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INTRODUCTION 
 
Cervical cancer (CC) is among the most commonly diagnosed cancers for women, with over 500000 
new cases annually worldwide resulting in over 270,000 deaths [1]. A significant proportion of 
patients are diagnosed at a locally advanced stage, and are usually treated with pelvic external beam 
radiotherapy (EBRT) in association with cisplatin-based chemotherapy and subsequent 
brachytherapy (BT).  Although chemoradiotherapy (CRT) has significantly improved loco-regional 
control (LRC) and outcome, approximately 40% of patients suffer from recurrence and eventually die 
of disease. Several clinical and histopathological variables have been identified as prognostic factors 
in CC patients, including International Federation of Gynecology and Obstetrics (FIGO) stage, 
histology and lymph node (LN) metastases [2]. Nevertheless, clinical outcomes are markedly variable 
among patients with similar stage, which cannot be explained by differences in clinico-pathological 
features only [2]. Yet the treatment modality choice is based on conventional FIGO and N staging, 
without prior knowledge regarding CRT efficacy. A more tailored approach based on pre-treatment 
prediction of recurrence and LRC may allow choosing the appropriate treatment for patients with 
more aggressive CC [3].  
 
18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and 
magnetic resonance imaging (MRI) play an essential role in the initial staging, therapeutic strategy [4] 
and treatment response assessment [5]. Recently, in addition to conventional parameters on FDG 
PET/CT and MRI used to stage disease, plan treatment and assess response there has been a growing 
interest in the extraction of quantitative features from medical images, denoted radiomics [6]. 
Radiomics features are statistical or model-based metrics to quantify tumor intensity, shape and 
heterogeneity which have been shown to reflect intratumoral histopathological properties [7] and to 
provide prognostic information in several pathologies[8] including CC [9-13]. Radiomics on 
pretreatment PET/CT has been shown to predict response to therapy and risk of pelvic recurrence in 
CC [9, 11, 13] and used to characterize CC lesions from diffusion-weighted MRI (DW-MRI) [12] or 
dynamic contrast enhancement MRI (DCE-MRI) [10]. However, a radiomics signature from both FDG-
PET and MRI associated with the outcome of patients with locally advanced CC (LACC) has not yet 
been described.  
 
Our goal was to develop and validate such a PET/MRI signature with prognostic value for LRC and 
disease-free survival (DFS) in patients with LACC (stage IB1 to IVA) and to assess its incremental value 
with respect to the standard clinical and imaging features. 
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MATERIALS AND METHODS 
 
Patients 

Patients with histologically proven LACC, staged IB1-IVA (FIGO 2009 definition) and treated with 
definitive curative CRT and subsequent BT from August 2010 to December 2016 (to ensure a 
minimum follow-up of 6 months) at our institution were included in this retrospective study (table 1). 
Patients with stage IB1 and IIA1 were only considered for inclusion if they had positive LN.  

All patients were required to have pelvic examination, PET/CT imaging and pelvic MRI at diagnosis, 
and at least 6-month of follow-up. Exclusion criteria were history of previous chemotherapy or RT 
and/or metastatic disease.  

Collected data included age and date of diagnosis, histology, FIGO stage, presence of positive LN on 
PET/CT, tumor size as measured on MRI, body mass index (BMI), complete blood counts (CBC) before 
treatment, EBRT and BT dose, date and status at last follow-up. Date and site of recurrence were also 
collected. Recurrences were considered as local (vaginal and/or cervical), regional (pelvic/para-
aortic), or distant (upper abdominal and/or extra-abdominal) [14]. 
 
A total of 102 patients were recruited and split into training -patients treated from 08/2010 to 
05/2015, n=69 (68%)- and testing -patients treated after 05/2015, n=33 (32%)- sets. All patients 
provided signed permission for the use of their clinical data for scientific purposes and informed 
consent for the anonymous publication of data. Institutional Review Board approved this study. 
 
