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Abstract

It is shown that with a precise determination of a few derivatives of the hadronic vacuum
polarization (HVP) self-energy function Π(Q2) at Q2 = 0, from lattice QCD (LQCD) or from
a dedicated low-energy experiment, one can obtain an evaluation of the lowest order HVP con-
tribution to the anomalous magnetic moment of the muon aHVP

µ with an accuracy comparable
to the one reached using the e+e− annihilation cross-section into hadrons. The technique of
Mellin-Barnes approximants (MBa) that we propose is illustrated in detail with the example of
the two loop vacuum polarization function in QED. We then apply it to the first few moments
of the hadronic spectral function obtained from experiment and show that the resulting MBa
evaluations of aHVP

µ converge very quickly to the full experimental determination.
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I Introduction.
This paper explains and develops the approach recently described by one of the authors in refs. [1, 2, 3]
to evaluate the hadronic vacuum polarization (HVP)contribution to the the anomalous magnetic
moment of the muon aHVP

µ .
Our motivation is threefold:

1. The persistent discrepancy at the ∼ 4σ level between the experimental determination of the
anomalous magnetic moment of the muon [4]

aµ(E821− BNL) = 116 592 089(54)stat(33)syst × 10−11[0.54ppm] , (1.1)

and the standard model prediction [5]

aµ(SM) = 116 591 805 (42)× 10−11 . (1.2)

2. The fact that the standard model contribution which at present has the largest error, is the
one coming from the lowest order hadronic vacuum polarization (HVP) contribution to aµ(SM),
evaluated from a combination of experimental results on e+e− data [6, 7, 8, 9]:

aHVP
µ = (6.931± 0.034)× 10−8 [8] and aHVP

µ = (6.933± 0.025)× 10−8 [9] . (1.3)

3. The possibility of an alternative evaluation of aHVP
µ , either based on QCD first principles with

the help of lattice QCD (LQCD) simulations (see e.g. refs. [10] to [19]), or on new dedicated
experiments as proposed in ref. [20].

The standard representation of aHVP
µ used in the experimental determinations is the one in terms of

a weighted integral of the hadronic spectral function 1
π ImΠ(t):

aHVP
µ =

α

π

∫ ∞

4m2
π

dt

t

∫ 1

0

dx
x2(1− x)

x2 + t
m2
µ

(1− x)

1

π
ImΠ(t) . (1.4)

Thanks to the optical theorem, the hadronic spectral function is obtained from the total e+e− cross-
section into hadrons via one photon annihilation (me → 0)

σ(t)[e+e−→(γ)→Hadrons] =
4π2α

t

1

π
ImΠ(t) . (1.5)

We observe that the integrand in Eq. (1.4) can be rearranged in a way:

aHVP
µ =

α

π

∫ 1

0

dx (1− x)

∫ ∞

4m2
π

dt

t

x2

1−xm
2
µ

t+ x2

1−xm
2
µ

1

π
ImΠ(t) , (1.6)

which explicitly displays the dispersion relation between the hadronic spectral function and the renor-
malized hadronic photon self-energy in the euclidean:

−Π(Q2) =

∫ ∞

4m2
π

dt

t

Q2

t+Q2

1

π
ImΠ(t) , with Q2 ≡ x2

1− xm
2
µ ≥ 0 , (1.7)

and therefore [21, 22]

aHVP
µ = −α

π

∫ 1

0

dx (1− x) Π

(
x2

1− xm
2
µ

)
. (1.8)
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Trading the Feynman parameter x-integration by a Q2-integration results in a slightly more compli-
cated expression

aHVP
µ =

α

π

∫ ∞

0

dQ2

Q2

√
Q2

4m2
µ +Q2




√
4m2

µ +Q2 −
√
Q2

√
4m2

µ +Q2 +
√
Q2




2

[−Π(Q2)] , (1.9)

which is the one proposed for LQCD evaluations [23]. Because of the weight function in the integrand
of Eq. (1.9), the integral is dominated by the low-Q2 behaviour of the hadronic self-energy function
Π(Q2). The natural question which then arises is: What is the best way to help LQCD evaluations
(see e.g. refs. [10] to [19]), or dedicated experiments [20], to evaluate this integral when only limited
information about Π(Q2) at low Q2 values is available? The answer that we propose follows the way
initiated in ref. [2]. It is based on Mellin-Barnes techniques which we shall describe below and which
we shall illustrate with several examples. As we shall see, this is a very powerful method compared
to other approaches discussed in the literature (see e.g. refs. [24, 25, 26] and references therein).

