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An Auxiliary Variable Method for MCMC Algorithms in High
Dimension

Yosra Marnisst, Emilie Chouzenou¥?3, Amel Benazza-Benyahi§
and Jean-Christophe Pesquét

Abstract

When the parameter space is high dimensional, the performare of stochastic sampling
algorithms is very sensitive to existing dependencies beteen parameters. For instance, this
problem arises when one aims to sample from a high dimensioh@aussian distribution whose
covariance matrix does not present a simple structure. Thenpone often resorts to sampling
algorithms based on a perturbation-optimization technique that requires to minimize a cost
function using an iterative algorithm. This makes the samplng process time consuming,
especially when used within a Gibbs sampler. Another challege is the design of Metropolis-
Hastings proposals that make use of information about the loal geometry of the target
density in order to speed up the convergence and improve mirg properties in the parameter
space, while being not too computationally expensive. Thestwo contexts are mainly related
to the presence of two heterogeneous sources of dependes@&mming either from the prior
or the likelihood in the sense that the related covariances ratrices cannot be diagonalized
in the same basis. In this paper, we are interested in inversproblems where either the data
delity term or the prior distribution is Gaussian or driven from a hierarchical Gaussian
model. We propose to add auxiliary variables to the model in oder to dissociate the two
sources of dependencies. In the new augmented space, onlyemource of correlation remains
directly related to the target parameters, the other sources of correlations being captured
by the auxiliary variables. Experiments conducted on two image restoration problems show
the good performance of the proposed strategy.

1 Introduction

In a wide range of applicative areas, we do not have access to the sajrof interest X 2 R? but
only to some observationsz 2 RN related to X through the following model:

z= D(HX); 1)

whereH 2 RN Q s the observation matrix that may express a blur or a projection aml D is the
noise model representing measurement errors. Our objective is thd an estimator R of X from
the observationsz. Such inverse problem arises in several signal processing applicasosuch as
denoising, deblurring, and tomography reconstruction [1, 2].

The common Bayesian procedure for signal estimation consists in deing estimators from
the posterior distribution that captures all information inferred a bout the target signal from the
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collected data. Given the observation model (1), the minus logaritm of the density posteri@r
distribution reads:

(8x 2 RP) J(x)= logp(xjz)= ( Hx:z)+ ( Vx): 2)

Hereabove, is the neg-log likelihood that may take various forms depending on thenoise
statistical model D. In particular, if D models an additive Gaussian noise with covariance 1
it reduces (up to an additive constant) to the least squares fundbn ( Hx;z) = %ka zk? .
Other common choices can be found for instance in [3, 4]. Moreovef, V ) is related to some
prior knowledge one can have about, andV 2 RM N is a linear transform that can describe, for
example, a frame analysis [5] or a discrete gradient operator [6]. Withia Bayesian framework, it
is related to a prior distribution of density p(x) whose logarithm is given bylogp(x) =  ( Vx).

Monte Carlo inference approaches allow us to have a good descriptiof the target space from
a set of samples drawn from a distribution [7, 8, 9, 10, 11, 12]. In paitular, these samples can
be used to infer useful statistics such as the mean and the variaac In the context of Bayesian
estimation, these techniques appear useful to compute, for ergple, the Minimum Mean Square
Error (MMSE) estimator which is equivalent to the posterior mean. In this case, the MMSE
estimator is approximated using the empirical average over the gemated samples from the
posterior distribution. When the exact expression of the posteriodensity is intractable, Markov
Chain Monte Carlo (MCMC) have been widely used to approximate it [13]. These techniques
are random variable generators that allow us to draw samples fromamplicated distributions.
Perhaps, the most commonly used MCMC algorithm is the Metropolis-Histings (MH) one which
operates as follows [14]: from a given proposal distribution, we cotract an irreducible Markov
chain whose stationary distribution is the sought posterior law i.e., afer a su cient number of
iterations, the samples generated by the algorithm follow the desiig posterior distribution. At
each iteration t, a decision rule is applied to accept or to reject the proposed samplgiven by
the following acceptance probability

!

p(Vjz)g(xWjxV)

(1) (DY = mi
P =M @ ) e )

®3)

where x() is the proposed sample at iterationt, generated from a proposal distribution with
density g(;jx(V) that may depend on the current state x(!. Note that, when more than one
unknown variable has to be estimated (e.g., acquisition parametersr@rior hyperparameters),
one can draw iteratively samples from the conditional posterior distibution for each variable
given the remaining ones using an MH iteration. This is known as the hylid Gibbs sampler [15].
High dimensional models, often encountered in inverse problems,.(e, in multispectral remote
sensing applications [16]) constitute a challenging task for Bayesian ference problems. While
many popular sampling algorithms have been widely used to t complex miiivariable models
in small dimensional spaces [17, 18, 19, 20, 21, 22], they generallyl fm explore the target
distribution e ciently when applied to large scale problems, especially when the variables are
highly correlated. This may be due to the poor mixing properties of tle Markov chain or to the
high computational cost of each iteration [17].

In this work, we propose a novel approach based on a data augmextion strategy [23] which
aims at overcoming the limitations of standard Bayesian sampling algathms when facing large
scale problems. The remainder of this paper is organized as follows. Bection 2, we discuss
the main di culties encountered in standard sampling methods for large scale problems. We
show how the addition of auxiliary variables to the model can improve heir robustness with
respect to these issues. The core of our contribution is detailed ineBtion 3. We rst give a
complete description of the proposed approach in the case of Gaian noise and we study its



extension to scale mixtures of Gaussian models. Furthermore, westhonstrate how the proposéd
approach can facilitate sampling from Gaussian distributions in Gibbs &orithms. Then, some
computational issues, arising in the proposed Bayesian approachre discussed. Sections 4 and 5
are devoted to the experimental validation of our method. In Sectio 4, we show the advantages
of the proposed approach in dealing with high dimensional models invoing highly correlated
variables over a dataset of multispectral images a ected by blur ad additive Gaussian noise.
In Section 5, we test the performance of our method in sampling fromarge scale Gaussian
distributions through an application to image recovery under two-term mixed Gaussian noise.
Finally, we give some conclusions and perspectives in Section 6.

2 Motivation

2.1 Sampling issues in high dimensional space

MCMC sampling methods may face two main di culties when applied to large scale inverse
problems. First, except for particular cases (e.g. circulant obseation matrix), the structure
of the observation model that links the unknown signal to the obsevations usually makes the
estimation of the parameters of the posterior distribution quite inwlved. Second, even with
simple models, the posterior distribution may still be dicult to sample f rom directly or to
explore e ciently using standard sampling algorithms. As a speci c cas, this problem arises
for Gaussian distributions, if the problem dimension is too high [24]. It ca also arise in MH
algorithms when sophisticated proposal rules are employed with thaim to cope with both the
high dimensionality and the strong correlation existing between the arget parameters [22]. In
what follows, we will give more details about these two contexts.

2.1.1 Sampling from high dimensional Gaussian distribution

Let us focus on the problem of sampling from a multivariate Gaussian disibution with a given
precision matrix G 2 R Q. This problem emerges in many applications such as linear inverse
problems involving Gaussian or hierarchical Gaussian models. More @cisely, let us consider
the following linear model:

Z= Hx + w; (4)

wherew is RN -valued and let us assume that conditionally to some latent variablesw and x
are drawn from Gaussian distributionsN (Oy; 1) and N (my; G, 1) respectively wheremy 2
R, 2 RV N and Gy 2 R? Q are positive semi-de nite matrices! The parameters of
these Gaussian distributions may be either xed or unknown (i.e., invohng some unknown
hyperparameters such as regularization or acquisition parametsj. It follows that the posterior
distribution of x is Gaussian with meanm 2 R® and precision matrix G 2 RN N de ned as
follows:

G=H>H + Gy (%)

m=G ' H>z + Gymy : (6)

A common solution to sample fromN (m;G 1) is to use the Cholesky factorization of the
covariance or the precision matrixG [25]. However, when implemented through a Gibbs sampler,
this method is of limited interest. First, the precision matrix G may depend on the unknown
parameters of the model and may thus take di erent values along he algorithm. Thereby,

1n the following, when not mentioned, the Gaussian law can be degenerated that is, the precision matrix is
semi-de nite positive but not with full rank. In this case, () * denotes the generalized inverse.



spending such high computational time at each iteration of the Gibbssampler to compute tHb
Cholesky decomposition of the updated matrix may be detrimental 6 the convergence speed of
the Gibbs sampler. Another concern is that, when dealing with high dinensional problems, we
have generally to face not only computational complexity issues butlso memory limitations.
Such problems can be alleviated when the matrix presents some specstructures (e.g., circulant
[26, 27] or sparse [28]). However, for more complicated structusethe problem remains critical
especially whenH> H and G4 cannot be diagonalized in the same basis. Other recently
proposed algorithms for sampling Gaussian distributions in high dimensn follow a two-step
perturbation-optimization approach [29, 30, 31, 32, 33, 34], whicltan be summarized as follows

Perturbation: Draw a Gaussian random vectorn; N (0g;G).
Optimization: Solve the linear systemGn,=n;+ H> z + Gymy.

