S. Agostinelli-;-agostinelli, Geant4 ? A simulation toolkit, Nucl Instr Meth Physics Research A, vol.506, pp.250-303, 2003.
URL : https://hal.archives-ouvertes.fr/in2p3-00020246

A. Macdonald-;-alessio, A. Macdonald, and L. , Spatially variant positron range modeling derived from CT for PET image reconstruction, IEEE NSS/MIC Conference Proceeding, p.page, 2008.

A. , GEANT4 developments and applications, IEEE Transactions on Nuclear Science, vol.53, pp.270-278, 2006.

N. Anizan, Imagerie quantitative à l'iode-124 en tomographie par émission de positons du petit animal, 2010.

. Anizan, Acquisition setting optimization and quantitative imaging for 124I studies with the Inveon microPET-CT system, EJNMMI Research, vol.2, p.7, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00682229

M. Badawi, R. D. Badawi, and P. K. Marsden, Developments in component-based normalization for 3D PET, Physics in Medicine and Biology, vol.44, issue.2, pp.571-594, 1999.
DOI : 10.1088/0031-9155/44/2/020

H. Badi, Génération de nombres aléatoires uniformes et non uniformes en contexte distribué, 2008.

[. Bai, Evaluation of MAP Image Reconstruction with Positron Range Modeling for 3D PET, Nuclear Science Symposium Conference Record, pp.2686-2689, 2005.

[. Bai, Model-based normalization for iterative 3D PET image reconstruction, IEEE Transactions on Medical Imaging, vol.47, pp.2773-2784, 2002.
DOI : 10.1088/0031-9155/47/15/316

[. Bai, Positron Range Modeling for Statistical PET Image Reconstruction, Nuclear Science Symposium Conference Record IEEE, pp.2501-2505, 2003.
DOI : 10.1109/nssmic.2003.1352400

URL : http://neuroimage.usc.edu/paperspdf/bai_positron_01352400.pdf

D. L. Bailey-;-bailey, Transmission scanning in emission tomography, European Journal of Nuclear Medicine, vol.25, issue.7, pp.774-787, 1998.

M. Bailey, D. L. Bailey, and S. R. Meikle, A convolution-subtraction scatter correction method for 3D PET, Physics in Medicine and Biology, vol.39, issue.3, pp.411-424, 1994.
DOI : 10.1088/0031-9155/39/3/009

[. Bailey, Positron emission tomography : Basis sciences, 2005.

[. Barret, , 2005.

, Monte Carlo simulation and scatter correction of the GE Advance PET scanner with SimSET and Geant4, Physics in Medicine and Biology, vol.50, pp.4823-4840

[. Beattie, Quantitative imaging of bromine-76 and yttrium-86 with PET : A method for the removal of spurious activity introduced by cascade gamma rays, Medical Physics, vol.30, issue.9, p.2410, 2003.

[. Belanger, Noise characteristics of a SPECT simulation system, Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), vol.3, pp.1538-1542, 1993.

T. ;. Bendriem, B. Bendriem, and D. Townsend, The theory and practice of 3D PET, 1998.

B. Bertero, M. Bertero, and P. Boccacci, Introduction to inverse problem in imaging, 1998.

R. ;. Bielajew, A. F. Bielajew, and D. W. Rogers, Variance reduction techniques, Monte Carlo Transport of Electrons and Photons, pp.407-420, 1988.

[. Bouallegue, Exact and approximate fourier rebinning algorithms for the solution of the data truncation problem in 3-D PET, IEEE Transactions on Medical Imaging, vol.26, pp.1001-1009, 2007.

[. Brasse, , 2005.

, Correction methods for random coincidences in fully 3D whole-body PET : Impact on data and image quality, Journal of Nuclear Medicine, vol.46, pp.859-867

[. Brownell, New developments in positron scintigraphy and the application of cyclotron-produced positron emitter medical radioisotope scintigraphy, IAEA Proceedings of a Symposium, pp.163-176, 1969.

H. Buchholz, PET imaging with yttrium-86 : comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction, European Journal of Nuclear Medicine and Molecular Imaging, vol.30, issue.5, pp.716-720, 2003.

I. Buvat, A non-parametric bootstrap approach for analysing the statistical properties of SPECT and PET images, Physics in Medicine and Biology, vol.47, pp.1761-1775, 2002.

[. Byars, Variance reduction on randoms from delayed coincidence histograms for the HRRT, IEEE Nucl. Sci. Symp. Conf. Rec, vol.5, pp.2622-2626, 2005.

J. Cabello and M. Rafecas, Comparison of basis functions for 3D PET reconstruction using a Monte Carlo system matrix, Physics in Medicine and Biology, vol.57, pp.1759-1759, 2012.

. Cal-gonzález, A general framework to study positron range distributions, Nuclear Science Symposium and Medical Imaging Conference, pp.2733-2737, 2011.

. Cal-gonzález, Positron Range Effects in High Resolution 3D PET Imaging, IEEE Nuclear Science Symposium Conference Record, 2009.

T. Carlier-;-carlier, Reconstruction 3D complète par modélisation Monte Carlo de la matrice système. Apport aux approches quantitatives à l'iode 131, 2009.

N. Casey, M. Casey, and R. Nutt, A multicrystal two dimensional BGO detector system for positron emission tomography, IEEE Transactions on Nuclear Science, vol.33, pp.460-463, 2002.