The paper has been organized as follows. The next section is an introduction to the QCD properties
of the Mellin transform of the HVP spectral function. Section III is dedicated to a few ingredients,
which are required to understand and justify the method that we propose. The subsection III.3 is
particularly technical since it justifies mathematically the underlying approach and the restriction to
the subclass of Marichev-like Mellin approximants given in Eq. (3.30). For those who are just interested
in the applications, it can be escaped in a first reading. Section IV illustrates the application of Mellin-
Barnes approximants (MBa) to vacuum polarization in QED at the two loop level. Section V tests
the advocated technique of MBa with experimental HVP moments. It shows how the successive MBa
approach the experimental determination of aHVP

µ . The conclusions with an outlook on future work
are given in Section VI. A few technical details have been included in an Appendix.

II The Mellin Transform of the Hadronic Spectral Function.
In QCD the hadronic spectral function is positive and goes asymptotically to a constant (qi denotes
the charge, in electric charge units, of an active quark with flavour i ) :

1

π
ImΠ(t) ∼

t→∞

(α
π

)(∑

i

q2
i

)
1

3
Nc [1 +O(αs)] , (2.1)

with perturbative QCD (pQCD) αs-corrections known up to four loops.
The moment integrals

∫ ∞

t0

dt

t

(
t0
t

)1+n
1

π
ImΠ(t) , t0 = 4m2

π± , n = 0, 1, 2 · · · , (2.2)

are therefore well defined and the dispersion relation in Eq. (1.7) relates them to successive derivatives
of the hadronic self-energy function Π(Q2) at the origin:

∞∫

t0

dt

t

(
t0
t

)1+n
1

π
ImΠ(t) =

(−1)n+1

(n+ 1)!
(t0)n+1

(
∂n+1

(∂Q2)n+1
Π(Q2)

)

Q2=0

, n = 0, 1, 2, · · · . (2.3)

In fact, as pointed out a long time ago [27], the first moment for n = 0 provides a rigorous upper
bound to the muon anomaly because, going back to Eq. (1.6):

aHVP
µ =

α

π

∫ ∞

4m2
π

dt

t

∫ 1

0

dx

{
x2(1− x)

x2 + t
m2
µ

(1− x)
<

x2

t
m2
µ

}
1

π
ImΠ(t)

=
α

π

1

3

m2
µ

t0

∫ ∞

4m2
π

dt

t

t0
t

1

π
ImΠ(t) =

(α
π

) 1

3

m2
µ

t0

(
−t0

∂

∂Q2
Π(Q2)

)

Q2=0

. (2.4)
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In the case of the anomalous magnetic moment of the electron, because of the small electron mass as
compared to hadronic scales, this upper bound gives practically the value of the full contribution

aHVP
e ' α

π

1

3

∫ ∞

4m2
π

dt

t

m2
e

t

1

π
ImΠ(t) . (2.5)

The relation ∫ ∞

4m2
π

dt

t

1

t

1

π
ImΠ(t) =

(
− ∂

∂Q2
Π(Q2)

)

Q2=0

, (2.6)

where the l.h.s. is accessible to an experimental determination and the r.h.s. to a LQCD evaluation,
provides therefore an excellent comparative test of the two approaches. Quite generally, the moments
in Eq. (2.2) obey constraints which follow from the positivity of the spectral function and may provide
useful tests to LQCD determinations. We discuss these constraints in the Appendix.