The solution to the above linear system can be approximated using itative methods such as
conjugate gradient algorithms, so leading to an approximate samplef the sought distribution

[30, 31]. This issue has been considered in [32] by adding a Metropolieptin the sampling
algorithm. In [33, 34], the authors propose to reduce the computabnal cost by sampling along
mutually conjugate directions instead of the initial high dimensional gace.

2.1.2 Designing e cient proposals in MH algorithms:

Non-Gaussian models arise in humerous applications in inverse problem35, 36, 37, 38]. In
this context, the posterior distribution is non-Gaussian and does ot generally follow a standard
probability model. In this respect, MH algorithms are good tools for exloring such posteriors
and hence for drawing inferences about models and parameters.otever, the challenge for MH
algorithms is to construct a proposal density that provides a goodapproximation of the target

density while being inexpensive to manipulate. Typically, in large scale pblems, the proposal
distribution takes the form of a random walk (RW), that is, in each iter ation, the proposal density
g(:ixM) in (3) is a Gaussian law centered at the current statex(! and with covariance matrix

"2Q(x(). Moreover, " is a positive constant whose value is adjusted so that the acceptan
probability in (3) is bounded away from zero at convergence [17]. Otlr sampling algorithms
incorporate information about the derivative of the logarithm of th e target distribution to guide

the Markov chain toward the target space where samples should bmostly concentrated. For
instance, when the target density is di erentiable, one can use Langvin-based algorithms where
the mean of the Gaussian proposal density is replaced with one itetian of a preconditioned

gradient descent algorithm as follows [39, 40, 41, 20, 22, 42]:

»() N x (1 "22Q(X(t)) 13 (X(t));--ZQ(X(t)) L. @

In (7), rJ is the gradient of J , " is a positive constant andQ is a symmetric de nite positive
matrix that captures possible correlations between the coe ciens of the signal. Note that some
advanced versions of Langevin based algorithms have been propdge address problems with
non smooth laws [43, 44]. It is worth noting that the choice of the scalamatrices Q(x®) ‘
may deeply a ect the e ciency of the aforementioned algorithms [22]. In fact, an inappropri-
ate choice ofQ may alter the quality of the Markov chain leading to very correlated samples
and thereby biased estimates. Moreover, computationally cheap airices are also preferable
especially in high dimensional spaces. In the case of low dimensional pitems and when the
coe cients of the signal are not highly correlated, the standard RV and Metropolis adapted
Langevin algorithm (MALA) obtained for Q Ig achieve overall good results. For instance,



in the context of denoising problems with uncorrelated Gaussian noes when the coe cients ot
the signal are assumed to be statistically independent in the prior, ey can be either sampled
independently using RW or jointly by resorting to MALA. However, the se algorithms may be
inaccurate for large scale problems especially when the coe cientsfdhe signal exhibit high
correlations [22]. In this case, the design of a good proposal ofteequires considering the cur-
vature of the target distribution. More sophisticated (and thus more computationally expensive)
scale matrices should be chosen to drive the chain in the directions &h re ect the dependence
structure. Optimally, the curvature matrix should be chosen suchthat it adequately captures
two kinds of dependencies: correlation over the observations sgieed by the observation model
and, correlation between di erent coe cients of the target signal speci ed by the prior law. For
instance, Q can be set to the Hessian matrix of the minus logarithm of the posteor density in
the current state [20, 21], or to the Fisher matrix especially when tle Hessian matrix is not def-
inite positive [22, 42] or to the empirical covariance matrix computedaccording to the previous
states of the Markov chain [45]. When the minus-log of the target desity can be expressed as
in (2), good candidates of the curvature matrix take the following brm:

Q=H>H +V>V (8)

where and are semi-de nite positive matrices. Feasible numerical factorizationof Q can
be ensured ifH> H and V> V are diagonalizable in the same basis. Otherwise, the use
of the full matrix (8) in the scheme (7) remains generally of limited interest especially for
large scale problems where the manipulation of the resulting proposaenerally induces a high
computational complexity altering the convergence speed. Alteratively, under mild conditions
on the posterior density, the Majorize-Minimize strategy o ers a hgh exibility for building
curvatures matrices with a lower computational cost (e.g., diagonkmatrices, bloc-diagonal
matrices, circulant...) [41]. It should however be pointed out that MH algorithms with too
simple preconditioning matrices resulting from rough approximationsof the posterior density
may fail to explore the target space e ciently. Therefore, the sale matrix Q should be adjusted
to achieve a good tradeo between the computational complexity iduced in the algorithm and
the accuracy/closeness of the proposal to the the true distribtion.

2.2 Auxiliary variables and data augmentation strategies

It can be noted that the main diculty arising in the aforementioned sa mpling problems is
related to the presence of heterogeneous types of dependeschetween the coe cients of the
signal. These dependencies may come either from the likelihood or frothe prior information. In
fact, the operator H in the likelihood may cause high dependencies between coe cients in aide
neighborhood even if the coe cients of the signal are assumed to é statistically dependent in
the prior law. The problem can be treated in another domain wheréH can be easily diagonalized
i.e., the coe cients of the signal become uncorrelated in the likelihood However, when we take
into account the prior dependencies, this strategy becomes ine ent especially when the prior
covariance matrix cannot be diagonalized in the same basis &$, which is the case of most real
problems. One should therefore process these two sources ofretations separately.

To improve the mixing of sampling algorithms, many works have propoed to eliminate
one of these sources of correlation directly related tax by adding some auxiliary variables to
the initial model, associated with a given conditional distribution such that simulation can
be performed in a simpler way in the new larger space. Instead of simuiag directly from
the initial distribution, a Markov chain is constructed by alternately drawing samples from
the conditional distribution of each variable, which reduces to a Gibls sampler in the new
space. This technique has been used in two di erent statistical liteatures: data augmentation



[46] and, auxiliary variables strategies [47]. It is worthwhile noting that the two methods a®
equivalent in their general formulation and the main di erence is often related to the statistical

interpretation of the auxiliary variable (unobserved data or latent variable) [23]. In the following,

we will use the term Data Augmentation (DA) to refer to any method that constructs sampling
algorithms by introducing auxiliary variables. Some DA algorithms have been proposed in
[48, 49, 50, 51, 52, 53, 54]. A specic attention has been turned tawds the Hamiltonian

MCMC (HMC) approach [55, 22], that de nes auxiliary variables based m physically inspired
dynamics.

In the following, we propose to alleviate the problem of heterogenesudependencies by
resorting to a DA strategy. More speci cally, we propose to add sora auxiliary variables u 2
R? with prede ned conditional distribution of density p(ujx;z) = p(ujx) so that the minus
logarithm of the joint distribution density p(x;ujz) can be written as follows:

J (x;u) = J (ujx)+ J (x) )

whereJ (ujx) = logp(ujx) up to an additive constant. Two conditions should be satis ed by
p(x;ujz) for the DA strategy to be valid:

R

(C1) g P(X;ujz) du = p(xj2z);
R

(C2)  go P(X;ujz) dx = p(ujz),

where p(ujz) should de ne a valid probability density function (i.e., nonnegative and with in-
tegral with respect to u equal to 1). In fact, the importance of Condition (C;) is obvious
because the latent variable is only introduced for computational puposes and should not alter
the considered initial model. The need for the second requiremertC,) stems from the fact that
p(x;ujz) should de ne the density of a proper distribution. Note that

the rst condition is satis ed thanks to the de nition of the joint distrib ution in (9)
provided that p(ujx;z) is a density of a proper distribution;

for the second condition, it can be noticed that if the rst condition is met, Fubini-Tonelli's
theorem allows us to claim that
Z Z Z Z Z

p(x;ujz) dx du = p(x;ujz) du dx = p(xjz) dx =1: (10)
Q J RQ

RJ R RQ R

This shows that p(ujz) as de ned in (C>) is a valid probability density function.

Instead of simulating directly from P,;,, we now draw alternatively (in an arbitrary order)
samples from the conditional distributions of the two variablesx and u of respective densities
Pyju;z and Pyjy.,. This simply reduces to a special case of a hybrid Gibbs sampler algahnitn with
two variables where each iterationt is composed of two sampling steps which can be expressed
as follows:

t+1 :
Sampleu™? from P .. ).,

t+1
Samplex®*1) from Py, ) .-

Under mild technical assumptions [56, 9], the constructed chainx®;u® _ "can be proved to
have a stationary distribution P,.,;,. The usefulness of the DA strategy is mainly related to
the fact that, with an appropriate choice of p(ujx; z), drawing samples from the new conditional
distributions Py;,., and Py, is much easier than sampling directly from the initial distribution
P.j.. Let us emphasize that, for the sake of e ciency, the manipulation d p(ujx;z) must not



induce a high computation cost in the algorithm. In this work, we propcse to add auxiliar}
variables u to the model such that the dependencies resulting from the likelihod and the prior
are separated, that is,J (ujx) is chosen in such a way that only one source of correlations
remains related directly to x in p(x;ujz), the other sources of correlations only intervening
through the auxiliary variables u and z. Note that the advantage of introducing auxiliary
variables in optimization or sampling algorithms has also been illustratedn several works in the
image processing literature, related to half quadratic approachef7, 26, 58, 59, 60, 61]. This
technique has also been adopted to facilitate sampling in classical MHIgorithm and Gibbs
sampler in the maximum likelihood estimation approach proposed in [62]. ally, in [63], a
half-quadratic formulation was used to replace the prior distribution, leading to a new posterior
distribution from which inference results are deduced.

