Flame-vortex interaction: Effect of residence time and formulation of a new efficiency function

F. Thiesset, G. Maurice, F. Halter, N. Mazellier, C. Chauveau, I. Gökalp

To cite this version:
Flame-vortex interaction: effect of residence time and formulation of a new efficiency function

F. Thiesseta, G. Mauricea,b, F. Haltera, N. Mazellierb, C. Chauveaua, I. Gökalpa

aCNRS ICARE, Avenue de la Recherche Scientifique, 45072 Orléans Cedex 2 France
bUniversity of Orléans, INSA de Bourges, PRISME, EA 4229, 45072 Orléans, France

Abstract

In this study, a combined experimental and numerical investigation of a toroidal vortex interacting with a stagnation premixed flame is carried out with the aim of quantifying the ability of such a vortex to stretch the flame. By scrutinizing the literature, it was found that, although inferred from exactly similar numerical simulations, existing parametric expressions for the efficiency function (the ratio of the flame stretch to vortex strain) do not agree in the way the latter should behave when the ratio of the vortex rotational velocity $U_θ$ to the laminar flame speed S_L is increased. These expressions also appear to be unequally accurate when compared to experimental data and do not feature the non monotonic evolution of the efficiency function with U_θ/S_L which is observed in both experimental data and numerical simulations of a 'isothermal' propagating interface. In addition, whilst previous studies have focused only on the impact of U_θ/S_L and R_v/δ_L (R_v being the vortex typical size and δ_L the laminar flame thickness) our study reveals the importance of other parameters, the most important of which being the residence time of the vortex associated with its convection velocity. These results yield a new formulation for the efficiency function which compares favourably well with experimental data.

Keywords: Flame vortex interactions, Flame stretch, Vortex strain, residence time
1. Introduction

Understanding and predicting the different mechanisms at play in turbulent premixed flames is a tremendously difficult challenge. The main reason is that there is still a lack of knowledge of the turbulent flow structure which features a large variety of turbulent scales. A given eddy thus experiences many different processes induced by turbulent scales of different sizes, such as vortex stretching and sweeping, diffusion by viscosity, these effects being particularly arduous to model. In addition, when reacting flows are concerned, the flame does not act as a passive scalar because of its propagative character and the inherent heat release that locally modifies the fluid physical properties. The high local flame curvature and strain, also impact its local consumption or displacement speed in a way which remains poorly understood.

There is thus a need for fundamental investigations of the interactions between the fluid motion and a flame in simplified and well-controlled situations. One of these is the case of a flame interacting with a single vortex dipole (see the review by Renard et al. [1]). Pioneering studies of Flame-Vortex Interactions (hereafter abbreviated by FVI) emerged in the 90’s with notably Poinot et al. [2], Roberts and Driscoll [3], Wu and Driscoll [4], Roberts et al. [5], Lee and Santavicca [6] and more recently with Renard et al. [1], Colin et al. [7], Charlote et al. [8] and Bougrine et al. [9].

Although some effects such as vortex stretching, sweeping, tilting are not present, FVI are expected to mimic, at least partly, the processes at play in real turbulent flames. The aforementioned investigations on FVI have led notably to the construction of so-called spectral diagrams which allows to identify the conditions needed for a vortex to stretch the flame, to create pockets of fresh gas or to locally quench the flame. In addition, these results yielded expression of efficiency functions, i.e. the transfer function between vortex strain and flame stretch. In this prospect, Colin et al. [7], Charlote et al. [8] have focused on the effect of vortex size \(R \) relative to the flame thickness \(\delta_f \) and vortex rotational velocity \(U_r \) relative to the flame speed \(S_f \). More recently, the effect of Lewis number has been incorporated by Bougrine et al. [9]. These efficiency functions are extremely valuable as they are widely used in LES of turbulent premixed combustion in order to model the sub-grid scale wrinkling factor [2][9].