The moment integrals in Eq. (2.2) can be generalized to a function, which is precisely the Mellin
transform of the hadronic spectral function 1

π ImΠ(t) defined as follows [1]:

M
[

1

π
ImΠ(t)

]
(s) ≡M(s) =

∫ ∞

t0

dt

t

(
t

t0

)s−1
1

π
ImΠ(t) , t0 = 4m2

π± , −∞ ≤ Re(s) < 1 , (2.7)

where, for practical purposes, we normalize the spectral function t-variable to the two-pion threshold
value 1. With this normalization M(s) is dimensionless and a monotonously increasing function for
real s in ]−∞, 1], a fact which follows from the positivity of its derivative in that range:

M′(s) ≡ d

ds
M(s) =

∫ ∞

t0

dt

t

(
t

t0

)s−1

log
t

t0

1

π
ImΠ(t) , −∞ ≤ Re(s) < 1 . (2.8)

This implies thatM(s) can have neither poles nor zeros in the negative Re(s) axis.
In QCD, the Mellin transformM(s) is singular at s = 1 with a residue which is fixed by the pQCD

asymptotic behaviour of the spectral function in Eq. (2.1). The contribution from the u, d, s, c, b and
t quarks gives

M(s) ∼
s→ 1

(α
π

)(4

9
+

1

9
+

1

9
+

4

9
+

1

9
+

4

9

)
Nc

1

3

1

1− s +O(αs) . (2.9)

The function M(s) is then defined by the integral in Eq. (2.7) for Re(s) < 1 and extended to the
whole complex s-plane by analytic continuation. The spectral function moments are, therefore, the
particular values ofM(s) at s = 0 ,−1 ,−2 ,−N with integer N .

As discussed in refs. [1, 2] there exists a representation of Π(Q2), and hence of the anomaly aHVP
µ ,

in terms of the Mellin transformM(s). This follows from inserting the Mellin-Barnes identity 2

1

1 + Q2

t

=
1

2πi

cs+i∞∫

cs−i∞

ds

(
Q2

t

)−s
Γ(s)Γ(1− s) (2.10)

in the dispersion relation in Eq. (1.7), which results in the representation

Π(Q2) = −Q
2

t0

1

2πi

cs+i∞∫

cs−i∞

ds

(
Q2

t0

)−s
Γ(s)Γ(1− s) M(s) , cs ≡ Re(s) ∈]0, 1[ . (2.11)

1Notice that in ref. [1] the chosen normalization scale is the muon mass.
2For the benefit of the reader who may be unfamiliar with Mellin-Barnes integrals we give a proof of this identity in

the Appendix.
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The corresponding integral representation for the Adler function is then

A(Q2) ≡ −Q2 ∂Π(Q2)

∂Q2
=

1

2πi

cs+i∞∫

cs−i∞

ds

(
Q2

t0

)1−s
Γ(s)Γ(2− s) M(s) , cs ≡ Re(s) ∈]0, 1[ . (2.12)

Setting Q2 = x2

1−xm
2
µ in the representation of Π(Q2) in Eq. (2.11) and inserting it in the r.h.s. of

Eq. (1.8) we have

aHVP
µ = −α

π

∫ 1

0

dx (1− x) Π

(
x2

1− xm
2
µ

)
(2.13)

=
α

π

∫ 1

0

dx (1− x)
1

2πi

cs+i∞∫

cs−i∞

ds

(
x2

1−xm
2
µ

t0

)1−s

Γ(s)Γ(1− s) M(s) . (2.14)

The integral over the x-parameter can now be made analytically, leading to the expression [1]

aHVP
µ =

(α
π

) m2
µ

t0

1

2πi

cs+i∞∫

cs−i∞

ds

(
m2
µ

t0

)−s
F(s) M(s) , cs ≡ Re(s) ∈]0, 1[ , (2.15)

where F(s) is the explicitly known function

F(s) = −Γ(3− 2s) Γ(−3 + s) Γ(1 + s) , (2.16)

and the hadronic dynamics is entirely factorized in the Mellin transformM(s).
As discussed in ref. [1] the Mellin-Barnes representation in Eq. (2.15) offers the possibility of

computing aHVP
µ as a series expansion in powers of m

2
µ

t0
. This follows from inserting in Eq. (2.15) the

singular expansion of F(s) at the l.h.s. of the fundamental strip cs ≡ Re(s) ∈]0, 1[ i.e.

