifugal term only depends on operating parameters (Ω
and r), and not on the local flow velocity u, it will not be directly modified by
introducing the wing. Thus, although changes in the whole flow field may indirectly
tend to modify the centrifugal term through a global equilibrium of all terms in the
Navier–Stokes equations, the present interpretation suggests that changes in Fce may
have a negligible impact on the stability of the LEV. This will be further addressed
in § 4.2.3.

Finally, the balance between the Coriolis term and the other terms in the Navier–
Stokes equations (i.e. which is modified through Fco) is also reflected in the trajectory
of shed vortices. While shed vortices in the wake of the Fco= 1 baseline case roughly
follow circular trajectories about the rotation axis, they tend to move inboard and
outboard in the Fco < 1 and Fco > 1 cases respectively (figure 12).
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FIGURE 18. (Colour online) Fluctuating-to-mean pressure coefficients ratio |C′N |/C̄N as a
function of the spanwise location r+. Cases Fco= 0.5 and 2 at Re= 500 and with Fce= 1.
The red line indicates the |C′N |/C̄N = 3.5 % value. C′N and C̄N are computed over the time
interval φ ∈ [120◦; 180◦].

4.2.2. Influence on global and sectional forces
Figure 18 shows the distribution in |C′N|/C̄N (in per cent) along the wing span

obtained for the Fco = 0.5 (dashed line) and Fco = 2 (plain line) cases. The Fco = 1
case previously shown in figure 9 is added for the sake of comparison.

First, it is shown that the sharp increase in |C′N|/C̄N levels as r+ increases occurs
near r+ = 2 for Fco = 0.5 and near r+ = 5 for Fco = 2. This is in line with previous
observations on flow topology. The severe impact of an increased Coriolis effect on
LEV attachment is further highlighted by an almost complete damping of |C′N|/C̄N

levels between approximately r+ = 2 and r+ = 4 in the Fco = 2 case. A consequence
of enhanced LEV stability for higher Fco values is an increase in global lift coefficient
(figure 19).

Second, it is observed that the influence of the TV on |C′N|/C̄N is also modified
as Fco varies. For the Fco = 0.5 case, the lower relative strength of the Coriolis
acceleration with respect to other terms pulls the TV inboard, thereby increasing its
influence on |C′N|/C̄N levels. The latter’s are found to be damped near the wing tip,
when compared to those observed in the Fco = 1 baseline case. On the contrary, the
stronger relative strength of the Coriolis acceleration with respect to other terms in
the Fco = 2 case tends to push the TV outboard. Hence, |C′N|/C̄N exhibits relatively
strong levels up to r+ = 10.

Finally, one can notice that decreasing Fco also results in relatively strong levels
of |C′N|/C̄N at the wing root. The underlying unsteadiness is not related to any LEV
instability, but to changes in the trajectory of the sTEV which, as a consequence,
interacts with the wing in the vicinity of the root.

Changes in flow unsteadiness due to intrinsic LEV instability should be carefully
isolated from those due to modifications in TV and sTEV trajectories. It is thus
noteworthy to emphasize that, in order to avoid any misinterpretation, the search for
r+crit using the saddle point criterion is performed over r+ ∈ [2; 8]. That is, root and
tip regions where the TV and the sTEV may affect the LEV are excluded.
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FIGURE 19. Lift coefficient CL as a function of the revolution angle φ. Cases Fco = 0.5,
1, 1.5 and 2 at Re= 500 and with Fce = 1.

4.2.3. Influence on the spanwise transition and interplay with centrifugal and viscous
effects

The r+crit value for which the flow evolves from a quasi-steady state to an unsteady
state is plotted as a function of Fco on figure 20(a). The results are shown for Re=500
as well as for Re= 250 and Re= 750. This overall picture shows the dependency of
LEV attachment on the Coriolis effect. Recall that in all cases addressed in this paper,
Fce is set to 1. However, in order to evaluate the importance of the interplay between
Coriolis and centrifugal effects cases at Re= 500, where Fce = Fco, are added.