The aim of the present study is to explore one particular aspect of the interaction between the flow motion and a flame, which we referred to as the \textit{strain-sweeping competition} (see for instance the review by Driscoll [10]). This competition can be conceptually described in terms of time-scales. Based on phenomenological arguments [11], the strain-based time scale \(\tau_s \) of a scale \(r \) with characteristic velocity \(u \), is \(\tau_s \propto r/\sqrt{u} \). This time-scale is generally referred to as the eddy turn-over time. Previous studies devoted to FVI investigations [2][9] indicate that the smaller this time scale, the larger is the flame stretch. On the other hand, Tennekes [12] suggested that another relevant time scale in a turbulent flow relates to the sweeping effect by energy-containing eddies. He pointed out that a given scale of size \(r \) is convected by the large scales, i.e. with characteristic velocity of the order of \(u' \), the root-mean-square of the velocity fluctuations. The sweeping time scale as called by Tennekes [12] thus writes \(\tau_s \propto r/u' \). This has been verified experimentally by e.g. Poulain et al. [13]. It is worth stressing that these two phenomenology both lead to the same prediction for the scaling exponent of the energy spectra and are therefore undistinguishable in spectral space. In the field of combustion the sweeping time scale is somehow related to the residence time [10] and basically describes the duration of the interaction of a vortex located in the vicinity of the flame. As far as the sweeping (or residence) time scale is concerned, FVI [2][4] corroborates the intuitive statement that the smaller this time scale, the smaller the flame stretch since the vortex spends less time in the vicinity of the flame for rolling it up. In turbulent flames, there is thus a competition between turbulent strain and turbulent convection, the latter phenomena acts in decreasing the flame stretch whereas the former has the opposite effect. It is thus worth investigating these effects independently in order to give further insight into their respective influence on the flame. Further, a more complete expression for the efficiency function which accounts for both strain and residence time effects could be derived and used in LES.

In the present study, a new experimental set-up was designed in the goal of quantifying the degree of the interactions between a vortex dipole and a stagnation premixed flame. Some simple numerical simulations based on the ‘isothermal’ G-equation, have been further carried out and validated against experimental data. Such simulations allow to assess the effect of the convection velocity and rotational velocity independently. Finally, the respective effect of these two phenomena on flame stretch are separately quantified, incorporated into a new formulation for the efficiency function, and compared to experimental data.

2. Experimental apparatus

Investigations are carried out in a single jet stagnation flame configuration which is a modified version of that used by Bouvet et al. [14]. A schematic of the burner is provided in Fig. 1. A laminar strained flame is stabilized against a 4-mm-thick stainless steel plate. The stagnation plate is attached to an alumina foam plug selected for its insulating properties. The fuel and oxidizer are introduced through the side of the burner. A so-called ‘particle diffuser cone’ filled with 6 mm glass beads is used to ensure a homogeneous mixture in the nozzle plenum. The reactive mixture then flows into the burner plenum through a 5 mm thick aluminium grid. It is finally accelerated in the
converging section with a \(D = 15 \text{mm} \) outflow diameter, creating an upward-oriented jet with a nearly top hat velocity profile at the burner exit. The burner-to-stagnation plate distance \(L \) was fixed to 25mm, given a \(L/D \) ratio greater than unity as usually recommended. Moreover, it allows to stabilize flames sufficiently far from the plate to track the flame/vortex interaction without being affected by the plate. To avoid external perturbations and improve flame stability, a laminar coaxial shroud of nitrogen is used. The nitrogen flow rate was respectively 90, 86 and 77s\(^{-1}\) in the present study, in order to optimize the pressure discharge duration of reactive mixture of same equivalence ratio at the burner outlet (Fig. 1). The intensity of the vortex is controlled by varying the pressure magnitude within a pressurized tank located upstream. To control the duration of the pressure discharge, it was necessary to use two electro-valves placed one after another because the time needed for a single electro-valve to open and close was too large. First, the upstream electro-valve is kept closed while the second placed downstream is opened. Then, for generating the vortex, the first valve is opened while the second one is closed with a small time delay, so that the pressure discharge duration was about 5ms.