F(s) � 1

3

1

s
− 1

(s+ 1)2
+

25

12

1

s+ 1
− 6

(s+ 2)2
+

97

10

1

s+ 2
− 28

(s+ 3)2
+

208

5

1

s+ 3
+ · · · , (2.17)

and using the converse mapping theorem of ref. [28] which relates in a precise way the singularities

in the complex s-plane of the integrand in Eq. (2.15) to the successive terms of the m2
µ

t0
expansion 3.

This expansion is governed by the moments M(−n) at n = 0, 1, 2, · · · , and by the log t
t0

weighted
momentsM′(−n) in Eq. (2.8), with the result 4

aHVP
µ =

(α
π

) m2
µ

t0

{
1

3
M(0) +

m2
µ

t0

[(
25

12
− log

t0
m2
µ

)
M(−1)−M′(−1)

]

+

(
m2
µ

t0

)2 [(
97

10
− 6 log

t0
m2
µ

)
M(−2)− 6M′(−2)

]

+

(
m2
µ

t0

)3 [(
208

5
− 28 log

t0
m2
µ

)
M(−3)− 28M′(−3)

]
+O

(
m2
µ

t0

)4


 . (2.18)

3See e.g. refs. [29, 30, 31] for applications of the converse mapping theorem in QED.
4There are two misprints in the similar Eq. (3.18) in ref. [2]: there should be a factor of 6 in front of log t0

m2
µ

in the

second line and a factor 28 in front of log t0
m2
µ

in the third line.
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The bulk of the overall contribution to aHVP
µ comes in fact from just the first few terms. The first

term is the upper-bound of ref. [27] with successive fast improvements from the following terms. In

this paper, however, we shall not follow the idea of performing this m2
µ

t0
series expansion evaluation.

This is because the direct determination of the M′(−n) moments in LQCD is not easy. What
is required in the case where only the first few moments M(−n) are known, is a good interpolation
method between the moment values which reproduces the contributions from the a priori unknown log-
weighted moments M′(−n). This is precisely what the Mellin-Barnes approximants (MBa) method
described below do: given N moments M(−n), n = 0, 1, ..., N − 1, it constructs successive Mellin
approximantsMN (s) to the full Mellin transformM(s). The approximantsMN (s) are then inserted
in the integrand of the r.h.s. of Eq. (2.15) to evaluate the corresponding aHVP

µ (N) result. The
numerical integration in Eq. (2.15) being made, for a fixed csvalue within the fundamental strip,
along the corresponding imaginary axis.

−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

τ

R
e
F
( 1 2
−
iτ
)

,
Im
F
( 1 2
−
iτ
)

Figure 1:

Shape of the function F
(

1
2 − iτ

)
in Eq. (2.15) versus τ .

The red curve is the real part of the function, the blue dashed curve its imaginary part.

The weight function F(s) in Eq. (2.15) is universal and has a shape which, for the specific choice
s = 1

2 − iτ is shown in Fig. (1) as a function of τ . Notice that the real part of this function (the
red curve) is symmetric under τ → −τ while its imaginary part is antisymmetric. Both the real and
imaginary parts fall very fast as τ increases. With the change of variable

s→ 1

2
− iτ , (2.19)

the integral in Eq. (2.15) becomes then a Fourier transform:

aHVP
µ =

(α
π

)
√
m2
µ

t0

1

2π

+∞∫

−∞

dτ eiτ log
m2
µ
t0 F

(
1

2
− iτ

)
M
(

1

2
− iτ

)
. (2.20)

Because of the shape of the F
(

1
2 − iτ

)
function and the growth restrictions onM

(
1
2 − iτ

)
for large τ ,

which are fixed by the fact that Π(Q2) obeys a dispersion relation in QCD, the Fourier transform above
is fully dominated by the behaviour of the integrand in a very restricted τ -interval, −T ≤ τ ≤ +T
with T of order one.
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III Some Technical Ingredients.
We shall next recall a few technical ingredients which in the literature go under the name of: Ramanu-
jan Master Theorem, Marichev class of Mellin transforms, Generalized Hypergeometric Functions and
Meijer’s G-Functions. They are necessary to implement and justify the MBa framework that we
propose.