As previously discussed, figure 20(a) shows that r+crit increases with increasing Fco.
It further suggests that the relation between r+crit and Fco is roughly linear within the
range of Fco tested. Linear trend lines are depicted to illustrate this relation. Moreover,
it can be seen that the slope of the linear trend lines is dependent on the Reynolds
number. This suggests that the Coriolis effect may not act in a similar way at high
and low Reynolds numbers.

On the contrary, it is demonstrated that centrifugal effects have a negligible impact
on LEV stability as r+crit is unchanged whether Fce is set to 1 or equal to Fco. For
the sake of completeness, iso-surfaces of q-criterion and contours of vorticity and
spanwise velocity obtained for different values of Fce at Fco = 2 are displayed in
figures 21 and 22 respectively. Values of 0, 1, 2 and 4 are considered for Fce,
which correspond to cases where centrifugal effects are suppressed, unchanged,
changed linearly and quadratically with respect to the Coriolis effect respectively.
The last case, where Fce = 4, is consistent with the fact that the Coriolis term in the
Navier–Stokes equation is an explicit linear function of the rotation speed whereas
the centrifugal term is an explicit quadratic function. Here again, it is shown that Fce

has a negligible impact on the flow structure. In particular, compactness of the LEV
and spanwise flow behind the LEV coexists for all values of Fce. This augments
previous findings by Jardin & David (2015) and supports the idea that the influence
of the Coriolis factor Fco can be investigated at fixed Fce. It should be noted that
this differs from previous results by Garmann & Visbal (2014) who concluded on the
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FIGURE 20. (Colour online) Position of the transition from quasi-steady state to unsteady
state r+crit as a function of the Coriolis factor Fco for Re= 250, 500 and 750 (a) and as
a function of the Reynolds number Re for Fco = 1, 1.5 and 2 (b) with Fce = 1. Cases
at Re= 500 and with Fce = Fco are added in (a) and indicated using a + symbol. Re ∈
[100; 750] are considered in (b).

(a) (b)

(c) (d )

FIGURE 21. Iso-surfaces of q-criterion (q+ = 0.25 and 2.5) obtained at revolution angle
φ = 120◦. Cases Fce = 0 (a), 1 (b), 2 (c) and 4 (d) at Re= 500 and with Fco = 2.

apparent dominant role of centripetal acceleration on LEV stability at slightly higher
Reynolds numbers (Re> 1000).

To gain further insight into the interplay between the Coriolis effect and viscous
effects, r+crit is plotted as a function of Re on figure 20(b). The results are shown for
Fco = 1, 1.5 and 2. Overall, two distinct trends are observed whether the Reynolds
number is in the higher or in the lower range of Re values tested.

In the higher range Re ∈ [200; 750], all Fco curves are roughly horizontal,
demonstrating that r+crit is weakly dependent on Re. In contrast, and as previously put
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FIGURE 22. Contours of non-dimensional vorticity magnitude ω+ and spanwise velocity
v+z obtained in a spanwise cross-section located 2 chords away from the axis of rotation
at revolution angle φ = 120◦. Cases Fce = 0, 1, 2 and 4 (from a to d) at Re= 500 and
with Fco = 2.

into evidence, vertical offsets between distinct Fco curves indicate that r+crit is more
critically dependent on Fco. In other words, r+crit clearly appears to be more sensitive to
changes in Fco than it is to changes in Re, for Re>200. That is, the Coriolis effect has
the dominant role in vortex stability. While this is true for Re∈ [200; 750], additional
cases should be investigated to verify whether or not this holds for higher Reynolds
numbers. This cannot be achieved here due to computational costs. Nonetheless, it
can be mentioned that the asymptotic value obtained for Fco = 1 as Re increases is
consistent with observations reported by Kruyt et al. (2015) at Reynolds numbers
O(104).