Imaging  
 
PET/CT  

The Philips Gemini (Philips Medical Systems, Cleveland, OH) was used for the 6 first patients and the 
Siemens Biograph (SIEMENS Healthineers Medical Solutions, Knoxville, TN) for the next 96 patients 
after a scanner replacement. Patients fasted for 4h before acquisition, and the blood glucose level 
had to be less than 7 mmol/L before injection of 5 MBq/kg of 18F-FDG. PET acquisitions were carried 
out approximately 60min after injection. The CT consisted of a 64-slice multidetector-row spiral 
scanner with a transverse field of view of 700 mm. Standard CT parameters were used: a collimation 
of 16×1.2 mm2, pitch 1, tube voltage of 120 kV, and effective tube current of 80 mA. Routine clinical 
image reconstruction protocols were used: for the Philips GEMINI, data were reconstructed using the 
RAMLA 3D (2 iterations, relaxation parameter 0.05) whereas for the Siemens Biograph, images were 
reconstructed with Fourier rebinning (FORE) followed by OSEM (2 iterations, 8 subsets). In both cases 
images were corrected for attenuation using the corresponding CT, reconstructed with a 2×2×2 mm3 
voxels grid and post-filtered with a 5-mm FWHM 3D Gaussian.  

MRI 

All MRI studies were performed with a 1.5-T unit (Siemens Medical Solutions, Magnetom Aera, 
Erlangen, Germany or General Electric, Milwaukee, WS) using a phased-array body coil, 2 weeks 
before the start of CRT with set image protocols. MRI was performed at least 10 days after cone 
biopsy to avoid false-positive findings due to post-biopsy inflammation. No patient had an absolute 
contraindication to the MRI examination. The MRI protocol included high-resolution turbo T2-
weighted sequences in the sagittal, axial, and axial oblique (perpendicular to the long axis of the 
cervix) planes. T1-weighted and T2-weighted axial images were obtained through the pelvis and up 
to the level of the renal hilum to assess nodal status. The MRI protocol included also axial TSE T2-
weighted fat-suppressed and axial oblique and sagittal diffusion-weighted images (DWI) (b values of 
0, 400 and 1000) without slices gap. All except two allergic patients (training set) received a 0.1 
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mmol/kg injection of gadobenate dimeglumine (Multihance; Bracco Diagnostics, Milan, Italy). After 3 
min a T1-weighted fat-suppressed sequence (CE-MRI) in the axial and sagittal plane was acquired. 
MRI sequences are described in more details in the supplemental material table 1. 
 

Treatment 
 
Consortium guidelines were applied to contour the clinical target volume (CTV), the planning target 
volume (PTV) and organs-at-risk [15]. Treatment consisting of three-dimensional conformal 
radiotherapy (3D-CRT) (n=59 and n=7 respectively in the training and testing sets) or intensity-
modulated photon radiotherapy (IMRT) (n=10 and n=26 respectively in the training and testing sets) 
delivered using a linear accelerator.  
 
All the patients received pelvic EBRT or extended field RT to the para-aortic area using high energy 
photons (18 MV), depending on their work-up at a dose of 45–50.4 Gy with standard fractionation. In 
patients with positive pelvic or para-aortic LN, an image-guided targeted boost was delivered to a 
dose of 50.4-54 Gy to the involved nodes (12 and 3 patients in training and testing sets, respectively). 
The week after EBRT, patients received 3-4 fractions of MRI-guided high-dose-rate (HDR) 
intracavitary brachytherapy every 4 days. The prescribed dose was 7 Gy to the high-risk CTV. No 
patient experienced delays or breaks in RT because of short-term toxicity (median RT duration, 49 
days; range, 47-53 days). All patients received 4-6 cycles of concomitant chemotherapy with weekly 
cisplatin (40 mg/m2) or carboplatin (AUC 2) in case of renal contraindication.  
 
Follow-up 
 
PET/CT (for all patients with the Siemens Biograph) was performed 3 months after treatment 
completion in order to assess therapeutic response with PERCIST: patients were classified as having 
complete metabolic response (CMR), partial metabolic response (PMR), stable metabolic disease 
(SMD), or progressive metabolic disease (PMD) [16]. Clinical follow-up consisted of physical 
examination every third month until 2 years after diagnosis, every sixth month up to 5 years, 
annually thereafter, and was done alternatively by the radiation oncologist and gynaecologist. 
Follow-up imaging studies consisted of MRI at 3 months after treatment completion and annually 
until 2 years after treatment completion, CT every 6 months until 2 years after treatment completion 
and if clinically indicated after, and/or PET/CT if clinically indicated.  

Worflow for multimodal radiomics 
 
Our workflow is illustrated in Figure 1. 
 