The contribution of our work is to propose an extended formulationof the data augmenta-
tion method, that was introduced in [61] in the context of variational image restoration under
uncorrelated Gaussian noise. Our proposal leads to a novel acaeltion strategy for sampling
algorithms in large scale problems.

3 Proposed approach

In this section, we discuss various scenarios typically arising in inverggroblems and we explain
how our approach applies in these contexts.

3.1 Correlated Gaussian noise

Let us consider the linear observation model (4) when the noise termv is assumed to be
Gaussian, additive and independent from the signal thatisv N (Oy; 1Y) with 2 RN N a
symmetric semi-de nite positive precision matrix that is assumed to beknown. In this context,

the minus logarithm of the posterior density takes the following form

(8x 2 R?) J(x)= %(Hx z)> (Hx z)+ ( Vx): (11)

Simulating directly from this distribution is generally not possible and standard MCMC
methods may fail to explore it e ciently due to the dependencies betveen signal coe cients [22].
In particular, the coupling induced by the matrix H> H may hinder the constructiqgm of suitable
proposals when using MH algorithms. For example, wherv = Ig and ( x) = i%l i(Xi),
RW and standard MALA algorithms may behave poorly as they do not teke into account data
delity dependencies, while a preconditioned MALA approach with full curvature matrices may
exhibit high computational load due the presence of heterogeneswlependencies [40].

In the following, we propose to eliminate the coupling induced by the lineroperators(H; )
by adding auxiliary variables. Since the data delity term is Gaussian, a ratural choice is to
de ne p(ujx;z) as a Gaussian distribution with meanAx and covariance matrix C:

det(C) 12

1 }
2 ) exp =kC ¥?(u Ax)k? (12)

p(ujx;z) = 5

where C 2 R’ J is a symmetric positive de nite covariance matrix and A 2 R? Q. Then, the
joint distribution satis es the two conditions (C;) and (C,) de ned in Section 2 and its minus
logarithm has the following expression:
1
(8x 2 RY)(Bu 2 R?) J (x;u)= 5 x>Yx +z7z +u”C 'u 2x> H>z +A>C L
+ ( Vx); (13)



with 8
Y=H>H +A~C !A: (14)
The expression in (12) yields the sampling scheme:

8t2N) u®b = Ax®+ c2pM); (15)

with n® N (03;1;). The e ciency of the DA strategy is thus highly related to the choice of
the matrices A and C. Under the requirement that C is positive de nite, the choice of (A;C)
is subjective and is related to specifying the source of heterogemas dependencies that one
wants to eliminate in the target distribution based on the propertiesof H, ,V,and . More
speci cally, one should identify if the main di culty stems from the stru cture of matrix H> H

or only from the non trivial form of the precision matrix . In what follows, we will elaborate
di erent solutions according to the type of encountered di culty.

Alternative I.  Eliminate the coupling induced by
Let us rst consider the problem of eliminating the coupling induced by marix . This
problem is encountered for example for Model (5) with circulant maticesH and Gy and with
6 |y, which induces further correlation when passing to the Fourier dorain. In this context,
we propose to eliminate the correlations induced by by setting

v = 1H7H (16)

where > 0Qis such that k ks< 1, wherek ks denotes the spectral norm. This is equivalent
to choosingA and C such that

A>C A =H> 1|N H: (17)

Note that the condition over allows to guarantee thatC is positive de nite. Under (16), the
minus logarithm of the conditional distribution of x given z and u reads, up to an additive
constant:

(8x 2 R)(8u 2 R’) J (xju) = Lixk2 x> H>z +A°C + ( VX): (18)
2

Let us discuss the application of the hybrid Gibbs sampling algorithm fran Section 2 to this
particular decomposition. The sampling scheme (15) yields:

(8t2N) A”C Wt =a>c Ax®+A>C 2O (19)

wheren® N (0;:1;). SinceA and C satisfy (17), this leads to:
1 _
(8t2N) A>C W™ =nH> Iy Hx ® + A>C ¥2nO; (20)

We can remark that, for everyt 2 N, A>C 1220 (M follows the centered Gaussian distribution

. . . 1
with covariance matrix H> =l H. It follows that

(8t2N) A”C Ww®=H>y® (21)

where
B8t2N) vi*D N Hx ®; (22)
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and = —ly is de nite positive by construction. Then, the resulting algorithm can

be viewed as a hybrid Gibbs sampler, associated to the minus logarithrof the conditional
distribution of x given z and a new auxiliary variablev N (Hx ; ):

(8x 2 RQ) J (xjv) = Zika (z +Vv)K2+ ( Vx): (23)

The main steps of the proposed Gibbs sampling algorithm are given in Atyithm 1. The

appealing advantage of this algorithm with respect to a Gibbs samplewhich would be applied
directly to Model (5) when H and Gy are diagonalizable in the same domain, is that it allows
to easily handle the case when is not equal to a diagonal matrix having identical diagonal
elements.

Algorithm 1 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced
by
Initialize: x© 2 R, v® 2 RN, > Osuchthat k ks< 1

1. for t=0:;1;::: do

2 Generatev™) N  Hx ®O:  where

1
= *IN

. t+1
3 Generatex"D P .,

4: end for

Note that, minimizing (23) can be seen as a restoration problem with a uncorrelated noise
of variance . It can be expected that Step3 in Algorithm 1 can be more easily implemented
in the transform domain whereH and V are diagonalized, when this is possible (see Section 5
for an example)

Alternative 1l : Eliminate the coupling induced by H> H

In a large class of regularized modelsd and V have di erent properties. While H almost
re ects a blur, a projection, or a decimation matrix, V. may model a wavelet transform or a
discrete gradient operator. Such di erence in their properties indices a complicated structure
of the posterior covariance matrix. To address such cases, weqgpose to eliminate the source of

: . 1
correlations related tox through H> H + A”C !A, by setting Y = ~lg, so that A and C
satisfy
1
AC 'A=ZIg H H ; (24)

where > O0is such that kH> H ks < 1, so that C is positive de nite. It follows that the
minus logarithm of the conditional distribution of x given z and u is de ned up to an additive
constant as

(8x 2 R9)(8u 2 R’) J (xju) = zikxk2 x> H>z +A”C u + ( Wx): (25)

Let us make the following change of variables within the Gibbs sampling ntaod:

8t2N) v =aA>c u®:



According to (15) and (24), we obtain 10

1 _
(8t2N) v = Z|5 H>H x®+ A>C =230 (26)

1 S " . .
wheren® N (0;;1;). Letusdene = ZIg H> H , which is positive de nite. Since
A>C 20 follows a zero-mean Gaussian distribution with covariance matrix , then

8t2N) vt N x O (27)
and the new target conditional distribution reads

(8x 2 RQ) J (xjv) = zikx (v+H> z)k?+ ( Vx): (28)

The proposed Gibbs sampling algorithm is then summarized by Algorithm2.

Algorithm 2 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced
by H> H

Initialize: x© 2 RQ, v@® 2 RQ, > Osuchthat kH> H k< 1

1: for t=0;1;::: do

2.  Generatev(™) N x ®O:  where
=Y HH

3 Generatex"D P .,

4: end for

Note that in (28), the two operators re ecting the correlation between the coe cients of the
target signal induced from the likelihood and the prior are now dissoated. Correlations from
the likelihood are no longer related directly to the target signal but to the auxiliary variable
v and the observationz. In other words, the original problem reduces to solving a denoising
problem where the variance of the Gaussian noise is Thereby, the new target distribution (28)
is generally simpler to sample from compared to the initial one. In particlar, one can sample
them independently when the coe cients of the signal are independnt in the prior. Otherwise,
if  is a smooth function, one can use a Langevin-based MCMC algorithm. df instance, it
may be possible to construct an e cient curvature matrix that tak es into account the prior
correlation and that can be easily manipulated.

Table 1 summarizes the two di erent cases we have presented her&Ve would like to em-
phasize that the approach we propose for adding auxiliary variableaccording to the structure
of the matrix H and is su ciently generic so that it covers a wide diversity of applications.