Three equivalence ratios for the reactive methane-air mixture \(\phi = 1, 0.9, 0.8 \) have been considered. The laminar flame speed and thickness have been evaluated using the GRI-mech 3.0 mechanism together with the stagnation flame module of the CHEMKIN Pro software. The temperature of the wall, measured by Bouvet et al. [14], was set to 800K. It was found that \(S_L = 40.3, 36.5, 30.6 \text{cm.s}^{-1} \) and \(\delta_L = 433, 463, 525 \mu\text{m} \) respectively for \(\phi = 1, 0.9 \) and 0.8. The strain rate was respectively 90, 86 and 77s\(^{-1}\) for \(\phi = 1, 0.9 \) and 0.8.

The flame front is tracked by means of Mie scattering laser tomography. Seeding of the flow is made by silicon oil droplets supplied by an atomizer. Typical size of droplets is about 1\(\mu \text{m} \). It was checked that the flame location was the same when the seeding was turned off suggesting that the laminar flame speed was not altered by the addition of silicon droplets in the flow. Then, use is made of a continuous Coherent Verdi G20 Laser which delivers up to 20W at 532nm.

The light scattered by the droplets is then captured by a Phantom V1210 camera, equipped with a 105mm F2.8 lens, working at an acquisition rate of 23005Hz with a field of view of 704\(\times \)640 pixels\(^2\) and the resolution was 38\(\mu\text{m} \).px.

The flame contour is then extracted as follows. Firstly, a contrast-limit adaptive histogram equalization (CLAHE) is applied to the original images in order to optimize the contrast in the images. Then, to limit the pixelization associated with the CLAHE, images are filtered using a Gaussian filter of size equal to 4 times the spatial resolution. For the binarizing procedure, we use a standard threshold-based technique. More precisely, the histogram of the gray scale is calculated. The latter reveals two distinct peaks corresponding to the fresh and burned gas respectively. The threshold value for discriminating the flame con-
tour is set as the average value between the gray scale of these two peaks. This yields estimations for the progress variable, noted \(c \), which is by definition 0 and 1 in the unburned and burned gas respectively. The velocity field within the unburned mixture is estimated by classical 2D-2C Particle Image Velocimetry (PIV). For this purpose, the Matlab subroutines of Thielicke and Stamhuis [15] were used. A time sequence of Mie scattering images at four distinct instants is shown in Fig. 2. The vorticity field and flame contours are superimposed. The time \(t_0 = 0 \) was set arbitrarily as the time \(t \) where the vortex center was 2.5mm downstream the burner outlet. One observes that at a time \(t=4\)ms, the flame is rather flat suggesting that the vortex generator is sufficiently far from the burner outlet for not creating a wake. As the vortex is convected (\(t=8\)ms and \(8\)ms), the flame is increasingly stretched. Its area then reaches a maximum before decreasing (\(t=10\)ms) while the flame goes back to its original position.

The vortex parameters, i.e. the circumferential velocity \(U_\theta \), the convection velocity \(U \), and the core-to-core distance \(R_v \), have been inferred from PIV by fitting the velocity field calculated with an Oseen vortex. Our experimental set-up allows to cover the range \(0.5 \leq U_\theta/S_L \leq 2.5 \) whereas \(R_v/\delta \) slightly varies around 6.5. Our database thus lies between the no-effect limit and the quenching limit assessed by Roberts et al. [9].

3. Experimental results

3.1. Domain size effects

The focus of this paper is on the flame stretch associated with the interaction with a vortex. Given the vortex rotational velocity \(U_\theta \) and the distance between vortex cores \(R_v \) (see Fig. 3), the vortex size is generally estimated as \(U_\theta/R_v \). On the other hand, the flame stretch is evaluated as

\[
K(t, \Delta) = \frac{1}{A(t, \Delta)} \frac{\partial A(t, \Delta)}{\partial t} \quad (1)
\]

where, thanks to axisymmetry, \(A(t, \Delta) = \int s(x) \sqrt{x^2 + y^2} \, ds \) is the flame area at a time \(t \) evaluated over a domain of width \(\Delta \) (see Fig. 3). \(s \) is the curvilinear parameter, \(y \) and \(x \) are the flame contour spatial coordinates and the prime denotes derivatives with respect to \(s \). The efficiency function is defined as [7,9], viz.