Segmentation 

 
Only primary tumors, not pathological lymph nodes, were analyzed. The PET and the MRI images 
were processed independently by a single expert radiation oncologist (F. Lucia). To reduce user-
dependency of this step, robust (semi)automated methods were exploited. The metabolically active 
volumes on PET images were automatically delineated with the fuzzy locally adaptive Bayesian (FLAB) 
algorithm [17, 18]. The anatomic volumes were also delineated on i) the ADC map derived from DWI-
MRI, ii) CE-MRI and iii) T2. Each sequence was segmented independently because of anatomical 
changes between each sequence acquisition, using a previously validated semi-automatic approach 
exploiting 3D SlicerTM and the Growcut algorithm [19]. This approach only requires painted strokes on 
the apparent foreground and background as input (examples are provided in supplemental material, 
figure 2). 
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Features extraction 
 

Each tumor was characterized with 92 features extracted from four sets of images: the PET 
component of PET/CT and the 3 MRI sequences (ADC map from DWI, CE-MRI and T2). Amongst these 
parameters, 19 shape-based features describe the 3D geometry of the segmented volume (e.g. 
volume or diameter) and 11 first-order statistics are derived from the histogram of voxel intensities 
(e.g. PET SUVmax or SUVmean). Sixty-two 2nd (25 features) and 3rd (37 features) order textures are based 
on different matrices capturing the spatial intensity distributions at different scales and were 
calculated in a single matrix considering all 13 orientations simultaneously [20]. For these, three 
different image intensity quantization methods [21] were considered: a linear quantization of the 
histogram into 64 bins (QL), histogram equalization into 64 bins (QE) or using a variable number of 
fixed-width bins (of 0.5 SUV for PET and 10 units for T2- and CE- MRI and 10 mm²/s for ADC map) 
(QF). This resulted in 186 different features. In the following these will be denoted as FeatureMatrix-

Quantization. All features were implemented according to the current version of image biomarkers 
standardization initiative (IBSI) guidelines [20] and a full list is provided in the supplemental material, 
table 2. A total of 864 image features (216 per modality) 8 clinical and histopathological parameters 
(age, FIGO stage, N stage, BMI, histology, white blood cells, platelets, hemoglobin) and 3 treatment 
parameters (radiotherapy dose, brachytherapy dose and overall treatment time) were included in 
the statistical analysis (table 1). 

Statistical analysis 

Training and testing sets characteristics were compared using Macnemar test for qualitative factors 
and Student test for quantitative factors. Endpoints were DFS and LRC. For the training set, all 
parameters including usual confounding factors (e.g. volume, clinical variables, etc.) were tested 
using univariate Cox proportional hazards modeling, for which statistical significance was corrected 
for multiple testing with the Bonferroni method to reduce false-positive discovery rate [22]. 
Corrected p-values below α/K (K=875 and α=0.05, i.e. p<0.000057) were considered statistically 
significant. Cox-regression models with the stepwise method were used for multivariate analysis 
including only the uncorrelated parameters (r<0.5) found significant in the univariate analysis. In 
addition, correlations between the parameters identified in the multivariate analysis and standard 
metrics (e.g. volume, FIGO stage, etc.) were checked to avoid simply deriving surrogates of usual 
variables. The receiver operating characteristic (ROC) curve was used to determine cut-off values of 
significant parameters according to the Youden index to generate Kaplan-Meier curves for DFS and 
LRC. Distributions of survival times were compared using the log-rank test. The best features/models 
were applied to the testing set for a rigorous evaluation of their accuracy for DFS and LRC, avoiding 
overfitting on a single cohort. Adjusted hazard ratios (HRs) and the corresponding 95% confidence 
intervals (CI) were calculated. All statistical analyses were performed using MedCalc Statistical 
Software version 15.8 (MedCalc Software bvba, Ostend, Belgium; https://www.medcalc.org; 2015). 
Our study followed the Transparent Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis (TRIPOD) guidelines [23]. The checklist can be found in the supplemental 
material. 
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RESULTS 
Patient and tumor characteristics  

The training and testing sets had similar clinical, treatment and histopathological characteristics, 
except for EBRT modalities (more IMRT in the validation set, p<0.0001), which have no impact on the 
effectiveness of treatment however, only on its toxicity [24]. 
 