[. Casey, A component based method for normalization in volume PET. Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Proc. 3rd Int, pp.67-71, 1995.

H. Casey, M. E. Casey, and E. J. Hoffman, Quantitation in positron emission computed tomography : 7. a technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration, J. Comput. Assist. Tomogr, vol.10, pp.845-850, 1986.

[. Castiglioni, Scatter correction techniques in 3D PET : a Monte Carlo evaluation, IEEE Transactions on Nuclear Science, vol.46, pp.2053-2058, 1999.

[. Cecchetti, Accurate and efficient modeling of the detector response in small animal multi-head PET systems, Physics in Medicine and Biology, vol.58, pp.6713-6731, 2013.

C. , Reliability of predicting image signal-to-noise ration using noise equivalent count rate in PET imaging, Medicla Physics, vol.39, pp.5891-5900, 2012.

J. Chatal, Different ways to improve the clinical effectiveness of radioimmunotherapy in solid tumors, J. Cancer. Res. Ther, vol.5, pp.36-40, 2009.

[. Chen, Parallelization of the EM algorithm for 3D PET image reconstruction, IEEE Transactions on Medical Imaging, vol.10, issue.4, pp.513-522, 1991.

[. Cheng, Evaluation of an iterative cascade gamma ray correction algorithm for non-standard PET nuclides at various counting iii Bibliographie statistics in high resolution small animal PET imaging, Nuclear Science Symposium Conference Record, pp.2842-2845, 2009.

[. Cherry, Physics in nuclear medicine, 2003.

[. Cherry, Physics in nuclear medicine, vol.234, p.878, 2005.

S. R. Huang-;-cherry and S. C. Huang, Effects of scatter on model parameter estimates in 3D PET studies of the human brain, IEEE Transactions on Nuclear Science, vol.42, issue.4, pp.1174-1179, 1995.

. Chérel, 213Bi radioimmunotherapy with an anti-mCD138 monoclonal antibody in a murine model of multiple myeloma, Journal of Nuclear Medicine, vol.54, issue.9, pp.1597-1604, 2013.

[. Cloquet, Non-gaussian space-variant resolution modelling for list-mode reconstruction, Physics in Medicine and Biology, vol.55, pp.5045-5066, 2010.

[. Comtat, Fast reconstruction of 3D PET data with accurate statistical modeling, IEEE Transactions on Medical Imaging, vol.45, pp.1083-1089, 1998.

. Buffon, Essai d'arithmétique morale, 1777.

[. Cutler, , 1992.

, Designfeatures and performance of a PET system for animal research, Journal of Nuclear Medicine, vol.33, pp.595-604

, Estimation of Image Noise in PET Using the Bootstrap Method, IEEE Transactions on Nuclear Science, vol.49, issue.5, pp.2062-2066, 2002.

[. Dahlbom, Whole-body positron emission tomography. 1. methods and performance characteristics, Journal of Nuclear Medicine, vol.33, pp.1191-1199, 1992.

. Daube-witherspoon, M. E. Muehllehner-;-daube-witherspoon, and G. Muehllehner, Treatment of axial data in three-dimensional PET, Journal of Nuclear Medicine, vol.28, pp.1717-1724, 1987.

. [de-beenhouwer, Cluster computing software for GATE simulations, Medical Physics, vol.34, pp.1926-1933, 2007.

. [de-man, B. Basu-;-de-man, S. Basu, M. Defrise, and P. Kinahan, Distance-driven projection and backprojection in three dimensions, Physics in Medicine and Biology, vol.49, pp.2463-2475, 1998.

[. Defrise, Image reconstruction algorithms in PET. Positron Emission Tomography : Basic Science and Clinical Practice, 2003.

D. W. Bailey, M. N. Townsend, and . Maisey,

[. Defrise, Exact and approximate rebinning algorithms for 3-D PET data, IEEE Transactions on Medical Imaging, vol.16, pp.145-158, 1997.

[. Dempster, Maximul likelihood from incomplete data via the EM algorithm, J. Royal Stat. Soc, vol.39, pp.1-38, 1977.

S. Derenzo, Precision measurement of annihilation point spread distributions for medically important positron emitters, Proceedings of the 5th International Conference on Positron Annihilation, 1979.

S. Derenzo and W. Moses, Critical instrumentation issues for resolution <2mm, high sensitivity brain PET. Quantification of Brain Function, Tracer Kinetics And Image Analysis in Brain PET, 1993.

S. E. Derenzo, Mathematical removal of positron range blurring in high resolution tomography, IEEE Transactions on Nuclear Science, vol.33, pp.565-569, 1986.

[. Disselhorst, Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner, Journal of Nuclear Medicine, vol.51, pp.610-617, 2010.

[. Edholm, Novel properties of the fourier decomposition of the sinogram, International Workshop on Physics and Engineering of Computerized Multidimensional Imaging and Processing, vol.671, pp.8-18, 1986.

. Efron, B. Tibshirani-;-efron, and R. J. Tibshirani, An Introduction to the Bootstrap, 1993.

. Eriksson, A simple data loss model for positron camera systems, IEEE Transactions on Nuclear Science, vol.41, pp.1566-1570, 1994.

. Erlandsson, , 2012.

, A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology, Physics in Medicine and Biology, vol.57, issue.21, pp.119-159

[. España, , 2009.