III.1 The so called Ramanujan’s Master Theorem.
Consider a function F (x) which admits a power series expansion

F (x) ∼
x→0

λ(0)− λ(−1)x+ λ(−2)x2 − λ(−3)x3 + · · · . (3.1)

Ramanujan’s theorem refers then to the formal identity [32]
∫ ∞

0

dx xs−1
{
λ(0)− λ(−1)x+ λ(−2)x2 − λ(−3)x3 + · · ·

}
= Γ(s)Γ(1− s)λ(s) , (3.2)

and implies that the Mellin transform of F (x) is given by
∫ ∞

0

dxxs−1F (x) = Γ(s)Γ(1− s)λ(s) . (3.3)

The function λ(s), extended over the full complex s-plane, can be simply obtained from the discrete
n-functional dependence of the λ(−n) coefficients of the Taylor expansion of F (x) by the formal
replacement n→ −s. The proof of this beautiful theorem was provided by Hardy [33] and it is based
on Cauchy’s residue theorem as well as on the Mellin-Barnes representation. The basic assumption in
Hardy’s proof is a growth restriction on |λ(s)| which assures that the series λ(0)−λ(−1)x+λ(−2)x2−
λ(−3)x3 + · · · has some radius of convergence. In our case F (x) will be the hadronic photon self-
energy function Π(Q2), with x ≡ Q2

t0
, and Hardy’s growth restriction is equivalent to the one required

to write a dispersion relation for Π(Q2).
At small Q2 values, the hadronic photon self-energy function Π(Q2) in QCD has indeed a power

series expansion:

− t0
Q2

Π(Q2) ∼
Q2→0

M(0)− Q2

t0
M(−1) +

(
Q2

t0

)2

M(−2)−
(
Q2

t0

)3

M(−3) + · · · , (3.4)

and the coefficientsM(0),M(−n), n = 1, 2, 3, . . . are precisely the moments of the spectral function
defined in Eq. (2.3). Ramanujan’s theorem implies then that

∫ ∞

0

d

(
Q2

t0

)(
Q2

t0

)s−1
{
M(0)− Q2

t0
M(−1) +

(
Q2

t0

)2

M(−2) + · · ·
}

= Γ(s)Γ(1− s)M(s) , (3.5)

and it allows, in principle, to reconstruct the Mellin transformM(s) in the full complex s-plane from
just the knowledge of the discrete momentsM(−n), n = 0, 1, 2, 3, · · · .

Another interesting property of the Mellin transform in Eq. (2.7), based on the so called Basic
Abelian Theorem [34], is the fact that the behaviour of the leading term in the expansion ofM(−n)
for n → ∞, is correlated to the leading term in the threshold expansion of the spectral function
1
π ImΠ(t) 5. In what follows we shall not implement this as a constraint but it can be used as a check
of how well the successive parameterizations satisfy this threshold property.

5An application of this theorem to heavy quark correlators can be found in ref. [37].
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III.1.1 A simple example: QED at the one loop level.

Let us illustrate Ramanujan’s theorem with a simple example: the lowest order vacuum polariza-
tion in QED induced by a fermion of mass m. The Taylor expansion in this case is given by coefficients
which are easily calculable:

− 4m2

Q2
ΠQED(Q2) ∼

Q2→0

∑

n=0 ,1 ,2 ,...