\[
C(\Delta) = K_{\text{max}}(\Delta)(U_\theta/R_v) \quad (2)
\]

\(C(\Delta) \) is a given value for \(\Delta \approx 6R_v \) corresponding to the size of the simulation domain was chosen. However, it appears straightforward that \(K_{\text{max}} \) depends on \(\Delta \). Indeed, because the portion of flame interacting with the vortex is constant (i.e. there exists a \(\Delta \) above which \(\partial A/\partial t \) is independent of \(\Delta \)), we expect \(K_{\text{max}} \), to decrease with \(\Delta^2 \) since \(A(t, \Delta) \) monotonically increases with \(\Delta^2 \). Figure 3 presents the evolution of \(K_{\text{max}} \) with respect to \(\Delta \). It clearly appears that \(K_{\text{max}} \) rapidly decreases with respect to \(\Delta \) and \(\Delta \) sufficiently large (i.e. for \(\Delta \) larger to a certain \(\Delta_c \)), it is found that \(K_{\text{max}} \) follows the relation.

\[
K_{\text{max}} = K_{\text{max}}^0 \left(\frac{\Delta - \Delta_c}{\Delta_c} \right)^2. \quad (2)
\]

In Eq. (2), \(\Delta_c \) represents the domain width above which \(\partial A/\partial t \) is constant and \(\Delta_0 \) is interpreted as a virtual origin, i.e. \(K_{\text{max}}^0 \to 0 \) when \(\Delta \to \Delta_0 \). From our experimental database, it was found that \(\Delta_0/R_v \) and \(\Delta_0/R_v \) were constant and are equal to \(2.5 \pm 0.05 \) and \(-0.5 \pm 0.1 \) respectively.

Figure 3 emphasizes that the values for the efficiency function that were previously provided notably by Colin et al. [7], Charlette et al. [8], Bougrine et al. [9], were inferred for a given value of \(\Delta/R_v \), whereas they should depend on \(\Delta \). In other words, if they had chosen a different value for the simulation domain, they would have obtained different values. Moreover, the no-effect limit assessed by Poinsot et al. [2] which corresponds to vortices which induce a maximum modification of the total reaction rate of about 5 percent, should also depend on \(\Delta \).

3.2. Impact of vortex intensity

We now turn our attention to the effect of the vortex strength on the flame stretch. Figure 3 depicts the evolution of \(C(\Delta) = K_{\text{max}}(\Delta)/(U_\theta/R_v) \) as a function of \(U_\theta/S_L \) (hereafter the superscript \(\circ \) on \(C \) will be removed for the sake of simplicity). Experimental results are also compared to the predictions provided by Colin et al. [7], Charlette et al. [8], Bougrine et al. [9] which are respectively noted \(C_{\text{ex}} \), \(C_{\text{th}} \) and \(C_{\circ} \). Their respective analytical expressions are not recalled here but the reader can refer to [7,9] for more details.

Experimental uncertainties have been estimated as follows. The precision of the subpixel interpolation of the PIV algorithm is generally about 0.05 pixel. The uncertainty on the velocity field is therefore constant and equals to about 0.04m.s\(^{-1}\) provided the resolution and sampling frequency of our images. The error on the estimation of \(R_v \) provided by fitting experimental
data with an Oseen vortex was generally of about 4%. The uncertainty in the determination of \(K_{\text{max}} \) was sup-
posed to be negligible by comparison with the errors on both \(U_p \) and \(R_s \), since \(\lambda \) is readily measurable.

A careful analysis of Fig. 4 first reveals that, although rather limited, some departures between experi-
mental data and the predictions of either \(C_{\text{ch}} \) or \(C_{\text{b}} \) can be observed. By comparison with experi-
ments, the efficiency function of Colin et al. \([7]\) appears to be the more appropriate. These differences might be
explained by several parameters. First, it is worth rec-
calling that our configuration is axisymmetric whilst
DNS of \([7,9]\) are 2D (planar). Secondly, in \([7,9]\), the flame stretch is estimated from the heat release
\(Q \), i.e. \(K = Q^{\frac{1}{3}}dQ/dt \) which implicitly suggests
that Refs. \([7,9]\) considered that the flame consump-
tion speed was unaltered by the flame stretch. Such
an hypothesis is consistent with LES models based
on the flame density concept for which the heat re-
lease or fuel consumption is calculated through the
laminar flame speed multiplied by the flame surface
density. This assumption is however not consistent
with LES that employs skeletal or analytical chem-
istry which explicitly accounts for the effect of stretch
on the flame consumption speed.