. Penelopet, Monte Carlo PET simulation tool based on PENELOPE : features and validation, Physics in Medicine and Biology, vol.54, pp.1723-1742

J. A. Fessler, Penalized weighted least-squares image reconstruction for positron emission tomography, IEEE Transactions on Nuclear Science, vol.13, issue.2, pp.290-300, 1994.

J. A. Fessler, Statistical methods for image reconstruction, 2002.

[. Floyd, Inverse Monte Carlo as a unified reconstruction algorithm for ECT, Journal of Nuclear Medicine, vol.27, pp.1577-1585, 1986.

[. Forster, MCNP version 5, Nucl. Instrum. Meth. B, vol.213, pp.82-86, 2004.

Q. Fu, L. Fu, and J. Qi, A residual correction method for high-resolution PET reconstruction with application to on-the-fly Monte Carlo based model of positron range, Medical Physics, vol.37, issue.2, pp.704-713, 2010.

[. Gagnon, , 1992.

, Monte carlo analysis of camera-induced spectral contamination for different primary energies, Physics in Medicine and Biology, vol.37, pp.1725-1739

. Geman, S. Mcclure-;-geman, and D. Mcclure, Bayesian image analysis : An application to single photon emission tomography, Proc. Statist. Comput. Sect., Amer. Statist. Assoc, pp.12-18, 1985.

S. Geman and D. Mcclure, Statistical methods for tomographic image reconstruction, Proc, 1987.

P. F. Gilbert-;-gilbert, Iterative methods for the three-dimensional reconstruction of an object from projections, J. Theor. Biol, vol.36, pp.105-117, 1972.

[. Goertzen, NEMA NU 4-2008 Comparison of preclinical PET imaging systems, Journal of Nuclear Medicine, vol.53, pp.1300-1309, 2012.

[. Goertzen, A method for measuring the energy spectrum of coincidence events in positron emission tomography, Physics in Medicine and Biology, vol.55, issue.2, pp.535-549, 2010.

M. Goitein, Three-dimensional density reconstruction from a series of twodimensional projections, Nucl. Instrum. Methods, vol.101, pp.509-518, 1972.

[. Gordon, Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography, J. Theor. Biol, vol.29, pp.471-481, 1970.

P. Green-;-green, Bayesian Reconstructions From Emission Tomography Data Using a Modified EM Algorithm, IEEE Trans. Nucl. Sci, vol.9, pp.84-93, 1990.

S. Grootoonk-;-grootoonk, Correction for scatter using a dual energy window technique with a tomograph operated without septa, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, pp.1569-1573, 1991.

[. Haber, Application of mathematical removal of positron range blurring in positron emission tomography, IEEE Transactions on Nuclear Science, vol.37, pp.1293-1299, 1990.

, Photomultiplier tube : Principal to application. Hamamatsu Photonics, 1994.

[. Hammer, Use of a magnetic field to increase the spatial resolution of positron emission tomography, Medical Physics, vol.21, pp.1917-1920, 1994.

. Harrison, Preliminary experience with the photon history generator module of a public-domain simulation system for emission tomography, Nuclear Science Symposium Conference Record, pp.1154-1158, 1993.

L. Hebert, T. J. Hebert, and R. M. Leahy, Fast methods for including attenuation in the EM algorithm, IEEE Transactions on Medical Imaging, vol.37, pp.754-758, 1990.

. Herzog, , 2002.

, PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124I, Applied Radiation and Isotopes, vol.56, pp.673-679

[. Hoffman, Quantitation in positron emission computed tomography : 1. effect of object size, Journal of Computer Assisted Tomography, vol.3, pp.299-308, 1979.

[. Hoffman, Design and performance-characteristics of a whole-body positron transaxial tomograph, Journal of Nuclear Medicine, vol.17, pp.493-502, 1976.

[. Holdsworth, Investigation of accelerated Monte Carlo techniques for PET simulation and 3D PET scatter correction, IEEE Transactions on Nuclear Science, vol.48, pp.74-81, 2001.

L. Hudson, H. M. Hudson, and R. S. Larkin, Accelerated image reconstruction using ordered subsets of projection data, IEEE Transactions on Medical Imaging, vol.13, pp.601-609, 1994.

[. Ibaraki, , 2014.

, Bootstrap methods for estimating PET image noise : experimental validation and an application to evaluation of image reconstruction algorithms, Ann. Nucl. Med, vol.28, pp.172-182

. Iwata, Gamma-ray spectra from positron annihilation on atoms and molecules, Physics in Medicine and Biology, vol.55, issue.5, 1997.

[. Jacobs, , 1988.

, A fast algorithm to calculate the exact radiological path through a pixel or voxel space, J. Comput. Info. Technol, vol.6, pp.89-94

[. Jan, GePEToS : A Geant4 Monte Carlo simulation package for Positron Emission Tomography, IEEE Transactions on Nuclear Science, vol.52, pp.102-106, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00000917

L. Janeiro, Incorporating accurate statistical modeling in PET reconstruction for whole-body imaging, 2007.

W. Jentzen-;-jentzen, Experimental investigation of factors affecting the absolute recovery coefficients in iodine-124 PET lesion imaging, Phys. Med. Biol, vol.55, pp.2365-2398, 2010.

[. Johnson, A system for the 3D reconstruction of retracted-septa PET data using the EM algorithm, IEEE Transactions on Nuclear Science, vol.42, pp.1223-1227, 1995.

I. T. Jolliffe, Principal Component Analysis, 2002.

, Positron range in PET imaging : an alternative approach for assessing and correcting the blurring, Physics in Medicine and Biology, vol.57, pp.3931-3943, 2012.