Outcome 

Training set 
After a median follow-up of 36 months (range, 6-79 months), 17 patients (25%) had died. Progression 
or disease recurrence occurred in 25 patients (36%). Fourteen patients (20%) had an isolated pelvic 
recurrence and 11 (16%) a distant recurrence (8 with isolated distant recurrence and 3 with both 
regional and distant recurrence). Post-CRT PET/CT demonstrated 44 CMR, 22 PMR, no SMD, and 3 
PMD. Out of 14 patients without LRC 4 had a CMR and 10 a PMR. Out of 11 patients with distant 
metastases 3 had a CMR, 5 a PMR, and 3 a PMD. 3-year DFS and LRC were 63%, and 78%, 
respectively. 
 
Testing set 
None of the 33 patients had died after a median follow-up of 17 months (range, 6–30 months). 
Progression/recurrence occurred in 10 patients (30%): 5 (15%) had an isolated pelvic recurrence and 
5 (15%) a distant recurrence (3 isolated and 2 with both regional and distant). Post-treatment PET/CT 
demonstrated 19 CMR, 11 PMR, 1 SMD, and 2 PMD. Out of 5 patients without LRC 4 had a CMR and 1 
a SMD. Out of 5 patients with distant metastases, 3 had a CMR and 2 a PMD. 1-year DFS and LRC 
were 80% and 90%, respectively 
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Radiomics signature learning (training set) 

 

DFS 

In univariate analysis, most clinical parameters and notably metabolic response (CMR vs. no CMR, 
p=0.0001) showed association with DFS without however reaching the corrected statistical 
significance, with HR between 2.3 and 4.3 (table 2). One texture from PET (GLNUGLRLM-QE) and 4 from 
MRI (Inverse varianceGLCM-QF and EntropyGLCM-QF in ADC maps from DWI, RLVARGLRLM-QL in CE-MRI and 
LZLGEGLSZM-QF in T2) remained significant (p<0.00001), reaching HR between 5 and 34. 
Only ADC EntropyGLCM-QF and CE-MRI RLVARGLRLM-QL remained significantly correlated with DFS in 
multivariate analysis (p<0.0001 and p=0.0001 with hazard ratios of 31 and 11, respectively). 
The estimated three-year DFS rates between patients with low versus high ADC EntropyGLCM-QF (cut-
off 12.64) were 94% and 14%, respectively, and between patients with low versus high CE-MRI  
RLVARGLRLM-QL (cut-off 0.17) 89% and 6%, respectively (figure 2). 
 
LRC 

One texture from PET/CT (GLNUGLRLM-QE) and 3 from MRI (Inverse varianceGLCM-QF and EntropyGLCM-QF 
in ADC map and RLVARGLRLM-QL in CE-MRI) remained significantly correlated with LRC in univariate 
analysis after correction (p<0.00001, HR from 13 to 33), whereas none of the clinical factors reached 
statistical significance despite trends (p from 0.02 to 0.0007 and HR from 2 to 6) (table 3). 
In multivariate analysis only ADC EntropyGLCM-QF (p=0.0079) and PET GLNUGLRLM-QE (p=0.0043) 
remained independent prognostic factors. 
The estimated three-year LRC rates between patients with low versus high PET GLNUGLRLM-QE (cut-off 
103.71) were 98% and 41%, and with low versus high ADC EntropyGLCM-QF (cut-off 12.64) were 98% 
and 45%. The combination of these 2 features provided an even better predictive model for LRC (98% 
vs. 18%) (figure 3). 

Radiomics signature evaluation (testing set) 

When applying the selected radiomics features with their optimal cut-off values determined in the 
training set to the testing set, we obtained promising performance. 
ADC EntropyGLCM-QF (cut-off 12.64) reached an accuracy of 94% (sensitivity 90%, specificity 96%) to 

predict recurrence with a HR of 19.6 (p<0.0001), compared to 60% at best using standard factors 

(Figure 4).  

For LRC, PET GLNUGLRLM-QE (cut-off 103.71) alone and its combination with ADC EntropyGLCM-QF 

reached accuracy of 94% (sensitivity 100%, specificity 93%) and 100% respectively (HRs undefined, 
p=0.0001 and p<0.0001), compared to 56% at best using standard factors (figure 5). 
 