Fig. 4 also suggests that though based on exactly
similar simulations, existing parametric expressions
do not agree in the way \(C \) should behave with re-
spect to \(U_p/S_L \). Indeed, Colin et al. \([7]\), Charlette
et al. \([9]\) both predict an increasing tendency of \(C \)
with respect to \(U_p/S_L \), whereas \(C_b \) leads to the op-
oposite trend. Although slightly scattered, our exper-
imental data further suggest that the evolution of \(C \) is
non monotonic, i.e. \(C \) first increases before decreasing
slightly for \(U_p/S_L \) larger than about 1.5. The decreas-
ting tendency of \(C \) was also observed in the DNS of
Bougrine et al. \([9]\) when the vortex strength was en-
hanced from \(U_p/S_L = 0.8 \) to \(8 \) (note that there is a nice
agreement between our experiments and the DNS data
of Bougrine et al. \([9]\) for \(U_p/S_L = 0.8, R_s/\delta_f = 5 \)).

This observation can be readily explained by recalling
that an intense vortex will create high local curvatures
which act in decreasing the total stretch of the flame.
In other words, increasing the vortex strength can be
less efficient since it leads to too high curvatures that
globally reduces the flame stretch.

Roberts and Driscoll \([3]\) were first to realize that
the flame stretch is also driven by the convection ve-
locity \(U_r \) of the vortex dipole. More precisely, they
suggested that for a given \(U_p \), increasing \(U_r \) yields
a smaller flame stretch because the residence time of
the vortex in the vicinity of the flame decreases. This
intuitive statement was further confirmed by Wu and
Driscoll \([4]\) on the basis of numerical simulations of
a propagating surface. There is thus a need for incor-
porating these two opposed effects (convection vs ro-
tational velocity) into a more complete expression of
the efficiency functions. However, in our experiments,
it was observed that increasing \(U_p \) irretrievably led to
a higher convection velocity consistently with analyt-
cal studies (see \([1]\) and references therein). It was
found experimentally (Fig. 5) that the convection ve-
locity \(U_r = U^p(X_c) \) \((U^p \) the streamwise velocity ex-
perienced by the vortex located at \(X_c \)) scales as \(U_r^{1/3} \).

Therefore, it is not possible from experiments to as-
sess independently the respective influence of \(U_p \) and
\(U_r \).

Consequently, following e.g. Wu and Driscoll \([4]\)
or Lee and Santavicca \([6]\), we decided to perform sim-
plified numerical simulations of the same burner in
the goal of studying the effect of \(U_p \) and \(U_r \) indepen-
dently. These simulations have been widely used in
the past mainly because they are extremely low-cost
in terms of computational resources. Indeed, they
consider the flame as a ‘passive’ propagating (ther-
manalytical) interface, which tremendously reduces
the problem complexity. Such simulations neglect
the heat release and therefore many physical mechanisms
are not taken into account. First, the higher viscosity
due to high temperature in the burnt gas, resulting in
a larger dissipation rate is not accounted for. Baro-
clinic effects as evidenced by \([5]\) are also neglected.
However, with this limitations in mind, one aspect of
the present work is to investigate in detail how real-
4. Simulations of a vortex interacting with a propagating interface

4.1. Implementation and validation

Present numerical simulations consider the flame as a two-dimensional (axisymmetric) propagating interface convected by the fluid motion U while advancing at the laminar flame speed S_L. The kinematic relationship between the flame and the flow field is then given by the G-equation which writes [3,6]

$$\frac{\partial G}{\partial t} + U \nabla G = S_L \nabla G.$$ \hspace{1cm} (3)