J. S. Karp-;-karp, Singles transmission in volume-imaging PET with a 137Cs source, Physics in Medicine and Biology, vol.40, issue.5, pp.929-944, 1995.

[. Karp, Continuous-slice PENN-PET : a positron tomography with volume imaging capability, Journal of Nuclear Medicine, vol.31, pp.617-627, 1990.

L. Kaufman-;-kaufman, Maximum likelihood, least squares, and penalized least squares for PET, IEEE Trans. Med. Imaging, vol.12, issue.2, pp.200-214, 1993.

I. Kawrakow, Accurate condensed history Monte Carlo simulation of electron transport. I.EGSnrc, the new EGS4 version, Medical Physics, vol.27, pp.485-499, 2000.

. Kemerink, Effect of the positron range of 18F, 68Ga and 124I on PET/CT in lung-equivalent materials. EJNMMI, vol.38, pp.940-948, 2011.

R. ;. Kinahan, P. E. Kinahan, and J. G. Rogers, Analytic 3d image reconstruction using all detected events, IEEE Transactions on Medical Imaging, vol.36, pp.964-968, 1989.

[. Kinahan, Attenuation correction for a combined 3D PET/CT scanner, Medical Physics, vol.25, pp.2046-2053, 1998.

N. Klein, O. Klein, and T. Nishina, Über die streuung von strahlung durch freie elektronen nach der neuen relativistischen quantendynamik von dirac, Zeitschrift für Physik, vol.52, pp.11-12, 1929.

G. Knoll-;-knoll, . Knowles, S. Wu-;-knowles, and A. Wu, Advances in immuno-positron emission tomography : antibodies for molecular imaging in oncology, J. Clin. Oncol, vol.30, pp.3884-3892, 1999.

[. Kohlmyer, Quantitative accuracy of PET imaging with yttrium-86, Journal of Nuclear Medicine, p.40, 1999.

A. Konik-;-konik, Evaluation of attenuation and scatter correction require-ments in small animal PET and SPECT imaging, 2010.

[. Konik, GATE simulations of human and small animal PET for determination of scatter fraction as a function of object size, IEEE Transactions on Nuclear Science, vol.57, pp.2558-2563, 2010.

. Kraeber-bodéré, Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial, Journal of Nuclear Medicine, vol.47, issue.2, pp.247-255, 2006.

D. Kuhl, Quantitative imaging of yttrium-86 PET with the ECAT EXACT HR+ in 2D mode, Cancer Biotherapy And Radiopharmaceuticals, vol.80, issue.4, pp.482-490, 1962.

K. J. Lacroix, Investigation of the use of X-ray CT images for attenuation compensation in SPECT, IEEE Transactions on Nuclear Science, vol.49, issue.6, pp.2793-2799, 1994.

R. Laforest and X. Liu, Cascade removal and microPET imaging with 76Br, Physics in Medicine and Biology, vol.54, pp.1503-1531, 2009.

[. Lartizien, Comparison of Bootstrap Resempling Methods for 3-D PET Imaging, IEEE Transactions on Nuclear Science, vol.29, issue.7, pp.1442-1454, 2010.

[. Lazaro, Fully 3D Monte Carlo reconstruction in SPECT : a feasibility study, Physics in Medicine and Biology, vol.50, pp.3739-3754, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02077140

[. Lehnert, Analytical positron range modelling in heterogeneous media for PET monte carlo simulation, Physics in Medicine and Biology, vol.56, pp.3313-3335, 2011.

. Levin, C. Hoffman-;-levin, and E. Hoffman, Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution, Physics in Medicine and Biology, vol.44, pp.781-799, 1999.

. Levin, Compton scatter and x-ray crosstalk and the use of very thin intercrystal septa in high resolution PET detectors, IEEE Transactions on Nuclear Science, vol.44, pp.218-224, 1997.

. Levin, A Monte Carlo correction for the effect of Compton scattering in 3-D PET brain imaging, IEEE Transactions on Medical Imaging, vol.42, issue.4, pp.1181-1185, 1995.

. Levitan, E. Herman-;-levitan, and G. T. Herman, A maximum a posteriori probability expectation maximization algorithm for image reconstruction in positron emission tomography, IEEE Transactions on Medical Imaging, vol.6, pp.185-192, 1987.

[. Lewitt, Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering, Physics in Medicine and Biology, vol.39, pp.321-360, 1994.

. Ljungberg, M. Strand-;-ljungberg, and S. E. Strand, A Monte Carlo program simulating scintillation camera imaging, Comput. Methods Prog. Biomed, vol.29, pp.257-272, 1989.

[. Lodge, Simultaneous measurement of noise and spatial resolution in PET phantom images, Physics in Medicine and Biology, vol.55, pp.1069-1081, 2010.

[. Lubberink, Correction for gamma radiation from non-pure positron emitters in positron emission tomography, Future Directions in Nuclear Medicine Physics and Engineering, 1999.

[. Lubberink, Quantitative imaging and correction for cascade gamma radiation of 76Br with 2D and 3D PET, Physics in Medicine and Biology, vol.47, pp.3519-3534, 2002.

[. Martin, Quantitative PET with positronemitters that emit prompt gamma rays, IEEE Transactions on Medical Imaging, vol.14, pp.681-687, 1995.