It is worth noting that the auxiliary variable could be introduced in the d ata delity term
as well as in the prior information. The derivation of the proposed méhod in (13) allows
us to identify classes of models for which our approach can be extéad. Obviously, the key



Table 1: Di erent alternatives for adding auxiliary variables 11

Problem Proposed auxiliary variable Resulting conditional density
source p(xjz;v) /! exp(Jd (xjv))

v N 1IN HX;EIN J(xjv)=2ika (z +Vv)Kk2+ ( Vx)
H H |[v N  Yig H>H xtig H>H J(XjV)=2ikX (v+H>z )2+ (Vx)

requirement is that the term which should be simpli ed can be written asa quadratic function
with respect to some variables. Hence, without completely relaxingtte Gaussian requirement, we
can extend the proposed method to Gaussian models in which some digh variables control the
mean and/or the variance. This includes for example scale mixture oGaussian models [64, 65]
such as the alpha-stable family (including the Cauchy distribution), the Bernoulli Gaussian
model and the generalized Gaussian distributions, and also Gaussidutarkov random elds [56].
In Section 3.2, we will investigate the case of scale mixture of Gaussiamodels. When both
the likelihood and the prior distribution are Gaussian conditionally to some parameters, the
proposed method can be applied to each term as explained in Sectior33
Another point to pay attention to is the sampling of the auxiliary varia ble v. In particular,

in Algorithm 2, we should be able to sample from the Gaussian distributio whose covariance

. 1 _ . .
matrix is of the form =Iq H” H , which is possible for a large class of observation models

as discussed in Section 3.4.

3.2 Scale mixture of Gaussian noise
3.2.1 Problem formulation
Let us consider the following observation model:

8i2f1L:::;Ng) zi =[Hx] +w (29)

w; =0 if ;=
wi N (0; 2 if (>0 (30)
where ( 1;:::; N) are independent random variables distributed onR* according toP . Dif-
ferent forms of the mixing distribution P lead to di erent noise statistics. In particular, the
Cauchy noise is obtained when 2;:::; 2 are random variable following an inverse Gamma
distribution. Let =[ 1;:::; n17. By assuming that x and  are independent, the joint
posterior distribution of x and is given by:
p(x; jz)= p(xjz)p( j2): (31)

In such a Bayesian estimation context, a Gibbs sampling algorithm is gesrally adopted to
sample alternatively from the distributions Py; ., and P ..

In the following, we assume that the setSp = f 1= ,=:::= N =0g has a zero proba-
bility given the vector of observations z. Note that by imposing such rule, we ensure that, at
each iteration t of the Gibbs algorithm, () 6 0Oy almost surely.

Since sampling fromP,; ., is supposed to be intractable, we propose to add auxiliary vari-
ablesv 2 R’ that may depend on the variables of interestx and  according to a given
conditional distribution density p(vjx; ;z)= p(vjx; ) which satis es the following conditions:
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1- o p(x; ;vjz)dv = p(x; jz).

R R , _
2- o RN p(x; ;vjz) dxd = p(vjz),
where p(vjz) should be a valid probability density function.

Using the same arguments as in Section 2.2, these two propertieseasatis ed provided
that p(vjx; ;z) denes a proper probability density function. It follows that the initial two
step-Gibbs iteration is replaced by the following three sampling stepsFirst, sample v(t*) from
Pyixw: ;, then samplex™Y from P,; ()., , and nally sample  *D from P, @) o) -

3.2.2 Proposed algorithms

Let D( ) be the diagonal matrix whose diagonal elements are given by
0 if =0

@21L::5Ng DO = (2 ¢ 5o (32)
Note that, since Sy has zero probability, we have almost surely
kD( ks> O: (33)

Suppose rst that there exists a constant > 0 such that

(8t>0)(8i2f1::::Ng) 6 U: (34)

Then, results in Section 3.1 with a Gaussian noise can be extended toae mixture of Gaus-
sian noise by substituting, at each iterationt, D) for , and by choosing < 2 in Algorithm
1 and kHkZ < 2 in Algorithm 2. The only dierence is that an additional step must be

conditional distributions given x, v and z.

Otherwise, when > 0 satisfying (34) does not exist, results in Section 3.1 remain also valid
when, at each iterationt, for a given value of (), we replace by D( ™). There is however
a main di erence with respect to the case when > 0 which isthat depends on the value of
the mixing variable () and hence can take di erent values along the iterations. Subsequdy,

( ) will denote the chosen value of for a given value of . Here again, two strategies can be
distinguished for setting (1)) 2 depending on the dependencies one want to eliminate
through the DA strategy.

Alternative | _: Eliminate the coupling induced by D( M)
A rst option is to choose, at each iteration t, ( (V) positive such that
2
. t
(0= ormg ™ Mz %)

with  2]0;1[ and

0= i2f1:::;Ngj >0 (36)
The auxiliary variable is then drawn as follows:

v N (O Hx @5 (O (37)

In  D( M) is positive de nite by construction. The minus logarithm

1
where ( )= O

of the posterior density p(xj ;Vv;z) is given by

(Bx 2 RY) J(xj :v)= 5 i )ka ()v+D( )z K+ ( Vx): (38)
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Similarly, in order to eliminate the coupling induced by the full matrix H>D( )H, ( ®)
can be chosen at each iteratiort 2 N so as to satisfy

()=

2
— ; t
KHKEKD ( Jks  kHKZ ™" o (39)

with  2]0;1[ and | is given by (36). Then, the auxiliary variable is drawn as

vt N ( Oyx®; ¢ ©y (40)

1 . . . . .
where ( ) = mIQ H>D( M)H is positive de nite. The minus logarithm of the

posterior density p(Xj ;Vv;z) then reads

(8x 2 RO J(xj ;v)= kx ()v+H D( )z K2+ ( Vx): (41)

1
2()
It is worth noting that and v are two dependent random variables conditionally to bothx
and z. The resulting Gibbs samplers, corresponding to Alternatives | andl, respectively, are
summarized in Algorithms 3 and 4.

Algorithm 3 Gibbs sampler with auxiliary variables in order to eliminate the coupling induced
by D( ) in the case of a scale mixture of Gaussian noise.

Initialize: x@ 2R, v@ 2 RN, @ 2RN 0< < 1, ( @)= min( V),,,0

2

1: for t=0:;1;::: do

2:  Generate
1
(O

vt N ( (t))HX(t); ( (t)) where ( (t))= In DY (t))
3 Generatex"D P . .

4. Generate D Py,
5. Set (D)= min( "), 2

6: end for

3.2.3 Partially collapsed Gibbs sampling

It can be noted that it is generally complicated to sample fromP j.,., due to the presence of
( ) and D( ) in the conditional distribution of v. One can replace this step by sampling from
P ix.z, thatis directly sampling  from its marginal posterior distribution with respect to v and
conditionally to x and z. In this case, we say that we are partially collapsing/ in the Gibbs sam-
pler. One of the main bene ts of doing so is that, conditionally tox and z, has independent
components. However, as is sampled independently fromv, the constructed Markov chain
x®; O;v _may have a transition kernel with an unknown stationary distribution [66].
This problem can also be encountered when the auxiliary variable depends on other unknown
hyperparameters changing along the algorithm such as prior coveance matrix or regularization



Algorithm 4 Gibbs sampler with auxiliary variables in order to eliminate the coupling inducét
by H>D( )H in the case of a scale mixture of Gaussian noise.

Initialize: x©@ 2 R, v@ 2R, @ 2RY 0< < 1, ( @)= kHkg? min( i(o))i2|(o) 2

1. for t=0:;1;::: do

2. Generate
1
(t+1) OMOF (t) My= = > (t)
v N ¢ WOyxW; W)y where (V) ((t))IQ H”D( M)H

3 Generatex™D P .
4. Generate D Py e
5. Set ( D)= kHkg? min( "), 0

6: end for

parameter when the auxiliary variable is added to the prior instead ofthe likelihood. However,
there exist some rules based on marginalization, permutation and imming, that allow to re-
place the conditional distributions in the standard Gibbs sampler with conditional distributions
marginalized according to some variables while ensuring that the targt stationary distribution
of the Markov chain is maintained. The resulting algorithm is known as tie Partially Collapsed
Gibbs Sampler (PCGS) [66]. Although this strategy can signi cantly deaease the complexity of
the sampling process, it must be implemented with care to guarantethat the desired stationary
distribution is preserved. Applications of PCGS algorithms can be foud in [67, 68, 69].
Assume that, in addition to x, , v, we have a vector 2 RP of unknown parameters to
be sampled. Note that, p(x; ; ;vjz) should be integrable with respect to all the variables.
Following [66], we propose to use a PCGS algorithm that allows us to repta the full conditional
distribution P jy.,. ., with its conditional distribution P ;. ., without a ecting the conver-
gence of the algorithm to the target stationary law. Algorithm 5 shaws the main steps of the
proposed sampler. It should be noted that, unlike the standard Giblk algorithm, permuting the
steps of this sampler may result in a Markov chain with an unknown stdonary distribution.

Algorithm 5 PCGS in the case of a scale mixture of Gaussian noise
Initialize: x©@ 2 RQ, v@® 2 RQ, © 2 RN (0 2 RP

1: for t=0:;1;::: do
(t+1) p

2. Foralli2fl1;:::;Ng, generate ; x®: 03z

3:  Generate (*) p XV (1) 7
4 Set ( Wyand ( M)

5. Generatev(™) P . . @y,
6: Generatex(*) p Xjv(tH) 5 (4D - (t+D) o7

7: end for
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The proposed DA approach can also be applied to the problem of dramg random variables from
a high dimensional Gaussian distribution with parametersm and G as de ned in (5) and (6).
The introduction of auxiliary variables can be especially useful to faititate the sampling process
in a number of problems that we discuss below. In order to make our psentation clearer, an
additional index will be added to the variablesv and introduced in Section 2.