In the present case, the Navier-Stokes are not explicitly solved and the velocity field is set as follows. First, U^v and V^v, i.e. the velocity component in the streamwise x and transverse y direction of unperturbed flow (before the generation of the vortex) is given by $U^v(x,y) = -2 \int a(x) dx$ and $V^v(x,y) = a(x) \times y$, where $U_0 = 1.23 m/s$ is the inlet velocity of the burner and $a(x) = \partial V^v/\partial y (y = 0)$ is the transverse strain of the unperturbed flow. $a(x)$ was fitted from experiments using a second order polynomial. The coefficients of the polynomial were adjusted for each equivalence ratio.

Secondly, the vortex velocity field was added to U^v and V^v and set using the Oseen expression. The input parameters for the Oseen vortex are U_c, X_v (the streamwise location of the vortex center) and R_v, the core-to-core distance. In the present case, by analyzing experimental data (see Fig. [6]), it was found that U_c does not vary with time and was therefore set to a constant. The vortex center X_v was convected at a velocity U_v, viz. $\partial X_v/\partial t = U_v$, where $U_v - U^v(X_v)$ was found to be constant (see Fig. [6]). The time evolution of the vortex ring diameter R_v follows the relation \[R_v(t) = R_0 \left(1 + \frac{t}{\alpha}
ight)^{1/2} \] where $R_0 = 0.012 m$.

In Fig. [6], the time evolution of the vortex ring diameter R_v follows the relation \[R_v(t) = R_0 \left(1 + \frac{t}{\alpha}
ight)^{1/2} \] where $R_0 = 0.012 m$. The time evolution of vortex parameters issued from the experiments are compared to that prescribed in the numerical simulations. All quantities compare extremely well and thus validate the procedure for establishing the velocity field.

The G-field was initialized as a signed distance with the iso-value $G = G_0 = 0$ located at the streamwise location x at which $U(x) = S_L$. Equation (2) is resolved using a fifth-order WENO discretization scheme in space and 4th-order Runge-Kutta scheme for time advancement. The usual reinitialization procedure is also applied at each time step so that the G-field remains a signed distance. The mesh size is 500x500 corresponding to a domain size of $25x25 mm^2$. It was checked that increasing the mesh size up to 1000x1000 points yielded only marginal differences.

Numerical simulations have been validated against experimental data. Results for three different values

Figure 6: Time evolution of the vortex parameters for a given case in the database. The vortex core-to-core distance R_v, the convection velocity U_v, and $U_v - U^v(X_v)$, the vortex center streamwise position X_v, and the rotational velocity (black) are represented as a function of time. Symbols are experimental data whilst lines stand for the simulation.

Figure 7: Time evolution of the flame area $A(t, \Delta)$ (a) and stretch $K(t, \Delta)$ (b) for $\Delta = 10mm$, for three different ratio of $U_0/S_L = 0.94, 1.43, 1.83$. Dashed and full lines correspond respectively to experimental and numerical data.

Figure 8: Maximum stretch K_{max} assessed by experiments versus K_{max} inferred from numerical simulations. Symbols are coloured by U_0/S_L.
of $U_θ/S_L = 0.94, 1.43, 1.83$ are presented in Fig. 7. The increase of $A(t, Δ)$ is very nicely reproduced by the simulation, whilst some slight departures are observed close to the maximum of $A(t, Δ)$. This indicates that the early stage of the interaction (i.e. before the vortex reaches the burnt gas) relies mainly on a kinematic interaction and that the heat release does not play a significant role at this stage. The simulated flame stretch compares favourably well with experiments for the three cases represented in Fig. 2. A scatter plot between the measured and simulated K_{max}^0 for the entire database is further given in Fig. 8. Here again, a nice agreement is observed. Departures between numerical and experimental data for K_{max}^0 lie within 20% on average.

4.2. Formulation of a new efficiency function

By use of such numerical simulations, the effect of U_1 and U_0 on K_{max}^0 can thus be studied independently with the aim of incorporating these parameters in a more complete expression for the efficiency function.