L. Matej, S. Matej, and R. M. Lewitt, Practical considerations for 3-D image reconstruction using spherically symmetric volume elements, IEEE Transactions on Nuclear Science, vol.15, pp.68-78, 1996.

[. Matsumoto, M. Nishimura-;-matsumoto, and T. Nishimura, Mersenne Twister : A 623-dimensionally equidistributed uniform pseudorandom number generator, ACM Transactions on Modeling and Computer Simulations : Special Issue on Uniform Random Number Generation, vol.37, issue.3, 1997.

A. Mcfarland-;-mcfarland, Continuously sampled digital pulse processing for Ineon small animal pet scanner, IEEE Nuclear Science Symposium Conference Record, pp.4262-4265, 2007.

C. Merheb, Optimisation de la reconstruction complète 3D en tomographie par émission de positons du petit animal par modélisation Monte Carlo de la matrice système, 2007.

. Michel, Preserving Poisson characteristics of PET data with weighted OSEM reconstruction, IEEE Nucl. Sci. Symp. Conf. Rec, vol.2, pp.1323-1329, 1998.

. Moehrs, Multi-ray-based system matrix generation for 3D PET reconstruction, Physics in Medicine and Biology, vol.53, pp.6925-6945, 2008.

. Montandon, M. Zaidi-;-montandon, and H. Zaidi, Atlas-guided non-uniform attenuation correction in cerebral 3D PET imaging, Neuroimage, vol.25, pp.278-286, 2005.

M. Moreau, Reconstruction tomographique 3D complète par modélisation Monte Carlo de la matrice système en TEP pré-clinique à l'iode-124, 2014.

K. Morey, A. M. Morey, and D. J. Kadrmas, Effect of varying number of OSEM subsets on PET lesion detectability, Journal of Nuclear Medicine Technology, vol.41, pp.268-273, 2013.

W. Moses, Fundamental limits of spatial resolution in PET, Nuclear Instruments and Methods in Physics Research Section A : Accelerators, Spectrometers, Detectors and Associated Equipment, vol.648, pp.236-240, 2011.

[. Mullani, Feasibility of timeof-flight reconstruction in positron emission tomography, Journal of Nuclear Medicine, vol.21, pp.1095-1097, 1980.

. Nelson, The EGS4 code system. Rapport SLAC-265, Standford Linear Accelerator Center, 1985.

, Performance measurements for small animal positron emission tomographs (PETs), 2008.

J. M. Ollinger-;-ollinger, Model-based scatter correction for fully 3D PET, Physics in Medicine and Biology, vol.41, pp.153-176, 1996.

[. Ortuno, Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET, Physics in Medicine and Biology, vol.55, pp.1833-1861, 2010.

[. Ouyang, Incorporation of correlated structural images in PET image reconstruction, IEEE Transactions on Medical Imaging, vol.13, issue.4, pp.627-640, 1994.

[. Pagani, Alternative positron emission tomography with non-conventional positron emitters : effects of their physical properties on image quality and potential clinical applications, European Journal of Nuclear Medicine, vol.24, pp.1301-1327, 1997.

. Palmer, M. Palmer, and G. Brownell, Annihilation density distribution calculations for medically important positron emitters, IEEE Transactions on Medical Imaging, vol.11, pp.373-378, 1992.
DOI : 10.1109/42.158941

[. Palmer, Modeling and simulation of positron range effects for high resolution PET imaging, IEEE Transactions on Nuclear Science, vol.52, pp.1391-1395, 2005.

V. Y. Panin, Iterative algorithms for variance reduction on compressed sinogram random coincidences in PET, Nuclear Science Symposium Conference Record, pp.3719-3725, 2008.

V. Y. Panin, Regularization methods in iterative algorithms for variance reduction on compressed sinogram random coincidences, Nuclear Science Symposium Conference Record, pp.2834-2838, 2009.

V. Y. Panin, Ordered subsets acceleration of iterative algorithm for variance reduction on compressed sinogram random coincidences, Nuclear Science Symposium Conference Record, pp.2986-2990, 2011.

. Panin, Simultaneous update iterative algorithm for variance reduction on random coincidences in PET, Nuclear Science Symposium Conference Record, vol.4, pp.2807-2811, 2007.
DOI : 10.1109/nssmic.2007.4436722

. Panin, PET reconstruction with system matrix derived from point source measurements, IEEE Transactions on Nuclear Science, vol.53, pp.152-159, 2006.
DOI : 10.1109/nssmic.2004.1462759

[. Pentlow, Quantitative imaging of yttrium-86 with PET : the occurrence and correction of anomalous apparent activity in high density regions, Clin. Posit. Imag, vol.3, pp.85-90, 2000.

[. Pentlow, Quantitative imaging of iodine-124 with PET, Journal of Nuclear Medicine, vol.37, issue.9, pp.1557-62, 1996.

. Phelps, PET : Physcis, instrumentation, and scanners, 2006.

. Phelps, Application of annihilation coincidence detection to transaxial reconstruction tomography, Journal of Nuclear Medicine, vol.16, pp.210-224, 1975.

[. Poli, Radretumab Radioimmunotherapy in Patients with Brain Metastasis : A 124I-L19SIP Dosimetric PET Study, Cancer. Immunol. Res, vol.1, pp.134-143, 2013.

D. G. Politte-;-politte and D. L. Snyder, Corrections for accidental coincidences and attenuation in maximum-likelihood image reconstruction for positron-emission tomography, IEEE Transactions on Nuclear Science, vol.10, pp.82-89, 1991.