These features differentiate between patients with a high risk to develop distant metastasis and 
those with a high risk to develop an isolated locoregional relapse. A flowchart for personalized 
treatment management of these patients can be derived (figure 6). 
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DISCUSSION 
 
 

Our results suggest that GLNUGLRLM in FDG PET and/or EntropyGLCM in ADC maps from DWI MRI are 
powerful predictors of the efficacy of CRT in the treatment of CC. Higher values of these parameters 
were associated with worse outcome, confirming that more heterogeneous tumor have a poor 
prognosis. These findings can be acted upon to tailor treatment (figure 6). Following this flowchart, 
more aggressive loco-regional treatment could be offered to patients with high-risk of an isolated 
loco-regional relapse whereas for patients with high-risk of distant relapse, a systemic adjuvant 
treatment would be more beneficial. 
 
To our knowledge, this is the first study evaluating the prognostic value of radiomics exploiting both 
PET/CT and MRI images in LACC patients. Our results concur with previous studies in CC that 
exploited either PET or MRI. A first study associated high pretreatment PET GLNUGLRLM with poorer 
prognosis [9]. Another showed that 18F-FDG PET/CT features could predict local recurrence of LACC 
better than SUVmax [13]. A third study showed that DCE-MRI 2nd-order textures could predict 
treatment outcome [10].    
We showed PET/CT and MRI could provide complementary information when examinations are 
performed separately, as it is currently done in routine clinical practice. Similar investigations on 
hybrid imaging PET/MRI systems would be interesting because it would provide better temporal and 
spatial matching of the tumor volume in the different modalities, which could in addition facilitate its 
delineation. There is currently only a handful of radiomics studies using PET/MRI [25]. Given the 
small number of available PET/MRI systems, multi-centric investigations to validate radiomics models 
on these hybrid devices is also more challenging. 
 
Our study has limitations. It was monocentric and retrospective, which is the case of most of 
radiomics studies [8], including in CC [9-13]. The number of patients was limited and we included a 
large number of parameters (more than 800), however we performed training and testing 
evaluation, and statistical significance was corrected for multiple testing in the univariate analysis, in 
order to avoid both false-discovery and overfitting. Before validating our radiomics signature on an 
external cohort (with different acquisition protocols), it was first necessary to validate it on patients 
from the same center. In that regard, the first 6 patients underwent PET/CT in a different scanner 
than the rest of the cohort. However in all cases the images were reconstructed with the same voxel 
size and the same post-reconstruction filter. The slice gap on T2-w and CE-MRI could impair 2nd- and 
3rd-order features extraction. On ADC maps from DWI MRI however, there is no slice gap and this 
parameter was highlighted as one of the most efficient. In addition, all MRI pre-treatment were 
realized in the same center and with same acquisition and reconstruction protocols were used 
(supplemental material table 1) which limits the problems of reproducibility of radiomics features in 
MRI in particular as regards the geometric distortions. Finally, only primary tumors were 
characterized. 
 
Beyond these potential sources of bias, radiomics is a promising approach but still suffers from 
inherent limitations which will need to be addressed before it can be used in clinical practice. Among 
these, the repeatability and robustness of the procedure has to be improved. Accurate segmentation 
is an important step of the feature extraction, as radiomics are derived from segmented volumes of 
interest. Manual delineation is a straightforward solution, but is very time consuming and suffers 
from high inter- and intra-observer variability [26]. Validated automatic or semi-automatic 
segmentation was used in our study to minimize manual input and increase consistency. The 
volumes derived from each image modality showed no significant differences (supplemental material 
figure 2C). In addition, the two features retained show low correlation with tumor volume and other 
clinical factors (supplemental material figure 1). 3D SlicerTM and the Growcut algorithm used are 
available for free and require minimal inputs from the user [27]. Although FLAB is not freely 
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available, other efficient PET segmentation tools are available in clinical stations, such as adaptive 
thresholding or gradient-based method [28], and our results should therefore be reproducible by 
others.  
 
The choice of the optimal cut-off to stratify patients into a binary model can impact the results. This 
choice can be dependent on the training dataset and thus, hardly applicable to an external 
population. To confirm the predictive value of the features identified in a cohort, validation on an 
external cohort of patients is considered the gold standard [8, 29]. If this type of validation is not 
feasible, the best approach is to divide the available patients into training and testing sets, as we did. 
Validation of our findings is currently underway in a cohort of patients from a different clinical 
center. 
 