In the lower range, Re< 200, r+crit is highly dependent on Re. It is shown that all
Fco curves exponentially increase with decreasing Re. Here, r+crit is more sensitive to
changes in Re than it is to changes in Fco such that viscous effects appear to be
the key factor in LEV stability. Overall, it is believed that viscous effects affect the
behaviour of the LEV in a qualitatively similar way than they would affect a LEV
on a two-dimensional wing. At these low Reynolds numbers, viscous effects become
determinant in LEV stability on a two-dimensional wing. In particular, for α = 45◦,
it is known that the flow is stable for Re values below 50 (Zhang, Liu & Lu 2009;
Choi, Colonius & Williams 2015). If the flow around a rotating wing is considered as
quasi-two-dimensional, in the sense that the flow at each spanwise section of the wing
is considered as a two-dimensional one, then the LEV in a specific spanwise section
should be stabilized by viscous effects if the local Reynolds number re = ωrc/ν is
below 50. The local Reynolds number re can simply be expressed as a function of
the global Reynolds number Re=ω(R/2)c/ν, such that re= Re/(R/2)× r. Therefore,
under the assumption of quasi-two-dimensionality, the flow is locally stabilized (in a
spanwise section) if re < 50⇒ r < (50/Re) × (R/2). The theoretical value r+crit,2D =
(50/Re) × (R/2) is depicted as a grey dash-dotted line in figure 20(b). It can be
seen that the trend in r+crit obtained from the present numerical simulations as Re
decreases below 200 is qualitatively similar to that obtained from two-dimensional
considerations. This supports the idea that viscous effects are the key element in LEV
stability for Re below 200.
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FIGURE 23. Iso-surfaces of q-criterion (q+ = 0.25 and 2.5) obtained for angle of attack
α = 15◦ at revolution angle φ = 120◦. Cases Fco = 0.5 (a), 1 (b), 1.5 (c) and 2 (d) at
Re= 500 and with Fce = 1.

A key hypothesis in LEV stability is that spanwise flow balances vorticity
production at the leading edge, preventing indefinite growth of the LEV (Ellington
et al. 1996; Lentink & Dickinson 2009). Spanwise flow in the core of the LEV is
principally driven by spanwise pressure gradients resulting from spanwise gradients
in flow speed (Jardin & David 2014). It is shown here that the Coriolis effect also
contributes to increasing spanwise flow by enhancing pressure gradients. This not
only results in higher levels of spanwise velocity in the core of the LEV but also
in the development of a region of spanwise flow behind the LEV, close to the
wing surface. Spanwise flow behind the LEV most certainly contributes to outboard
vorticity transport but may also stabilize the aft boundary layer. While spanwise flow
behind the LEV is generally observed for a range of Reynolds numbers O(102− 103),
spanwise flow in the core of the LEV seems to be inhibited at lower Reynolds
numbers O(102) (Birch et al. 2004; Poelma et al. 2006; Aono et al. 2008) because
viscous effects tend to ‘homogenize’ the flow and to mitigate velocity gradients.
This suggests that mechanisms of vorticity transport are reduced at lower Reynolds
numbers. However, in light of the results presented in this paper, it is believed that
the reduction in spanwise velocity as Re decreases is not a critical issue to LEV
stability precisely because viscous effects become predominant in LEV stability in
the lower Re range.

4.2.4. Generalization to other post-stall angles of attack
The influence of the Coriolis acceleration on the LEV is analysed for two additional

post-stall angles of attack, α = 15◦ and α = 30◦. Figures 23 and 24 show the
corresponding iso-surfaces of q-criterion obtained at φ = 120◦ for Fco = 0.5, 1, 1.5
and 2. Again, Fce is set to 1 and Re = 500. Similarly to the α = 45◦ case, it is
observed that increasing Fco promotes LEV attachment. However, it appears that
Fco has a greater authority as α decreases. This is particularly striking for α = 15◦
where increasing Fco to 2 completely suppresses outboard unsteadiness. This increased
authority at lower α can be related to a weaker LEV that is more easily ‘controllable’.
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FIGURE 24. Iso-surfaces of q-criterion (q+ = 0.25 and 2.5) obtained for angle of attack
α = 30◦ at revolution angle φ = 120◦. Cases Fco = 0.5 (a), 1 (b), 1.5 (c) and 2 (d) at
Re= 500 and with Fce = 1.