. Pépin, Normalization of monte carlo pet data using GATE, Nuclear Science Symposium and Medical Imaging Conference, 2011.

H. Qi, J. Qi, and R. H. Huesman, Effect of errors in the system matrix on iterative image reconstruction, Nuclear Science Symposium Conference Record, vol.5, pp.2854-2858, 2004.

. Qi, J. Leahy-;-qi, and R. M. Leahy, Iterative reconstruction techniques in emission computed tomography, Physics in Medicine and Biology, vol.51, issue.15, pp.541-578, 2006.

[. Qi, Highresolution 3D Bayesian image reconstruction using the microPET small-animal scanner, Physics in Medicine and Biology, vol.43, pp.1001-1014, 1998.

J. Radon, De la détermination des fonctions à partir de leurs intégrales selon certaines directions. (traduction du texte original allemand), Math. Phys. Klass, 1917.

. Rafecas, Use of a Monte Carlo-based probability matrix for 3-D iterative reconstruction of MADPET-II data, IEEE Transactions on Nuclear Science, vol.51, pp.2597-605, 2004.

[. Rahmim, Spacevariant and anisotropic resolution modeling in list-mode EM reconstruction, IEEE Nucl. Sci. Symp. Conf. Rec, vol.5, pp.3074-3077, 2003.

[. Rahmim, Resolution modeling in PET imaging : Theory, practice, benefits, and pitfalls, Medical Physics, vol.40, pp.64301-64317, 2013.

[. Rahmim, Resolution modeled PET image reconstruction incorporating space-variance of positron range : Rb-82 cardiac PET imaging, IEEE Nucl. Sci. Symp. Conf. Rec, pp.3643-3650, 2008.

[. Rahmim, Analytic system matrix resolution modeling in PET : an application to Rb-82 cardiac imaging, Physics in Medicine and Biology, vol.53, pp.5947-5965, 2008.

[. Rapisarda, Imagebased point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET, Physics in Medicine and Biology, vol.55, issue.14, pp.4131-4151, 2010.

[. Reader, One-pass list-mode EM algorithm for high-resolution 3-D PET image reconstruction into large arrays, IEEE Transactions on Nuclear Science, vol.49, pp.693-699, 2002.

[. Reilhac, PET-SORTEO : A Monte Carlo-based simulator with high count rate capabilities, IEEE Transactions on Nuclear Science, vol.51, pp.46-52, 2004.

D. Renker, Properties of avalanche photodiodes for applications in high energy physics, astrophysics and medical imaging, Nuclear Instrumental Method, vol.486, pp.164-169, 2002.

. Rockmore, A. Macovski-;-rockmore, and A. Macovski, A maximum likelihood approach to emission image recons-truction from projections, IEEE Transactions on Nuclear Science, vol.23, pp.1428-1432, 1976.

[. Roschewski, Diffuse large B-cell lymphoma-treatment approaches in the molecular era, Nat Rev Clin Oncol, vol.11, issue.1, pp.12-23, 2014.

[. Ruangma, Three-dimensional maximum a posteriori (MAP) imaging with radiopharmaceuticals labeled with three Cu radionuclides, Nuclear Medicine and Biology, vol.33, pp.217-226, 2006.

[. Salvat, PENE-LOPE ? A code system for Monte Carlo simulation of Electron and Photon transport, Rapport NEA/NSC/DOC, vol.19, 2001.

[. Sauerzapf, Using monte-carlo simulations to implement corrections for I-124 as a non-pure positron emitter in small animal and human PET imaging, Nuclear Science Symposium and Medical Imaging Conference, 2011.

. Schaart, SiPM-array based PET detectors with depth-of-interaction correction, IEEE Nucl. Sci. Symp. Conf. Record, pp.3581-3585, 2008.

. Schaart, A novel, SiPM-array-based, monolithic scintillator detector for PET, Physics in Medicine and Biology, vol.54, pp.3501-3512, 2009.

[. Sempau, Experimental benchmarks of the Monte Carlo code PENELOPE, Nucl. Instrum. Meth. B, vol.207, pp.107-123, 2003.

V. Shepp, L. A. Shepp, and Y. Vardi, Maximul likelihood reconstruction for emission tomography, IEEE Transactions on Medical Imaging., MI, vol.1, pp.113-121, 1982.

R. Siddon, Fast calculation of the exact radiological path for a three-dimensional CT array, Medical Physics, vol.12, pp.252-255, 1985.

[. Snyder, Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography, IEEE Transactions on Nuclear Science, vol.6, issue.3, pp.228-238, 1987.

. Soret, Partial-volume effect in PET tumor imaging, Journal of Nuclear Medicine, vol.48, pp.932-945, 2007.

[. Strother, Measuring PET scanner sensitivity : Relating count-rates to image signal-to-noise ratios using noise equivalent counts, IEEE Transactions on Nuclear Science, vol.37, issue.2, pp.783-788, 1990.

S. Stute-;-stute, Modélisation avancée en simulations Monte Carlo de tomographie par émis-sion de positons pour l'amélioration de la reconstruction et de la quantification, 2010.

[. Stute, A method for accurate modelling of the crystal response function at a crystal sub-level applied to PET reconstruction, Physics in Medicine and Biology, vol.56, pp.793-809, 2011.