If the prior precision matrix Gy and the observation matrix H can be diagonalized in the
same basis, it can be of interest of adding the auxiliary variablev; in the data delity
term. Following Algorithm 1, let 1> Osuch that 1k ks< 1and

1 1
vi N —In Hx ; —In : (42)

1 1
The resulting conditional distribution of the target signal x given the auxiliary variable v
and the vector of observationz is a Gaussian distribution with the following parameters:

1
€= —H>H + Gy: (43)
1

m=6 ! H >z + Gymy+ H vy : (44)

Then, sampling from the target signal can be performed by passingo the transform
domain whereH and G4 are diagonalizable (e.g., Fourier domain wherH and G4 are
circulant) .

Similarly, if it is possible to write Gx = V~ V , soasH andV can be diagonalized in the
same basis, we suggest to introduce an extra auxiliary variablg, independent ofv; in
the prior term to eliminate the coupling introduced by = when passing to the transform
domain. Let , > 0 be such that 2k ks < 1 and let the distribution of v, conditionally

to x be given by

1 1
vo N —InN VX ; —In : (45)
2 2

The joint distribution of the unknown parameters is given by

p(X;v1;v2jz) = p(xjz)p(viix; Z)p(vaix; z): (46)

It follows that the minus logarithm of the conditional distribution of x givenz, v; andvs
is Gaussian with parameters:

1 1
€= “H H+ —V~V (47)
1 2
and
m=6 ! H>z + Gymy+ H vi+ Vv, : (48)

If Gx and H are not diagonalizable in the same basis, the introduction of an auxiliar
variable either in the data delity term or the prior allows us to eliminate t he coupling
between these two heterogeneous operators. Let > 0 such that kH> H ks< 1 and

1 1
vi N —lg H>H x;—Ilg H>H (49)
1 1



Then, the parameters of the Gaussian posterior distribution ofx given v, read: 16

1

m=6 ! H z + Gymy+ vy : (51)

Note that if Gx has some simple structure (e.g,. diagonal, block diagonal, sparse, @ir
lant,...), the precision matrix (50) will inherit this simple structure.

Otherwise, if Gx does not present any speci ¢ structure, one could apply the propsed DA
method to both data delity and prior terms. It su ces to introduce a n extra auxiliary
variable v, in the prior law, additionally to the auxiliary variable vj in (49). Let >0
be such that 2kGyks < 1 and

1 1
vo N —lg Gy X;—lg Gy : (52)
2 2

Then, the posterior distribution of x given vi and v, is Gaussian with the following

parameters:
€ = 1|Q (53)
and
m= Vvi+tVva+tH>z +G,ymy (54)
where L
= 3 2: (55)

3.4 Sampling the auxiliary variable

It is clear that the main issue in the implementation of all the proposed Gbbs algorithms arises
in the sampling of the auxiliary variable v. The aim of this section is to propose e cient
strategies for implementing this step at a limited computational cost in the context of large
scale problems.

For the sake of generality, we will consider thatv follows a multivariate Gaussian distribution

: : : 1 :
with covariance matrix of the form = =l H” H where > Osatises kH” H ks< L
Our rst suggestion is to set such that

kHk < < ; 56
S K ksv ( )
p_
ith > 0. Fo le, t6 ———and = —— where0O< < 1 Thi
wi r example, one can se KHIZK Ks an K ke where is
allows to verify the requirement kH> H ks < 1. Moreover, it leads to
1 1 1
“lg HH == —lg HH +H> =ly H: (57)

Thus, the sampling step of the auxiliary variable at iteration t 2 N can be replaced by the three
following steps:

1
1) Generaten™) N  0Oy;=Iy
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2) Generatey™) N 0g;=lg H”H with = -6 —>.
KH kg
3) Compute
1 1
v () = *IQ H> H x (t+1) 4 piy(t+1) + H> n(t+D)

Hereabove,y("*1) and n(*1) are independent random variables. One can notice that the sam-
pling problem of the auxiliary variables is now separated into two indepadent subproblems of
sampling from large scale Gaussian distributions. The rst sampling stp can usually be per-

formed e ciently. For instance, if is diagonal (e.g., when the model is a scale mixture of
Gaussian variables), coe cients ni(“l) """
discuss the implementation of the second sampling step, requiring teample from the zero mean

Gaussian distribution with covariance matrix ~1o  H”H.

In the particular case whenH is circulant, sampling can be performed in the Fourier do-
main. More generally, sinceH” H is symmetric, there exists an orthogonal matrixN such
that NH > HN ~ is diagonal with positive diagonal entries. It follows that sampling fromthe

Gaussian distribution with covariance matrix =g H”H can be ful lled easily within the
basis de ned by the matrix N.

Suppose thatH satises HH > = |y with > 0, which is ths case for example of tight frame
synthesis operators or decimation matrices. Note that 6 = < 1. We have then:

1 > 1. P f S

—lg H"H = p=lg H°H +(1 JH H: (58)

It follows that a sample from the Gaussian distribution with covariancematrix =g H”H
can be obtained as follows:

1 p— —

y(t+D) = Pl H>H y(lt+l) + p 1 H>ygt+1) (59)

wherey(l”l) 2 RQ and yé”l) 2 RN are independent Gaussian random vectors with covariance
matrices equal tolg and Iy respectively.

Suppose thatH = MP with M 2 RN K and P 2 RK Q. Hence, one can set > 0 and
€> 0 such that

1
2 < €ec .
kPk I (60)
p_
For example, for = ,we have = ——— . Then, we can set® =
P KPKZKM k2K Ks KP KZkM K2
1=4

——. It foll h
kng t follows that

1 > 1 e > > l >
Slg H'H=3 —lg P’P +P” Zlx M°M P: (61)



It appears that, if it is possible to draw merely random vectorsy(lt”) and y(z”l) from tH&

e 1
Gaussian distributions with covariance matrices—-Iq P~ P and 6I k M?”M respectively
(for example whenP is a tight frame analysis operator andM is a convolution matrix with
periodic boundary condition), a sample from the Gaussian distributimm with a covariance

1 .
matrix —~lg H”H can be obtained as follows:

1
y(t+1) — p?ygt+l) + P>y(2t+1)3 (62)

4 Application to multichannel image recovery in the presenc e of
Gaussian noise

We now discuss the performance of the proposed DA strategies irhé context of restoration
of multichannel images (MCI). Such images are widely used in many applion areas such as
medical imaging and remote sensing [70, 71, 72]. Multiple channel corapents typically result
from imaging a single scene by sensors operating in di erent spectraanges. For instance,
about a dozen of radiometers may be on-board remote sensing slites. Most of the time, MCI
are corrupted with noise and blur arising from the acquisition proces and transmission steps.
Therefore, restoring MCI is of primary importance as a preliminary $ep before addressing
analysis tasks such as classi cation, segmentation or object recoigion [73]. Several works
dedicated to MCI processing rely on wavelet-based approaches [714]. In this section, we
propose to adopt a Bayesian framework for recovering the wavdl€oe cients of deteriorated
MCI, with the aim to analyze the performance of the aforementionedhybrid Gibbs samplers.

4.1 Problem formulation

dent zero-mean additive white Gaussian noises having the same knowariance 2. As already
stated, we propose here to address the restoration problem in aansform domain where the
target images are assumed to have a sparse representation. Let introduce a set of tight frame

(Bb2f1;:::;BQ) Yp= FpXp (63)

the vector of frame coe cients of the imageyy. Each frame transform operator decomposes the

image into M oriented subbands at multiple scales with size,, m 2 f1;:::;Mg, such that
m=1 Km = K:
(8b2f1;:::;BQ) Xp= (Xpa1:iiiXplKqiiil;
Xpm:ds s XpmeK o s o (64)
XbM; 155 XbMiK )

Then, the problem can be formulated as (4), that is:

z=Hx +w (65)



with N = BR, Q = KB,

0 1
F, 0 =2 0
0O F, 0 O
F=8. . . . (66)
0 0 0 Fg
and 0 1
B:1 O 0

0 B, 0 O
B=8B . . . . : (67)
0 0 0 Bg

We propose to exploit the cross-component similarities by estimatingointly the frame co-
e cients at a specic orientation and scale through all the B components. In this respect,

the vector of frame coe cients for a given wavelet subbandm at a spatial position k through
all the B components. Note that such vector can be easily obtained throdgXmk = PmkX
whereP .« 2 RB @ is a sparse matrix containingB lines of a suitable permutation matrix. To
promote the sparsity of the wavelet coe cients and the inter-component dependency, following

a random vector following a generalized multivariate exponential powr (GMEP) distribution
with scale matrix ,, shape parameter , and smoothing parameter n,. Thus, the minus-log
of the prior likelihood is given up to an additive constant by

_ M Km 1
logp(xj 1;::: wm)= mK 7 (PmkX am)k) (68)
m=1 k=1

where, for everym 2f1;:::;Mg,an 2 RB andforall t 2 R, n(t)= 3 (t* + ) ™.