Because the Coriolis effect has a stronger authority at lower α, the position of the
spanwise transition from a stable to an unstable LEV moves outboard with decreasing
α, when holding Fco constant. This is observed by comparing figures 12, 23 and 24.
The fact that a weaker LEV (with lower growth rate) is more easily ‘controllable’
is consistent with the hypothesis that outboard vorticity transport balances vorticity
production at the leading edge. It is also consistent with the hypothesis that spanwise
flow behind the LEV stabilizes the aft boundary layer, which is less prone to
separation as α decreases. On the other hand, it is known that flows at low angles of
attack are more easily ‘controllable’ than flows at high angles of attack. Interestingly,
these results open the path towards potential flow control strategies that mimic the
Coriolis effect to delay stall and enhance lift on translating wings. In addition, these
indicate that low-order models of rotating wing aerodynamics, such as blade element
models, should account for the Coriolis effect and its dependence on the angle of
attack.

5. Conclusion
If the angle of attack and Reynolds number are sufficiently high, the flow past a

two-dimensional translating wing is unstable. Conversely, at similar angle of attack
and Reynolds number, the flow past a revolving wing may locally (in a given spanwise
section) be stable. This stability is usually associated with the presence of a LEV
that remains robustly attached to the wing. LEV attachment on revolving (or rotating)
wings is a ubiquitous feature observed in nature and it is now widely admitted as
being responsible for the unexpected high lift observed on insect flapping wings and
autorotating plant seeds, for example. Recent studies suggest that the attachment of the
LEV on revolving wings originates in rotational accelerations, with the Coriolis effect
being a key element. As such, it is usually observed in a region extending from the
axis of rotation to 3 or 4 chords away from it (i.e. where rotational effects are strong).

In this paper, the behaviour of the LEV that develops on a high angle of attack,
aspect ratio 9.5, revolving wing and its dependency on the Coriolis effect are analysed.
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Toward that end, the Navier–Stokes equations are solved in the non-inertial reference
frame of the wing with the Coriolis term being artificially tuned. Reynolds numbers
in the range Re∈ [100; 750] are considered to identify the interplay between Coriolis
and viscous effects. Similarly, artificial tuning of the centrifugal term is achieved to
identify the interplay between Coriolis and centrifugal effects.

First, it is shown that flow stability and robust LEV attachment are promoted in
the inboard region of the wing, where rotational accelerations are strong. Conversely,
the flow in the outboard region of the wing is unstable and exhibits a nominally
two-dimensional-like, highly unsteady region bounded by two weakly unsteady three-
dimensional regions. Three-dimensional regions are dominated by strong streamwise
vortices that arise from the free tip condition on the one hand and from the transition
between stable and unstable flow regions on the other hand. The transition between
inboard quasi-steady and outboard unsteady flow regions is found to be reasonably
approximated by saddle points in the spatio-temporal map of sectional shear force on
the wing. Saddle points can be viewed as a transition between regions dominated by
spatial variations in sectional shear force and those dominated by temporal variations.

The saddle point criterion is used to quantify the correlation between the Coriolis
effect and the position of the transition along the span for Reynolds numbers in
the range Re ∈ [100; 750]. It is shown that the transition between quasi-steady
and unsteady regions is pushed towards the wing tip as the Coriolis term in the
Navier–Stokes equations is artificially increased. This provides further evidence that
the Coriolis effect has an important role in flow stability on revolving wings.

The present results reveal that Coriolis effect promotes spanwise pressure gradients
and resulting spanwise flow. A particular feature is that the Coriolis effect is not only
correlated with an increased velocity inside the core of the LEV (where pressure
gradients due to spanwise gradients in flow speed are strong), but also with the
development of a region of spanwise flow behind the LEV. Interestingly, this aft
flow has been observed in the past and theoretical considerations suggested that it
could be related to the Coriolis effect (Lentink & Dickinson 2009). While the overall
enhancement of spanwise flow is believed to contribute to outboard vorticity transport,
spanwise flow behind the LEV may also tend to stabilize the aft boundary layer.