(−1)n
(
Q2

4m2

)n
α

π

1

n+ 1

√
π

4

Γ(3 + n)

Γ( 7
2 + n)

, (3.6)

and the moments of the lowest order QED spectral function are then

MQED(−n) =
α

π

1

n+ 1

√
π

4

Γ(3 + n)

Γ( 7
2 + n)

, n = 0 , 1 , 2 , 3 , · · · . (3.7)

Ramanujan tells us that, without doing the analytical calculation of the full Mellin transform of the
spectral function, one can get the result from the simple replacement n→ −s in these moments and
that gives the functionMQED(s) extended to the full s-plane i.e., the simple replacement:

α

π

1

n+ 1

√
π

4

Γ(3 + n)

Γ( 7
2 + n)

⇒
(n→−s)

α

π

√
π

4

1

1− s
Γ(3− s)
Γ( 7

2 − s)
≡MQED(s) , (3.8)

gives the analytic result of the Mellin transform

MQED(s) =

∫ ∞

4m2

dt

t

(
t

4m2

)s−1
1

π
ImΠQED(t) , (3.9)

where
1

π
ImΠQED(t) =

α

π

1

3

(
1 +

2m2

t

)√
1− 4m2

t
θ(t− 4m2) . (3.10)

We shall soon come back to a discussion of further aspects of this simple QED example.

III.2 Marichev’s Class of Mellin Transforms.
The class in question is the one defined by standard products of gamma functions of the type

M(s) = C
∏

i,j,k,l

Γ(ai − s)Γ(cj + s)

Γ(bk − s)Γ(dl + s)
, (3.11)

with constants C, ai, bk, cj and dl and where the Mellin variable s only appears with a ± coefficient.
The interesting thing about this class of functions is that all the Generalized Hypergeometric Functions
have Mellin transforms of this type [35]. As a result, many functions have a representation in terms
of Mellin-Barnes integrals involving linear combinations of standard products of the Marichev type in
Eq. (3.11). 6

The Mellin transform of the lowest order QED Spectral Function in Eq. (3.9) is certainly of this
type, (notice that 1

1−s = Γ(1−s)
Γ(2−s) )

MQED(s) =
α

π

√
π

4

Γ(1− s)
Γ(2− s)

Γ(3− s)
Γ( 7

2 − s)
. (3.12)

Furthermore, we observe that in this case, without explicitly knowing the QED Spectral Function
1
π ImΠQED(t), it is possible to reconstruct its full Mellin transform MQED(s) from the knowledge of
just three moments which, for example, we can choose to be:

• The asymptotic behaviour of 1
π ImΠQED(t) when t→∞ which requires that

MQED(s) ∼
s→1

α

π

1

3

1

1− s , (3.13)
6For a helpful tutorial see e.g. ref. [36] and references therein.
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• And the values of the first and second moments:

MQED(0) =
α

π

4

15
and MQED(−1) =

α

π

4

35
. (3.14)

Indeed, settingMQED(s) to be of the particular Marichev form:

MQED(s)
.
=
α

π

1

3

Γ(1− s)
Γ(2− s)

Γ(c− 1)

Γ(c− s)
Γ(d− s)
Γ(d− 1)

, (3.15)

which already incorporates the constraint in Eq. (3.13), and solving the matching conditions to the
two moments in Eq. (3.14) results in two simple equations for the c and d parameters:

d− 1

c− 1
=

4

5
, and

d

c
=

6

7
(3.16)

with solutions c = 7
2 and d = 3 and, therefore, the result in Eq. (3.12) follows. This is quite impressive.

It means that the full shape of the Mellin transformMQED(s) as a function of s, which is partly shown
in Fig. (2), can be fully reconstructed from its knowledge at just three points, which in our case we
have chosen to be the three dots in the figure corresponding to s = 1, s = 0 and s = −1.