Our goal is to compute the posterior mean estimate of the target immge as well as the
unknown regularization parameters using MCMC sampling algorithms acelerated thanks to
our proposed DA strategies. In the following, we will denote by the vector of unknown
regularization parameters to be estimated jointly with x in the Gibbs sampling algorithm.

4.2 Sampling from the posterior distribution of the wavelet coe cients

One can expect that the standard sampling algorithms fail to exploe e ciently the target
posterior not only because of the high dimensionality of the problem bt also because of the
anisotropic nature of the wavelet coe cients. In fact, the coe cie nts belonging to di erent scales

coe cients belonging to the low resolution subband are generally assmed to be driven from a
Gaussian distribution (i.e., n =1) while GMEP priors with very small shape parameter (i.e.,

1 _ _ _ e
m 6 E) are generally assigned to high resolution subbands at the rst levebf decomposition in

order to promote sparsity. Therein, one can better explore the lections of interest separately by
using di erent amplitudes than sampling them jointly. However, the observation matrix causes
high spatial dependencies between the coe cients and thus hinder processing the dierent
wavelet subbands independently.

The DA approaches we introduced in Section 3 allow to tackle this preanditioning problem
by adding auxiliary variables to the data delity term. More speci cally, f ollowing Algorithm 2,



we propose to introduce an auxiliary variablev 2 R? such that: 20

1 1 1 1
v N — -lg H>H X;— —laq H>H (69)
where kBKk3kFk2 < 1.
Since the set of hyperparameters is independent of the auxiliary variablev when condi-
tioned to x, each iterationt 2 N of the proposed Gibbs sampling algorithm contains the following
steps:

1) samplev®*) from P, ().

2) Samplex™V) from Py, ¢ .

3) Sample *D from P, ey .

If B is circulant (by assuming periodic boundary conditions of the blur kenel), the rst
sampling step can be easily done by passing to the Fourier domain. In picular, if F is
orthonormal that is FF = F F = Ig, samples of the auxiliary variables can be obtained by
rst drawing Gaussian random variables in the Fourier domain and thenpassing to the wavelet
domain. Otherwise, if F is a non orthonormal transform, sampling can be performed usingur
results stated in (59) and (62).

Note that, in the new augmented space, the restoration problem educes to a denoising
problem with zero-mean Gaussian noise of variance and the posterior density reads:

. w Wm .
p(xjz;v; )/ exp(J mk (PmkXjv)) (70)
m=1 k=1

where

(8c2R®) Jmu(cV)= 5ogke PV —PmiH 2R+ m(k o2 am)k): (71)

an independent manner. Thus, the resolution of the initial high dimersional problem of size
Q = KB reduces to the resolution ofK parallel subproblems of sizeB. This is particularly
interesting in the case of MCI where we have generalliK B.

Instead of processing all the di erent wavelet coe cients at the same time, the proposed
method allows to deal independently with each subproblem. This avoisl sampling problems
related to the heterogeneous prior distribution. Di erent sampling algorithms may be chosen
according to the properties of the target distribution in each subgoblem. Speci cally, for each
sampling subproblem, we propose to use either RW or MALA algorithms [Z, 76].

In the following, we will discuss the practical implementation of the third step of the Gibbs
algorithm namely sampling from the posterior distribution of

4.3 Hyperparameters estimation

Separation strategy: Foreverym 2f1;:::;Mg, mn controls the shape of theGMEP distri-
bution allowing for heavier tails than the Laplace distribution ( m < 0:5) and approaching the



m and n, are xed. Actually, the shape parameter is set to di erent values with respect to thé
resolution level, spanning from very small values (, < 0:5) in order to enforce sparsity in the
detail subbands at the rst levels of decomposition to relatively highe values 0:5< , < 1) for
detail subband at higher resolution levels, whereas a Gaussian di#hution is generally assigned
to the low frequency subband. Furthermore, we setn, to a positive small value ensuring that (78)
is di erentiable [71]. As already mentioned, the scale matrice{ m); , v Will be estimated.

and p( ) its related density. The associated posterior density reads

Km
p( mix)/ p( m)det( m) K" Zexp m(K n2(PmkX  am)k) (72)
k=1

When , =1, the GMEP prior reduces to a Gaussian distribution. In such case, a common
choice ofP |, is an inverse Wishart distribution and (72) is also an inverse Wishart distibution
[77]. However, when0 < ., < 1, (72) does not belong to classical families of matrix distribu-
tions. In that respect, rather than estimating the scale matrices drectly, we resort to a separation

strategy. More speci cally, we propose to estimate the standard dviations and the correlation

follows [78]:
m = C . Diag(sm) ‘RmDiag(sm) ! (73)

where R, 2 RB B is the correlation matrix (whose diagonal elements are equal td and the
remaining ones de ne the correlation between the coe cients and hae absolute value smaller
than 1), s, 2 RB is a vector formed by the square root of the precision parameter@he inverse
of standard deviations) andC . . is a multiplicative constant that depends on , and n,
[71]. The advantage of such factorization can be explained by the ¢4 that the estimation of

we decompose the precision vector as follows:
sm=(C ;) 1€ ny (74)

where |, is positive and n, 2 RB is a vector of positive coe cients whose sum is equal to
1. Then, ny can be seen as the vector containing positive normalized weights ofl dhe B
components in the subbandm.

For simpli city, let us assume that the di erent components of the image have the same

=fR; 1,011 MO (75)

Prior and posterior distribution for the hyperparameters: One can construct the corre-
lation matrix R by sampling from an inverse Wishart distribution. Specically,let C W (A;c¢)
where A is an appropriate positive de nite matrix of RB B and ¢ > 0. Then, we can write
R=C where is the diagonal matrix whose elements are given by i = Ci;ilzz, for every

B +1+ ¢

B
p(R)/ det(R) ~ =z (R tA),;%: (76)
i=1

In the following, we will use the notation R  SS (A ; ¢) to denote this prior. In particular, when
c B 1

A = |g, individual correlations have the marginal density p( ;) = (1 l2] )z for every




interval [ 1; 1] with both parameters equalto(c B +1)=2. For c= B +1, we obtain marginally
uniformly distributed correlations, whereas, by settingB 6 c<B +1 (or B +1 <c), we get
marginal priors with heavier (or lighter) tails than the uniform distrib ution that is, distributions
that promote high correlation values around the extremity of the intervals (or near zero values),
respectively [78]. Thus, the posterior distribution of R is given by

B +1+ c+ \B c
PRiX; ;i M)/ det(R) 7 —exp( (X)) (R A),2 (77)
i=1
where
X Km ) .
( x)= m @ mKkR 2Diag(n)(PmkX am K): (78)
m=1 k=1

We propose here to sample from (77) at each iteratiot 2 N using a MH algorithm with
proposal SS(A; €) where A is set to the current value of R at iteration t and e is chosen to
achieve reasonable acceptance probabilities.

For everym 2 f1;:::; Mg, we assume a Gamma prior for , thatis G(a,:;b,)
wherea , > Oand b , > 0[79]. Then, the posterior distribution of , is given by:

i an,t é(im 1 l Xm 1 1. 2
p( mjiXx;R)/ m ™ exp( b, m)exp > m" KR 2Diag(n)(PmkX am)k“+ m
k=1

(79)

Note that, if , =0, then (79) reduces to a Gamma distribution with parameters:
B, =a,+ (80)

2 m
Km .

&, =b,_ + kR IN(Ppkx am)k®™: (81)

k

When ., > 0, sampling from (79) will be performed using an independent MH algoriim
with a Gamma proposal of parameters (80) and (81).

Initialization: We propose to set the prior distributions of R, 1;:::; m, using empirical es-
timators from the degraded image. In particular, a rough estimatorof R can be computed from
the subband containing the low resolution wavelet coe cients at the highest level of decompo-
sition. In the case whenF is orthonormal, the variance of wavelet coe cients of the original

image are approximately related to those of the degraded image tbugh:

(8b2f1;::::Bg)(8M2f1L:::;Mqg) var(Fozplm) = mvar(Xplm)+ 2 (82)

where [:],, designates the wavelet coe cients belonging to the subbandn and , is a positive
constant which depends on the subband indexn and on the blur matrix. Expression (82) is
derived from the considered observation model (65) by assuming eonstant approximation of
the impulse response of the blur lter in each wavelet subband. Notehat |, can be calculated
beforehand as follows. Given noisy-free data, we compute the oiigl empirical variance for each
wavelet subband. Then, we calculate again the new variances of treibbands when the data is
blurred using matrix B. The coe cients , are nally estimated for each wavelet subband by
computing the ratio of the two variances by a linear regression. When p, is not too small with



respect to 1, estimators of var[xp]m) can be reliably computed from , and var([F pzp]m) usiﬁa
(82). We propose to use this method to compute estimators of thgariances in subbands at the
highest levels of decomposition and then to deduce the variances thfe remaining subbands by
using some properties of multiresolution wavelet decompositions. Ne that each detail subband
m, corresponds to a given orientatiord (horizontal, vertical, diagonal) and a given scalg (related
resolution level). Actually, the variances of the detail subbands ca be assumed to follow a power
law with respect to the scale of the subband which can be expressed follows [80]:

logvar([Xplm) = % + $| (83)

where % and $, are constants depending on the orientationl of the subband m. Once the
variances of subbands in the two highest levels of decomposition henbeen computed using
(82), we can calculate% and $ | for each orientation | using the slope and the intercept of these
variances from a log plot with respect to the scalg¢. The remaining variances are then estimated
by using (83). We then deduce from these variances an empirical tewator of n, and set the