Furthermore, it is shown that the Coriolis effect dominates flow stability for
Reynolds numbers above 200 where the transition appears to be weakly dependent
on Re, and since centrifugal effects are found to have no significant impact on the
flow field. In contrast, the analysis demonstrates that the role of viscous effects
become prominent as Re decreases below 200. In particular, for Re< 200, the trend
in the position of the transition point as a function of Re resembles that deduced
from two-dimensional cases where stability only relies on viscous effects (i.e. not on
rotational effects). It is therefore suggested that the reduction in spanwise velocity in
the core of the vortex as Re decreases (which has been observed in previous works
and reduces the potential for outboard vorticity transport) is not a critical issue to
LEV stability because viscous effects become predominant in LEV stability in the
lower Re range.

Finally, while the analysis is principally conducted for wings with angle of attack
α = 45◦, additional cases with α = 15◦ and α = 30◦ show that the Coriolis effect has
greater authority on the attachment of the LEV as α decreases.

Overall, this work provides insight into the mechanisms that contribute to flow
stability and LEV attachment on revolving wings. Besides, it opens the path towards
the development of enhanced low-order models (e.g. blade element models) accounting
for rotational effects as well as the definition of control strategies mimicking rotational
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FIGURE 25. (Colour online) Coefficients of lift CL and torque CQ as a function of the
revolution angle φ for different temporal resolutions 1t.

effects for stall delay on translating wings. The conclusions drawn here are valid for
low Reynolds numbers O(102− 103) and additional cases should be considered in the
future to evaluate to what extent these conclusions hold at higher Reynolds numbers.

Appendix A. Temporal resolution
Figure 25 compares the instantaneous lift and torque coefficients obtained using the

reported temporal resolution 1t= 2π/720 with those obtained by decreasing the time
step by a factor of 2 (1t= 2π/1440), 4 (1t= 2π/2880) and 8 (1t= 2π/5760). Here
again, slight discrepancies exist for revolution angles larger than φ = 90◦, i.e. when
initial transients have decayed and a large portion of the wing, outboard, exhibits
unsteady flow structures. In all cases, the curves lie within ±6 % bounds around the
values obtained using the finest temporal resolution 1t = 2π/5760 (indicated by the
grey area). Overall, the main effect of 1t is to phase shift fluctuations of lift and
torque, for later φ values. Because the flow outboard is chaotic, it is expected that
slight modifications in the numerical set-up would lead to slight changes in the timing
of shedding of small-scale structures. That is, oscillations due to small scale structures
are phase shifted but their amplitudes do not change. As a result, it can be shown
that the mean lift and torque coefficients are almost unchanged as 1t is varied. Mean
values obtained in the range of 1t considered here match within 1 %.

Appendix B. Sectional chordwise shear coefficient
Figure 26 displays three additional examples of |CT | maps. Contours and iso-lines

of |CT | are depicted as a function of the spanwise location r+ and the revolution angle
φ for cases Re= 250, Fco= 1 (a), Re= 750, Fco= 2 (b) and Re= 100, Fco= 2 (c). In
all cases, iso-lines are displayed by steps of 0.02 in the range |CT | ∈ [0; 0.8]. The first
case (Re= 250, Fco = 1) is a typical example showing how interactions between the
wing and the root vortex may introduce bias in the search for the transition from a
stable to an unstable LEV. Distortion of vertical iso-lines are observed for r+< 2. The
second case (Re= 750, Fco= 2) is very similar to the baseline case addressed in detail
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FIGURE 26. (Colour online) Absolute sectional chordwise shear coefficient |CT | as a
function of the spanwise location r+ and the revolution angle φ. Cases Re = 250 and
Fco = 1 (a), Re= 750 and Fco = 2 (b) and Re= 100 and Fco = 2 (c).
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in the paper, yet with a transition point pushed towards the wing tip. The third case
(Re= 100, Fco = 2) is a typical case showing quasi-steady state over the whole wing
span. Very few iso-lines appear for r+ > 2, which indicates no significant spatial and
temporal variations in |CT |. The saddle point identified near the wing tip is here due
to the influence of the tip vortex and is not indicative of any intrinsic LEV instability.
That is, the saddle point would be found at higher r+ value if a higher aspect ratio
wing was used. One can also note that the quasi-steady state is reached for relatively
large φ values (i.e. above 120◦).
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