Other factors such as image acquisition parameters [30], tumor volume [31], grey-level discretization 
and other pre-processing steps [8, 29] can influence radiomics findings. Acquisition parameters for 
both PET and MRI images were the same for all patients. One of the most important confounding 
factors in radiomics studies is the volume (i.e. the number of voxels). For PET radiomics specifically, 
textural features are unlikely to provide complementary information with respect to volume for the 
smallest lesions, due to the combination of the limited spatial resolution of PET imaging with the 
large voxel size sampling, leading to a small number of voxels to perform texture analysis. Although it 
has been suggested that a lower limit could be as high as 45 cm3 based on entropyGLCM [ref Brooks], 
later studies have shown that this lower limit actually varies depending on the feature and the 
methodological choices for its calculation, such as the grey-levels discretization method or the 
texture matrices design, suggesting a lower limit around 5 to 10 cm3 instead, although this may not 
be applicable to all cases. Therefore it is rather recommended to include volume in the multivariate 
analysis, to report correlations and investigate the potential bias of the inclusion of the smallest 
volumes in the analysis [ref 29, 31]. In our study, the range of considered volumes was 5-97 cm3 with 
rather large mean and median values of 33 and 27 cm3 respectively, which corresponds to 625 voxels 
for the smallest volume but a mean and median number of 4171 and 3381 voxels respectively. In 
addition, GLNUGLRLM-QE showed limited correlation with PET volume and had similar value in both 
training and testing sets for tumors below or above thresholds of 45 or 20 cm3 (supplemental table 3 
and supplemental figures 3 and 4). Although tumor volume or intensity-based measurements from 
both PET and MRI sequences were correlated with the endpoints they had insufficient predictive 
power compared to higher order radiomics features to be retained in the univariate analysis. In 
addition, the levels of correlation the retained features exhibit with volume or other confounding 
factors demonstrate they are not merely surrogates of usual variables (see supplemental material). 
This shows that the radiomics features we identified provide complementary information with 
respect to volume in both PET and MRI and that there is no bias in our results coming from the 
inclusion of the smallest lesions. 
 

In most studies, the number of features is often far greater than the number of patients included, 
potentially leading to a high risk of false positive-rate, as recently highlighted [8, 22, 29]. There is no 
consensus about the unsupervised approach to obtain the best results. A recent study investigated a 
large panel of machine-learning approaches for radiomics-based survival prediction, considering both 
features selection and classification methods [32]. Their variability analysis pointed out that the 
choice of the classification method has the highest impact on performance variation in predicting the 
OS (more than 30% of the total variation), with respect to the choice of features selection method 
(only 6% of variation). In our study we could obtain near-perfect accuracy by using only the one or 
two parameters that remained significant after correction for multiple testing, and the use of 
advanced machine learning was thus deemed not necessary.  
 
We identified features with high predictive power regarding tissue response to radiation, however 
the biological interpretation of these features remains an area of active investigations [33, 34]. As 
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first elements of interpretation, PET GLNUGLRLM-QE and ADC EntropyGLCM-QF are both computed on 
functional imaging. EntropyGLCM-QF calculated on the ADC map derived from DWI MRI could be linked 
to a cellularity heterogeneity and expression of growth factor. PET GLNUGLRLM-QE might be associated 
to a necrosis heterogeneity and expression of vascular growth factor. More comprehensive 
assessment of the molecular features of patients based on tumor specimen characterization and 
noninvasive molecular imaging approaches are required to further investigate these hypotheses [33, 
34].  
 
CONCLUSIONS 

 

Radiomics features such as GLNUGLRLM on 18F-FDG PET and EntropyGLCM on ADC maps derived from 
DW-MRI were independent prognostic factors for disease outcome in LACC patients undergoing CRT, 
with significantly higher value than conventional factors. The identification of high-risk patients at 
diagnosis can allow tailored treatments involving higher doses of radiation boost, consolidation 
chemotherapy, and/or adjuvant hysterectomy, when indicated, and should be confirmed in external 
cohorts and prospective studies. The biological interpretation of radiomics remains an open question 
warranting further investigation. 
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Table 1: Patients’ characteristics 

  Training set Testing set  Difference 
(p-value) 

  n=69 % n=33 % 
 Age median (range) 58 (29-90) 

 
57 (37-86) 

 
0.96 

FIGO stage  

   