4.4 Experimental results

In these experiments, we consider the Hydice hyperspectfatiata composed 0fl91 components
in the 0:4to 2.4 m region of the visible and infrared spectrum. The test image is consticted
by taking only a portion of size 256 256and B = 6 components of Hydice using the channels
52, 67, 82, 97, 112 and 127. Hence, the problem dimension isN = 393;216 The original
image is arti cially degraded by a uniform blur of size5 5 and an additive zero-mean white
Gaussian noise with variance 2 = 9 so that the initial signal-to-noise ratio (SNR) is 11:16 dB.
We perform an orthonormal wavelet decomposition using the Symletvavelet of order 3, carried
out over three resolution levels, hence = 10 and Q = N. For the subband corresponding to
the approximation coe cients ( m = 10), we choose a Gaussian prior (i.e.,m =2, m =0). For
the remaining subbands (n 2 f1;:::;M  1g), we set , = 10 *. Moreover, we set , = 0:2
for the detail subbands corresponding to the lowest level of deaaposition, , = 0:4 for the
second level of decomposition, and, = 0:5 for the third level of decomposition.

We run the Gibbs sampling Algorithm 2 with a su cient number of iteratio ns to reach
stability. The obtained samples of the wavelet coe cients after the burn-in period are then used
to compute the empirical MMSE estimator for the original image. Tade 2 reports the results
obtained for the di erent components in terms of SNR, PSNR (PeakSignal to Noise Ratio),
BSNR (Blurred Signal to Noise Ratio) and SSIM (Structural SIMilarity) . It can be noted that
the MMSE estimator yields good numerical results. This can also be derved in Figure 1
showing the visual improvements for the di erent components of he multichannel image.

We propose to compare the performance of the Gibbs sampler withuiliary variables when
the posterior law of the wavelet coe cients is explored using either RV or MALA [17, 76]
algorithms. We also compare the speed of our proposed approasheith standard RW and
MALA without use of auxiliary variables. Figures 2 shows the evolution, with respect to the
computational time, of the scale parameter ., in the horizontal subband for the rst level of
decomposition using the various algorithms. The results associateslith the proposed algorithms
appear in solid lines while those associated with standard algorithms whiout use of auxiliary
variables are in dashed lines. It can be observed that the proposedgarithms reach stability
much faster than the standard methods. Indeed, since the probie dimension is large, the
stepsize" in standard algorithms is constrained to take very small values to allev appropriate
acceptance probabilities whereas in the new augmented space, tsebproblems dimension is

2https:/lengineering.purdue.edu/ biehl/MultiSpec/hyper  spectral.html



Table 2: Restoration results. 24

b=1 [b=2 [b=3 [b=4 [b=5 [b=6 | Average

_ | BSNR | 24.27 | 30.28 | 31.73 | 28.92 | 26.93 | 22.97 | 27.52
8 [ PSNR | 25.47 [ 21.18 | 19.79 | 22.36 | 23.01 | 26.93 | 23.12
£ [SNR 11.65 | 13.23 | 13.32 | 13.06 | 11.81 | 11.77 | 12.47

SSIM | 0.6203| 0.5697 | 0.5692 | 0.5844 | 0.5558| 0.6256 | 0.5875
w | BSNR | 32.04 | 38.33 | 39.21 | 38.33 | 35.15 | 34.28 | 36.22
‘é’ PSNR | 28.63 | 25.39 | 23.98 | 26.90 | 27.25 | 31.47 | 27.27
S | SNR 14.82 | 1750 | 17.60 | 17.66 | 16.12 | 16.38 | 16.68

SSIM | 0.7756 | 0.8226 | 0.8156 | 0.8367 | 0.8210| 0.8632| 0.8225

@) =2 . (b) (b=4). (c) (b=6s).

(f) =6 .

(ONCELE

(@ (b=2 .

Figure 1: From top to bottom: Original images-Degraded images-R&ored images.

smaller allowing large moves to be accepted with high probability values.Note that MALA
algorithm with auxiliary variables exhibits the best performance in terms of convergence speed.
We summarize the obtained samples using the proposed algorithms kshowing the marginal
means and standard deviations of the hyperparameters in Table 3t can be noted that the two
proposed algorithms provide similar estimation results.

It is worth noting that for larger dimensional problems (i.e., larger values ofB), one could
further improve the e ciency of the proposed algorithm by exploitin g the parallel structure of
the sampling tasks.
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Figure 2: Trace plot of the scale parameter in subbandn = 1 as time (horizontal subband
in the rst level of decomposition) with (dashed lines) and without (continuous line) auxiliary
variables.

Table 3: Mean and variance estimates of hyperparameters.

RW [ MALA
N Mean 0.67 0.67

( 1=0.71) Std. | (1.63 e-3) | (1.29 e-3)
§) Mean 0.83 0.83

( »,=0.99) Std. | (1.92 e-3) | (2.39 e-3)
] Mean 0.62 0.61

( 3=0.72) Std. | (1.33 e-3) | (1.23 e-3)
4 Mean 0.24 0.24

( 4=0.0.24) Std. | (1.30 e-3) | (1.39 e-3)
g3 Mean 0.37 0.37

( 5=0.40) Std. | (2.10 e-3) | (2.42 e-3)
$3 Mean 0.21 0.21

( 6=0.22) Std. | (1.19 e-3) | (1.25 e-3)
i Mean 0.08 0.08

( 7=0.0.07) Std. | (0.91e-3) | (1.08 e-3)
é: Mean 0.13 0.13

( §=0.13) Std. | (1.60 e-3) | (1.64 e-3)
"y Mean 0.07 0.07

( 9=0.07) Std. | (0.83e-3)| (1e-3)

70 Mean| 7.80e-4 | 7.87 e-4

( 10=7.44 e-4) | Std. | (1.34e-5) | (2.12 e-5)

det(R) Mean | 1.89 e-8 2.10 e-8

det(R)=5.79 e-8 | Std. | (9.96 e-10)| ( 2.24 e-9)

5 Application to image recovery in the presence of two terms
mixed Gaussian noise
5.1 Problem formulation

In this second experiment, we consider the observation problem deed in (29) whereH cor-
responds to a spatially invariant blur with periodic boundary conditions and the noise is a
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i (1 ) 1t 2 (84)

where 1; » are positive,0< < 1is the probability that the variance of the noise ; equals »,
and , and , denote the discrete measures concentrated at the valueg and  respectively.
Model (84) can approximate for example mixed impulse Gaussian noisgising in radar, acoustic,
and mobile radio applications [81, 82]. In this case, the impulse noise is apximated with a
Gaussian one with a large variance » 1 and represents the probability of occurrence of
the impulse noise. In the following, we assume without loss of generalithat >, > ;. We
address the problem of estimatingx, , , 1 and » from the observationsz.

Prior distributions: We propose to use conjugate priors for the unknown variances neely
inverse Gamma distributions i.e., ,2 IG (a;h), i 2f1l;29g wherea and by are positive con-
stants. Here,a;, ay, by, and b, are set in practice to small values to ensure weakly informative
priors. For the occurrence probability , we choose a uniform prior distributioni.e., U (0; 1).
Furthermore, the target image is assumed to follow a zero-mean @asian prior with a covariance

matrix G, = ! L>L " known up to a precision parameter > 0, i.e.,
p(xj )/ C?exp Ekl_x k2 : (85)

Di erent covariance matrices may be chosen depending on which pperties one wants to impose
on the estimated image. In this example, we propose to enforce sntboess by settingL =
lo r 2 wherer ; is the circulant convolution matrix associated with a Laplacian Iter and
> 0is a small constant that aims at ensuring the positive de niteness of he prior covariance
matrix. We further assume that the regularization parameter follows an inverse Gamma prior
with parametersa > 0 and b > 0. The resulting hierarchical model is displayed in Figure
3.

Figure 3: Hierarchical model for image deblurring under two term mixed Gaussian noise.

Posterior distributions: Given the observation model and the prior distribution, we can
deduce that the posterior distribution of the target signal given , , 2, 3, andzis also

Gaussian with meanm and precision matrix G given by:

G=H>DH + L’L; (86)
m=G H”Dy; (87)
where D is the diagonal matrix with diagonal elementsD;; = 2 9i2f1::::N 0.

The posterior distribution of the remaining unknown parameters ae given by:
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22 12 (HxY z)? —;; (88)

NI =

i = exp

ix;z; ; 2, 5 B (np+1;n;+1), whereB is the Beta distribution and n; and n, are
the cardinals of the setsfi 2 f1;:::;Ng; j = 1gandfi2f1:::;Ng;j i= 20,
respectively, so thatn, + n, = N,

!

, P Hx]  z)?
3ix; 1,z 16 a+ b+ ijizl([x]'zz') ,
!