In Fig. 9(a), are provided the numerical results for the efficiency function as a function of U_0/S_L for $0.65 S_L ≤ U_0 - U^c(X_1) ≤ 4.75 S_L$. Noticeable is the non-monotonic evolution of C with respect to U_0/S_L that was previously observed in the experiments (see Fig. 3). Furthermore, one clearly sees a dependence of C on U_1. Note that for $U_0/S_L > 3.5$ the effect of U_1 is almost negligible. In Fig. 9(b), it is shown that the evolution of C with respect to U_1 and U_0 can collapse on a single curve, when the rescaled efficiency function $F = C \times (U_0^* / S_L)^{1/3}$ is plotted as a function of a rescaled velocity ratio $\mathcal{U} = (U_0/S_L) \times (U_0^*/U_θ)^{1/3}$, where $U_0^* = U_0 - U_0^c(X) + S_L$ is the relative velocity between the flame and the vortex centers [4].

This curve highlights a first zone for $\mathcal{U} < 2.5$ where

5. Conclusion

The present study is devoted to the exploration of the flame stretch induced by a vortex dipole with special emphasis on the strain-sweeping competition. Both experiments and numerical simulations of a stagnation flame have been carried out, with the aim of assessing the ability of available parametric expression for describing the efficiency function. The outcomes of the present study can be summarized as follows:

- It was first shown that, though based on the same numerical data, C provided by both Colin et al. [7], Charlette et al. [8] predict an increase of C with respect to U_0/S_L whereas that of Bougrine et al. [9] emphasizes the opposite trend. In addition, all these expressions fail in describing the non-monotonic evolution of C with respect to U_0/S_L which is observed in both experimental and numerical data.
• Secondly, by comparing experiments to simplified numerical simulations based on the ‘isothermal’ G-equation, it was shown that the early stage of interaction is driven by a kinematic interaction between the vortex and the flame. The maximum flame stretch issued from such numerical simulations is in agreement with experiments.

• Finally, these simulations allow the effect of the residence time of the vortex in the vicinity of the flame to be investigated. A new parametric expression for the efficiency function is proposed and compares favourably well with experimental data.

As mentioned in the introduction, strain and sweeping effects are respectively representative of rather small (u_\prime) and large scales (u') phenomena. This indicates a priori that in a LES, C can be evaluated, using the sub-grid scale velocity for U_α and the total (resolved + sub-grid scale) velocity for U_α. The residence time also requires the knowledge of the vortex sweeping direction compared to the flame normal direction, for which a sub-model has yet been developed. Another important point concerns the fact that in LES, the efficiency functions have to be integrated over all the sub-grid scales. In previous studies, e.g. [8], the integration was done in spectral space. It is worth stressing that the integration over available turbulent scales might not be necessary by keeping the description in physical space (that of the structure or correlation functions), in which the notion of cumulative over turbulent scales is implicit (see e.g. [17]). Indeed, in Ref. [17], use was made of an expression for the turbulent strain (Eq. (1) in [17]) which represents the strain due to the combined effect of all smaller scales (as the structure function does, see e.g. [13] p.11, or [19] p 366). This expression is thus equivalent to the subgrid scale strain. Consequently, the multiplication of the efficiency function by the latter expression for the strain directly represents the flame stretch of all smaller scales than the scale considered. i.e. the subgrid flame stretch and there is no need for spectral integration.

Further work will be devoted to exploring the impact of the ratio R/δ_L on C by changing the diameter of the vortex generator. We also plan to study in detail the effect of fuel composition and especially the Lewis number effects.

Acknowledgements

The financial support from the Agence National de la Recherche under the project IDYLYE is gratefully acknowledged. In this respect, we would like to thank especially S. Richard, L. Selle and T. Poinsot for fruitful discussions. We are also thankful to the CNRS, the University of Orleans, and the French Government Program “Investissements d’avenir” through the LABEX CAPRYSSES. FT acknowledges EADS for its financial support. We also benefited from the computing resources provided by CaSciModOT. We thank Laurent Catherine for his technical assistance. We are grateful to Seong Young Lee for providing us the CHEMKIN PRO results.

References