0.85 

IB1 2 3 1 3 

IB2 8 12 4 12 

IIA 4 6 3 9 

IIB 36 52 15 46 

IIIA 1 1 1 3 

IIIB 9 13 5 15 

IVA 9 13 4 12 

Histology     

0.83 

        Squamous 54 79 26 79 

        Adenocarcinoma 9 13 5 15 

        Adenosquamous carcinoma 1 1 0 0 

        Clear cell carcinoma 5 7 2 6 

Lymph node involvment     

0.21 

       Uninvoled 30 44 20 61 

       Involved 39 56 13 39 

pelvic 27 69 8 62 

pelvic and para-aortic 12 31 5 38 

CBC median (range) 

     white blood cells 8.3 · 103/mL (4.6-25.6) 
 

7.6 · 103/mL (5.1-20.6) 
 

0.32 

hemoglobin 128 g/dL (71-149) 
 

126 g/dL (80-151) 
 

0.91 

platelets 261.5 · 103/mL (186-819) 
 

227.3 · 103/mL (171-
603)  

 
0.27 

body-mass index median (range) 23.2 (14-42) 
 

22.6 (16-35) 
 

0.61 

Treatment 
     3D-CRT 59 86 7 21 

<0.0001 
IMRT 10 14 26 79 

EBRT dose median (range) 45 (45-54) 
 

45 (45-54) 

 
0.52 

BT dose median (range) 24 (21-26) 
 

24 (21-28) 

 
0.63 

Overall treatment time (range) 49 (47-52)   49 (48-53)   0.47 

 
Abbreviations: FIGO= International Federation of Gynecology and Obstetrics, CBC= complete blood 
counts, 3D-CRT= three-dimensional conformal radiotherapy, IMRT= intensity-modulated photon 
radiotherapy, EBRT= external beam radiotherapy, BT=brachytherapy 
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Table 2: Univariate and multivariate analysis for disease-free survival 

Variables 
 

Univariate analysis Multivariate analysis 

HR 95% CI p HR 95% CI p 

Histology (SCC vs. no SCC) 2.34 0.82-6.68 0.04 -  - -  

FIGO stage  (I-II vs. III-IV)  3.33 1.29-8.62 0.0014 -  - -  

Tumor size (≤4.8 cm vs. >4.8 cm) 2.83 1.29-6.21 0.014 -  - -  

Nodal stage (N1 vs. N0) 3.21 1.47-7.04 0.0081 -  - -  

Post-treatment metabolic response 
(CMR vs. no CMR) 

Volume PET (≤30 cc vs. >30 cc) 

Volume DWI-MRI (≤31 cc vs. >31 cc) 

SUVmin (≤5.9 vs. >5.9) 

SUVmax (≤23 vs. >23) 

ADCmin (≤91 vs. >91) 

ADCmax (≤2389 vs. >2389) 

4.31 

 

2.09 

2.38 

0.8 

0.53 

1.73 

1.89 

1.82-10.26 

 

0.94-4.62 

0.97-4.91 

0.53-1.64 

0.23-1.24 

0.71-3.67 

0.79-3.81 

0.0001 

 

0.06 

0.06 

0.16 

0.2 

0.1 

0.09 

- 

 

- 

- 

- 

- 

- 

- 

 - 

 

- 

- 

- 

- 

- 

- 

- 

 

- 

- 

- 

- 

- 

-  

ADC EntropyGLCM-QF 34.18 13.85-84.34 <0.00001  30.95  7.01-136.59  <0.00001 

CE-MRI RLVARGLRLM-QL 16.64 5.95-46.53 <0.00001  11.33  3.29-39.03  0.0001 

PET GLNUGLRLM-QE 

T2 LZLGEGLSZM-QF 

ADC Inverse varianceGLCM-QF 

5.39 

5.08 

5.03 

2.33-12.47 

2.11-11.93 

2.05-11.78 

<0.00001 

<0.00001 

<0.00001 

- 

- 

- 

 - 

- 

- 

-  

- 

- 
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Table 3: Univariate and multivariate analysis for loco-regional control 