In this particular QED example, the behaviour of the leading term in the expansion ofMQED(−n)
for n→∞ is

MQED(−n) ∼
n→∞

α

π

√
π

4

1

n
n3− 7

2 =
α

π

√
π

4
nγ , with γ = −3/2 , (3.17)

which, according to the Basic Abelian Theorem [34], and in terms of the threshold variable

δ =

√
1− t0

t
, (3.18)

implies that

ImΠ(t) ∼
δ→0
−α
π

√
π

4

1

δ2
Γ(γ + 1) δ−2γ , (3.19)

and reproduces the exact behaviour of the spectral function in Eq. (3.10) at threshold:

1

π
ImΠQED(t) ∼

t→t0

α

π

1

2
δ . (3.20)

III.3 Convergence Criteria of Mellin-Barnes Integrals.
It may not have escaped the attention of the alert reader that in the discussion of the previous
QED example, the choice of Eq. (3.15) was a particular choice of a Marichev-like function. Why this
choice and not one e.g. with all the Gamma functions in the numerator or in the denominator, and
why not choices with +s instead of −s ? The reason for the particular choice we made is that, as
already mentioned regarding the Mellin transform of the spectral function in QCD, the QED Mellin
transformMQED(s) is also a monotonously increasing function from Re(s) = −∞ to Re(s) = 1. This
implies that MQED(s) cannot have either poles or zeros in the negative Re(s) axis. Furthermore,
the function ΠQED(Q2) is known to be analytic except for a cut from t = 4m2 to t = ∞. These
are very general properties, also shared by the QCD vacuum polarization function, which imply
precise restrictions on the subclass of Marichev functions that one must use when trying to implement
successive approximations and which we shall next discuss.

In that respect we have been particularly helped by some relatively recent mathematical litera-
ture [38, 39, 40]. The authors of these references have studied the general conditions for the convergence
of a very general class of Mellin-Barnes integrals, which include those of the Marichev class, and their
results can be summarized as follows.
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s
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)

Figure 2:

Shape of the QED Mellin transformMQED(s) (in blue) as a function of s.
MQED(s) is fully reconstructed from its knowledge at just the three red points.

Consider the rather general type of Mellin-Barnes integral

I(z) =
1

2πi

c+i∞∫

c−i∞

ds z−s
∏m
j=1 Γ(Ajs+Bj)∏n
k=1 Γ(Cks+Dk)

. (3.21)

In our case this will apply to the Mellin-Barnes integral in Eq. (2.11) where

z ≡ Q2

t0
and I(z) ≡ − t0

Q2
Π(Q2) , (3.22)

as well as to the Mellin-Barnes integral in Eq. (2.15) where

z ≡ m2
µ

t0
and I(z) ≡ aHVP

µ (z) . (3.23)

Quite generally, the authors of refs. [38, 39] have studied the properties of the mapping which integrals
like those in Eq. (3.21) establish between the Mellin s-plane and the z-plane. This is illustrated in
Fig. (3) where the crosses denote the positions of the poles in the integrand of Eq. (3.21): in blue
the poles at the left of the fundamental strip (represented by the green strip in the figure) and in
red at the r.h.s. of the fundamental strip. In the z-plane we show the disc |z| ≤ R in blue, with R
the radius of convergence, and the cut starting at Re(z) ≥ R 7. The converse mapping theorem of
ref. [28] relates in a precise way the singularities in the complex s-plane of the integrand in Eq. (3.21)
to the asymptotic expansions of I(z) for z large (the red mapping in Fig. (3)) and for z small (the
blue mapping in Fig. (3)). Following refs. [38, 39, 40] we are instructed to consider the two quantities:

∆
.
=

m∑

j=1

Aj −
n∑

k=1

Ck and α
.
=

m∑

j=1

|Aj | −
n∑

k=1

|Ck| . (3.24)

Then, the region where the integral I(z) converges is | arg z| < π
2α (see e.g. [38]), and there are three

cases to be considered [39, 40]:
7For the sake of simplicity in drawing the figure, we assume that the disc of convergence is centered at z = 0 and

that the cut starts at Re(z) ≥ R.
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s z

Figure 3:

Mapping of the Mellin s-Plane to the z-plane.

• If ∆ > 0, closing the integration contour to the left leads to a series representation of the integral
I(z) which converges for any value of z, but closing the contour to the right gives a divergent
asymptotic expansion.

• If ∆ < 0, closing the contour to the right leads to a series representation of I(z) which converges
for any value of z, but closing the contour to the left gives a divergent asymptotic expansion.