. P Hx]  z)?
Sx; 552 1IG ap+ b+ ijizzw :
: 1
jx G %+ a ;QkLsz"' b

5.2 Sampling from the posterior distribution of X

In the Gibbs algorithm, we need to draw samples from the multivariate Gaussian distribution
of parameters (86) and (87) changing along the sampling iterations In particular, even if H
and L are circulant matrices, sampling cannot be done in the Fourier domairbecause of the
presence oD . In the sequel, we will use the method proposed in Section 3.3 to sampi@m this
multivariate Gaussian distribution. More speci cally, we exploit the exib ility of the proposed
approach by resorting to two variants. In the rst variant, we take advantage of the fact that
L and H are diagonalizable in the Fourier domain and we propose to add the ailiary variable
to the data delity term in order to get rid of the coupling caused by D when passing to the
Fourier domain. In the second variant, we introduce auxiliary variables for both the data delity
and the prior terms in order to eliminate the coupling e ects induced ty all linear operators in
the posterior distribution of the target image.

First variant: We introduce the variable v whose conditional distribution, given the set of

. : . . 1
main parameters of the problem, is the Gaussian distribution of mean —Iy D Hx and

. .1 . .
covariance matrix —ly D where = kaS1 with 0< < 1. In practice, we set =0:99.

It follows that the new conditional distribution of the target signal is
xi i; % %;v;z N (@;6 1 (89)
wheremm and & are de ned as follows:

1
€= "H>H+ L>L; (90)

m=6 H> H Dz+v : (91)

It is worth noting that the auxiliary variable v depends onx, and also on through and
D, but does not depend on , 3, 2, when conditioned tox, and z. Thus, we propose to
use the partially collapsed Gibbs sampling algorithm in order to collapsehe auxiliary variables



in the sampling step of . At each iteration t 2 N, the proposed algorithm goes through 2%
following steps in an ordered manner:

1) Sample( 3)®* from P 2ix(0); (©; (W37
2) Sample( 2D from P 2ix(0; ;W3-
3) Sample (t+1) from P jx(; ©:( %)(Hl) « %)(t+1) .

Auxvl  4) Sample D from P, (.
5) Sample D from P (0 (D) 5 2)(t41) o 2)(t+0) 7

2
6) Set ("D = min i(Hl) . and samplev (D from Pyix®; () -

t+1
7) Samplex ("D from P,; (1) . (s s -

Second variant:  Another strategy is to introduce two independent auxiliary variablesvi and
v in RQ following Gaussian distributions of means 1x and ,x and covariance matrices 1
and ,, respectively, where

1=i H” DH (92)

=

and
2= — L”L: (93)

N

In practice, we set 1 = kHkg?kDkg® and , = kLkg? where =0:99. Then, the posterior
distribution of x conditioned to , , 2, 3, , vi, v; and z is Gaussian with meanm and
precision matrix & de ned as

e= L1+ g (94)
1 2
and
M= 1 o( 1+ 2) P H™ Dy +vi+ P v, (95)

The auxiliary variable v, depends implicitly on  through D and but does not depend on
the remaining parameters when conditioned tox, and z. Similarly, v, does not depend on
. % % vi, when conditioned tox and z. We propose a PCGS algorithm that allows to
collapsev; in the sampling step of . Each iteration t 2 N of the proposed PCGS algorithm is
composed of the following arranged sampling steps.
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1) Sample( ) from P 2. ©; @
2) Sample( %)(Hl) from P 2jx(0; (1; ():7-
3) Sample (D from P (O (03 2)(tH) o 2yt -

4) Sample Y from P (.

Auxv2 5) Sample (1) from P jx (U (4D 5 2)(t+D) o 2)(t4D) 7

6) Samplevs™ from P, ..

2
7) set " = kHkgZmin (Y and samplev{"™ from P, . @ -

16i6N

t+1
8) Samplex™D from P . @ VD 0D

Note that, since H and L are circulant matrices andD is diagonal, sampling the auxiliary
variables in the proposed methods can be easily performed followinge&ion 3.4.

5.3 Experimental results

We consider a set of three test images denoted by, x> and x3, of size512 512 These images
are arti cially degraded by a spatially invariant blur with point spread fu nction h and further
corrupted with mixed Gaussian noise. The Gibbs algorithms are run fio 6,000 iterations and
a burn-in period of 4,000 iterations is considered. Estimators of theinknown parameters are
then computed using the empirical mean over the 2,000 obtained sagtes. Visual results are
displayed in Figure 4 as well as estimates of hyper-parameters usimguxV1.

We focus now on imagex; in order to compare the two variants of our proposed method with
the Reversible Jump Perturbation Optimization (RJPO) algorithm [32]. For this method, we
use the conjugate gradient algorithm as a linear solver at each itetion whose maximal number
of iterations and tolerance are adjusted to correspond to an aeptance probability close to
0.9. We use the same initialization for all compared algorithms. Figure®-8 display samples of
hyperparameters as a function of iteration or time. Table 4 showshe marginal posterior mean
and standard deviation of , 1, 2, and the value of one randomly chosen pixek; in the
reconstructed images. Figures 5-8 show that all the tested algithms reach the same stationary
distribution. In particular, it can be noted from Table 4that , ; and ; are correctly estimated
by all the algorithms and the remaining parameters have similar estimeors. While RJPO and
AuxV1 have similar iterative behavior, AuxV2 needs more iterations © reach stability. However,
the proposed two algorithms need less time to converge compared RJPO algorithm since the
computational cost of each iteration is highly reduced.

We also report comparisons in terms of mixing properties in convergee. Table 5 shows
comparisons results in terms of time per iteration after the burn-inperiod (time needed to
produce one sample), mean square jump in stationarity, and e ciery with respect to RJPO.
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Figure 4: Visual results. From top to bottom: Original images. Degeaded images.
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A1 =12:08, A =69 :89

N

= 0:39, " =4:7e-3

Table 4: Mean and variance estimates.

512)

=0:4
15 std. 1.8

RIPO | AuxVl [ AuxV2
A Mean| 4.78e-3 | 484 e-3| 4.90e-3
( =5.30e-3) | Std. | (1.39 e-4) | (1.25 e-4)| (9.01 e-5)
N Mean| 12.97 12.98 12.98
( 1=13) Std. | (4.49 e-2)| (4.82 e-2)| (4.91 e-2)
B Mean| 39.78 39.77 39.80
( 1=40) Std. (0.13) (0.14) (0.13)
A Mean 0.35 0.35 0.35
( =0.35) Std. | (2.40 e-3) | (2.71 e-3)| (2.72 e-3)
X Mean | 143.44 143.19 145.91
(xi=140) Std. | (10.72) (11.29) (9.92)
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Restored

The speed improvement of the proposed algorithms comes with a derioration of the quality
of the generated samples due to the correlation existing betweenscessive samples. For instance,
RJPO algorithm gives the best results in terms of mean square jump irstationary. However,
the generation of every sample is costly, which deteriorates the eciency of the algorithm for
large scale problems compared with AuxV2. The best trade-o betwen convergence speed and
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mixing properties of the chain is achieved by the proposed AuxV1 alg@hm.

6 Conclusion

In this paper, we have proposed an approach for sampling from praibility distributions in large
scale problems. By adding some auxiliary variables to the model, we steeded in addressing
separately the di erent sources of correlations in the target poterior density. We have illustrated
the usefulness of the proposed Gibbs sampling algorithms in two apphltion examples. In the
rst application, we have proposed a wavelet-based Bayesian metlibto restore multichannel



Table 5: Mixing results for the di erent proposed algorithms. First row: Time per iteratiof2
Second row: Estimates of the mean square jump in stationarity. Thd row: Estimates of the
mean square jump per second in stationarity. Fourth row: Relativee ciency to RJPO.

RJPO LAule LAuxVZ
T(s) 527 |013 [0.12
MSJ 15.41 | 14.83 4.84
MSJ=T 2.92 114.07 | 40.33
Eciency |1 39 13.79

images degraded by blur and Gaussian noise. We have adopted a mulivate prior model that
takes advantage of the cross-component correlation. Moreorea separation strategy has been
applied to construct prior models of the related prior hyperparaméers. We have then employed
the proposed Gibbs algorithm with auxiliary variables to derive optimal estimators for both the
image and the unknown hyperparameters. In the new augmented spe, the resulting model
makes sampling much easier since the coe cients of the target imagare no longer updated
jointly but in a parallel manner. Experiments carried out on a set of nultispectral satellite
images have shown the good performance of the proposed appchawith respect to standard
algorithms. Several issues could be investigated as future work sl as the ability of the proposed
algorithm to deal with inter-scale dependencies in addition to the crgs-channel ones. In the
second application, we have applied the proposed method to the reeery of signals corrupted
with mixed Gaussian noise. When compared to a state-of-the-art nthod for sampling from
high dimensional scale Gaussian distributions, the proposed algoriths achieve a good tradeo
between the convergence speed and the mixing properties of theavkov chain even if the
generated samples are not independent. Note that the proposemiethod can be applied to a
wide class of applications in inverse problems, in particular, those incliling conditional Gaussian
models either for the noise or the target signal.
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