Variables 
 

Univariate analysis Multivariate analysis 

HR 95% CI p HR 95% CI p 

Histology (SCC vs. non SCC) 2.48 0.64-9.61 0.09 -  - -  

FIGO stage  (I-II vs. III-IV)  3.27 0.95-11.28 0.019 -  - -  

Tumor size (≤4.8 cm vs. >4.8 cm) 4.73 1.57-14.21 0.0037 -  - -  

Nodal stage (N1 vs. N0) 3.35 1.17-9.55 0.048 -  - -  

Post-treatment metabolic response 
(CMR vs. no CMR) 

Volume PET (≤30 cc vs. >30 cc) 

Volume DWI-MRI (≤31 cc vs. >31 cc) 

SUVmin (≤5.9 vs. >5.9) 

SUVmax (≤23 vs. >23) 

ADCmin (≤91 vs. >91) 

ADCmax (≤2389 vs. >2389) 

5.87 

 

2.49 

2.59 

1.21 

1.04 

2.26 

2.38 

1.87-18.45 

 

0.66-9.63 

0.73-9.81 

0.49-7.13 

0.37-6.85 

0.51-9.46 

0.57-9.55 

0.0007 

 

0.08 

0.06 

0.22 

0.29 

0.11 

0.1 

- 

 

- 

- 

- 

- 

- 

- 

 - 

 

- 

- 

- 

- 

- 

- 

-  

 

- 

- 

- 

- 

- 

- 

ADC EntropyGLCM-QF 28.10 9.11-86.66 <0.00001 16.35 2.10-126.94  0.0079 

CE-MRI RLVARGLRLM-QL 13.22 3.71-47.11 <0.00001 -  - -  

PET GLNUGLRLM-QE 

ADC Inverse varianceGLCM-QF 

33.11 

11.53 

10.34-106.06 

3.50-44.84 

<0.00001 

<0.00001 

20.01 

- 

2.59-154.89 

- 

0.0043 

- 

 
 
Abbreviations: FIGO=International Federation of Gynecology and Obstetrics, SCC= Squamous cell 
carcinoma, CMR=Complete metabolic response, GLCM=Grey-level Co-occurrence Matrix, GLRLM= 
Grey-level Run-Length matrix, GLSZM= Grey-level Size Zone matrix, RLVAR=Run Length Variance, 
GLNU=Grey-level non-uniformity, LZLGE= Large Zone Low Grey-Level Emphasis, vs= versus, 
HR=Hazard ratio, CI=Confidence Interval, MRI= magnetic resonance imaging, CE-MRI=contrast 
enhancement magnetic resonance imaging, PET= positron emission tomography , ADC=Apparent 
Diffusion Coefficient 
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Figure 2: Kaplan-Meier estimates of disease-free survival (training set) according to (A) ADC 
EntropyGLCM, (B) CE-MRI RLVARGLRLM , (C) FIGO stage, (D) tumor size, (E) N stage and (F) metabolic 
response from PET/CT (assessed 2 to 3 months after treatment completion). (G) Comparison of 
ROC curves for ADC EntropyGLCM in comparison with clinico-pathological features. 
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Figure 3: Kaplan-Meier estimates of locoregional control (training set) according to (A)  PET 
GLNUGLRLM, (B) the combination of ADC EntropyGLCM and PET GLNUGLRLM, (C) FIGO stage, (D) tumor 
size, (E) N stage and (F) metabolic response from PET/CT (assessed 2 to 3 months after treatment 
completion). (G) Comparison of ROC curves for PET GLNUGLRLM in comparison with clinico-
pathological features. 
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Figure 4: Prediction of disease-free survival in the testing set according to ADC EntropyGLCM with (A) 
ROC curve and (B) resulting Kaplan-Meier curve.  
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Figure 5: Prediction of locoregional control in the testing set according to (A-B) PET GLNUGLRLM 
alone or to (C-D) its combination with ADC EntropyGLCM with (A, C) ROC curves and (C, D) the 
resulting Kaplan-Meier curves. 
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Figure 6: Flow diagram of risk-stratification strategy based on pretreatment FDG PET and DWI MRI 

illustrated in (A) the training set and (B) the testing set. The first step separates patients into two 

groups: low (first group) and high risk of relapse thanks to ADC EntropyGLCM from DWI MRI. The 

second step further discriminates within the high-risk group between metastatic (second group) or 

pelvic (third group) relapse. The first group would not require additional treatment. The second 

group could benefit from a complementary systemic treatment, and the third group could be treated 

with an additional locoregional treatment (like surgery or additional boost in brachytherapy). 
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