C. Stute, S. Stute, and C. Comtat, Practical considerations for image-based PSF and blobs reconstruction in PET, Physics in Medicine and Biology, vol.58, issue.11, p.3849, 2013.

[. Surti, Correction Technique for Cascade Gammas in I-124 Imaging on a Fully-3D, Time-of-Flight PET Scanner, IEEE Transactions on Nuclear Science, vol.56, issue.3, pp.653-660, 2009.

[. Szanda, National electrical manufacturers association NU-4 performance evaluation of the PET component of the nanoPET/CT preclinical PET/CT scanner, Journal of Nuclear Medicine, vol.52, pp.1741-1747, 2011.

[. Taleb, Performance Measurements of the MicroPET FOCUS 120 for Iodine-124 Imaging, IEEE Trans. Nucl. Sci, vol.59, pp.1868-1878, 2012.

;. Thompson and C. J. Thompson, The problem of scatter correction in positron volume imaging, IEEE Transactions on Nuclear Science, vol.10, pp.234-239, 1993.

[. Thompson, PETSIM : Monte Carlo simulation of all sensitivity and resolution parameters of cylindrical positron imaging systems, Physics in Medicine and Biology, vol.37, issue.3, pp.731-749, 1992.

Q. Tohme, M. S. Tohme, and J. Y. Qi, Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements, Physics in Medicine and Biology, vol.54, pp.3709-3725, 2009.

[. Tong, , 2011.

, Properties and Mitigation of Edge Artifacts in PSF-Based PET Reconstruction, IEEE Transactions on Nuclear Science, vol.58, issue.5, pp.2264-2275

, Measuring astatine-211 distributions with SPECT, Physics in Medicine and Biology, vol.38, pp.1121-1130, 1993.

[. Veklerov, MLEM reconstruction of a brain phantom using a Monte Carlo transition matrix and a statistical stopping rule, IEEE Transactions on Nuclear Science, vol.35, pp.603-607, 1988.

[. Venkataramaiah, A simple relation for the Fermi function, J. Phys. G : Nucl. Part. Phys, vol.11, pp.359-364, 1985.

, Quantitation in PET using isotopes emitting prompt single gammas : application to yttrium-86, European Journal of Nuclear Medicine and Molecular Imaging, vol.30, issue.3, pp.354-361, 2003.

. Walte, Preparation and evaluation of 211At labelled antineoplastic antibodies, J. Pharm. Pharm. Sci, vol.10, pp.277-285, 2007.

[. Watanabe, A high resolution animal PET scanner using compact PS-PMT detectors, IEEE Transactions on Nuclear Science, vol.44, pp.1277-1282, 1997.

[. Watson, NEMA-(2001)-NU2 procedure for system using scintillation with natural radioactivity follows the recommendation, Journal of Nuclear Medicine, vol.45, issue.5, pp.822-826, 2004.

C. C. Watson, Clinical evaluation of single-photon attenuation correction for 3D whole-body PET, IEEE Transactions on Nuclear Science, vol.46, issue.4, pp.1024-1031, 1999.

C. C. Watson, New, faster, image-based scatter correction for 3D PET, IEEE Transactions on Nuclear Science, vol.47, issue.4, pp.1587-1594, 2000.

[. Watson, Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging, IEEE Transactions on Nuclear Science, vol.44, pp.90-97, 1997.

[. Weber, Recent results of the TierPET scanner, IEEE Transactions on Nuclear Science, vol.47, pp.1665-1669, 2002.

[. Westera, Radioimmuno positron emission tomography with monoclonal antibodies : a new approach to quantifying in vivo tumour concentration and biodistribution for radioimmunotherapy, Nucl. Med. Commun, vol.12, issue.5, pp.429-437, 1991.

[. Wienhard, The ECAT HRRT : Performance and first clinical application of the new high resolution research tomograph, IEEE Transactions on Nuclear Science, vol.49, pp.104-110, 2002.

[. Wirrwar, 4.5 tesla magnetic field reduces range of high-energy positrons-potential implications for positron emission tomography, IEEE Transactions on Nuclear Science, vol.44, pp.184-189, 1997.

L. Wright, B. Wright, and S. Lapi, Designing the magic bullet ? The advancement of immuno-PET into clinical use, Jounal of Nuclear Medicine, vol.54, pp.1171-1174, 2013.

[. Xu, Iterative algebraic reconstruction algorithms for emission computed tomography : A unified framework and its application to positron emission tomography, Med. Phys, vol.20, pp.1675-1684, 1993.

[. Yamaha, Transaxial system models for jPET-D4 image reconstruction, Quantitative iodine-124 imaging on animal PET. Nuclear Science Symposium and Medical Imaging Conference, vol.50, p.44, 2005.

Y. Yongfeng and S. R. Cherry, Observations regarding scatter fraction and NEC measurements for small animal PET, IEEE Transactions on Nuclear Science, vol.53, issue.1, pp.127-132, 2006.

, Clinical experience with alpha-particle emitting 211At : treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6, Journal of Nuclear Medicine, vol.49, pp.30-38, 2008.

[. Ziegler, A prototype highresolution animal positron tomograph with avalanche photodiode arrays and LSO crystals, European Journal of Nuclear Medicine, vol.28, pp.136-143, 2001.

