Asymptotic properties of expansive Galton-Watson trees

Abstract : We consider a super-critical Galton-Watson tree whose non-degenerate offspring distribution has finite mean. We consider the random trees τn distributed as τ conditioned on the n-th generation, Zn, to be of size an ∈ N. We identify the possible local limits of τn as n goes to infinity according to the growth rate of an. In the low regime, the local limit τ 0 is the Kesten tree, in the moderate regime the family of local limits, τ θ for θ ∈ (0, +∞), is distributed as τ conditionally on {W = θ}, where W is the (non-trivial) limit of the renormalization of Zn. In the high regime, we prove the local convergence towards τ ∞ in the Harris case (finite support of the offspring distribution) and we give a conjecture for the possible limit when the offspring distribution has some exponential moments. When the offspring distribution has a fat tail, the problem is open. The proof relies on the strong ratio theorem for Galton-Watson processes. Those latter results are new in the low regime and high regime, and they can be used to complete the description of the (space-time) Martin boundary of Galton-Watson processes. Eventually, we consider the continuity in distribution of the local limits (τ θ , θ ∈ [0, ∞]).
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2019, 24, Paper 15, 1-51
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger
Contributeur : Romain Abraham <>
Soumis le : mardi 12 décembre 2017 - 11:09:42
Dernière modification le : samedi 23 février 2019 - 01:26:38


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01661755, version 1
  • ARXIV : 1712.04650



Romain Abraham, Jean-François Delmas. Asymptotic properties of expansive Galton-Watson trees. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2019, 24, Paper 15, 1-51. 〈hal-01661755〉



Consultations de la notice


Téléchargements de fichiers