. Schéma-représentant-le-principe-d&apos;un-examen, TEP : a) création du radiopharmaceutique ; b) injection du radiopharmaceutique ; c) détection de l'information sur un anneau TEP

, Schéma représentant les différentes étapes de la désintégration à la génération des photons ?-511 keV : 1) désintégration et parcours du positon jusqu'à la rencontre avec un électron du milieu ; 2) création du positronium ; 3) annihilation du positronium et création des photons ?-511 keV

. .. Schéma,

, Schéma représentant a) le principe de la diffusion Compton et b) le principe de la diffusion Rayleigh

. .. , Courbe représentant la section efficace de diffusion Compton d'un photon incident de 511 keV en fonction de l'angle diffusé ?. Cette section efficace est proportionnelle à la longueur du segment joignant le centre du graphe et le point de la courbe rouge considérée (représentée par les flèches rouges), vol.8

, Schéma représentant une coupe transverse des principaux éléments constituant la chaîne de détection d'une caméra TEP standard

, Schéma représentant les systèmes de coordonnées relatifs aux éléments d'un sinogramme avec le sinogramme associé. L'exemple est donné ici pour un anneau de détection, et donc pour une coupe, p.15

, Visualisation selon l'axe z du tomographe, en coupe coronale. Pour le sinogramme droit, la coupe est confondue avec le sinogramme, Schéma représentant les différents types de sinogrammes avec leurs coupes associées

, Schéma en coupe transverse d'un anneau TEP représentant la détection des coïncidences vraies, p.17

, Schéma en coupe transverse d'un anneau TEP représentant la détection des coïncidences diffusées, vol.18

, Schéma en coupe transverse d'un anneau TEP représentant la détection des coïncidences fortuites, vol.18

, Schéma en coupe transverse d'un anneau TEP représentant la détection des coïncidences multiples, p.19

, Schéma en coupe transverse représentant le phénomène de parallaxe lié à la profondeur d'interaction non stationnaire au sein des cristaux de détection (LOR [A-B] et [A'-B']) ainsi qu'à la pénétration inter-cristaux (LOR [C-D])

, Schéma en coupe transverse représentant le phénomène de diffusion au sein de cristaux de détection : un photon incident arrive dans le cristal B, diffuse puis dépose le restant de son énergie par effet photoélectrique dans le cristal C. La LOR enregistrée est donc la LOR, p.21

, Les projections en pointillés rouges ne sont pas mesurées, et seules les projections oranges sont accessibles pour l'angle ? considéré

, Schéma représentant les différentes étapes de l'algorithme 3DRP. Les projections manquantes estimées sont en pointillés rouges, tandis que les projections mesurées pour ? = 0 sont en orange, 2007.

, Schéma représentant la proportion de voxels contribuant à une LOR donnée pour un modèle simple de R, sur une coupe transverse du volume objet à reconstruire

, Schéma représentant les différentes étapes du processus itératif de l'algorithme MLEM, dans l'espace image et dans l'espace des projections (représenté ici par un sinogramme)

, Schémas en coupes transverses d'un système TEP et du champ de vue voxélisé considéré. Les voxels objets bleus correspondent aux voxels pris en compte pour la modélisation de la LOR

, On remarque que plus le modèle est sophistiqué, plus le nombre de voxels à considérer est important, et donc plus la matrice système associée contiendra d'informations. Le problème inverse mal posé devient alors de plus en plus complexe à résoudre

, Schémas représentant différentes méthodes de calcul des probabilités Rij de la matrice système géomé-trique : (1) théorie, (2) modèle linéique de Siddon

, Les voxels objets (carrés bleus) et les cristaux de détection (parallé-lépipèdes violets) ne sont pas à l'échelle

, On remarque que le bruit augmente avec le nombre d'itérations. Les trois images sont affichées avec la même échelle de gris, les régions les plus sombres correspondant aux zones les plus radioactives, Exemple d'images reconstruites d'un cylindre uniforme à différents niveaux de bruit, avec un algorithme type MLEM

, Exemple d'un fantôme de type Derenzo simulé avec GATE pour un système TEP dédié au petit animal, avec (1) la géométrie simulée et la taille des inserts de chaque région (en millimètre) et des exemples d'images reconstruites de résolutions spatiales différentes. Dans ce cas, l'image (3) est mieux résolue que l'image (2)

, Caractéristiques des principaux isotopes utilisés en TEP clinique et pré-clinique, 2005.

, Le parcours moyen du ?+ étant l'épaisseur nécessaire pour absorber la moitié des ?+, p.4

. Phelps, Tableau donnant les coefficients d'atténuation linéique à 511 keV pour chacune des interactions Photoélectriques et Compton pour les principaux tissus biologiques et les trois des principaux cristaux de détection utilisés en TEP : le germanate de bismuth (BGO), l'oxyorthosilicate de lutétium (LSO) et l'oxyorthosilicate de gadolinium, p.9, 1999.

, Tableau donnant les principales caractéristiques ainsi que certains paramètres associés à trois des principaux cristaux scintillants utilisés aujourd'hui en TEP clinique et pré-clinique, 1999.

, Certains paramètres peuvent varier selon la pureté du cristal, les conditions de température et de pression ainsi que de l'hygrométrie ambiante

, *La colonne Correction indique s'il s'agit d'une méthode de correction implé-mentée dans un algorithme de reconstruction (Oui) ou s'il s'agit uniquement d'un modèle d'estimation de la distribution du lieu d'annihilation (Non), Tableau récapitulatif des publications citées dans cette partie concernant la modélisation ou la correction du parcours des positons

, Tableau récapitulatif des publications citées concernant les corrections associées à la présence de photons ?