• If ∆ = 0, closing the contour to the left and to the right gives two convergent series, the first
series obtained by closing to the left converges within a disk |z| < R whereas the other one
converges outside this disk. Moreover, if α > 0, the two series are the analytic continuation of
each other.

These three cases are illustrated in Fig. (4).

∆ > 0

div.

conv.

∆ < 0

conv.

div.

∆ = 0

conv.

conv.

Figure 4:

Behaviour of the series expansions of I(z) depending on the sign of ∆ for |z| < R (the blue region)
and |z| > R. The label div. denotes the regions where the asymptotic expansion is divergent or does
not exist. The cut is represented by the green zigzag line.

We are now in the position of fixing the class of successive Mellin approximants MN (s) that we
should use to ensure that they converge in the same way as the full QCD Mellin transformM(s) does.
Associated to eachMN (s) approximant there will be a corresponding ΠN (Q2) approximant to Π(Q2)
(via Eq. (2.11)) and, therefore, a corresponding aHVP

µ (N) approximant to aHVP
µ (via Eq. (2.20)). The

input will be that we know the values of the first few moments

M(0) , M(−1) , M(−2) , · · · , M(−N + 1) , (3.25)
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including their errors and their correlation matrix, either from a LQCD determination or from a
dedicated experiment. Given this input, we shall then restrict the successive Marichev-like Mellin
approximants in Eq. (3.11) to those satisfying the following criteria:

1. The fundamental strip of each Mellin approximantMN (s) must be the same as the one of the
full Mellin transformM(s), so that the insertion ofMN (s) in the r.h.s. of Eq. (2.15) does not
change the convergence region cs ≡ Re(s) ∈]0, 1[ of the exact Mellin transform.
In practice, due to the fact that the sequence of poles from Γ(ai − s) is at s = ai + n and the
one from Γ(cj + s) at s = −cj − n with n ∈ N implies the restrictions:

Re ai ≥ 1 and Re cj ≥ 0 . (3.26)

2. The Mellin approximantMN (s) should not generate poles nor zeros in the region −∞ < Re(s) <
1, whereM(s) is known to be monotonously increasing. Since Re cj ≥ 0, no poles for Re(s) < 1
implies the absence of factors Γ(cj + s) or jmax = 0. No zeros forMN (s) in the region −∞ <
Re(s) < 1 implies

Re bk ≥ 1. (3.27)

3. We also want the corresponding ΠN (Q2)-function (see Eq. (3.33) below) to the Mellin approx-
imant MN (s) to converge for z ≡ Q2

t0
both for |z| < 1 and |z| > 1 which, according to the

convergence conditions discussed above, requires that

∆ = (1− 1− imax)− (−kmax + lmax) = kmax − imax − lmax = 0 . (3.28)

4. Finally, we want the two series generated by the ΠN (Q2) approximant for |z| < 1 and |z| > 1
to be the analytic continuation of each other which implies

α = (2 + imax)− (kmax + lmax) > 0 . (3.29)

This, combined with Eq. (3.28), implies lmax < 1 and hence the absence of Γ(dl + s) factors in
the denominator of Eq. (3.11).

We therefore conclude that, in our case, the only Mellin approximants of the Marichev class that one
must consider are those restricted to the subclass:

MN (s) = CN

N∏

k=1

Γ(ak − s)
Γ(bk − s)

, (3.30)

with
Re ak ≥ 1 and Re bk ≥ 1 . (3.31)

From here onwards we shall simply call them Mellin-Barnes approximants (MBa).
Besides the matching to the input moments in Eq. (3.25), all the MBa that we shall use will be

constrained to satisfy the leading pQCD short-distance behaviour 8

MQCD(s) ∼
s→1

α

π

(∑

i

q2
i

)
1

3
Nc

1

1− s . (3.32)

Given a MBaMN (s), the corresponding ΠN (Q2) approximant to Π(Q2) is then

ΠN (Q2) = −Q
2

t0

1

2πi

cs+i∞∫

cs−i∞

ds

(
Q2

t0

)−s
Γ(s)Γ(1− s) MN (s) , cs ≡ Re(s) ∈]0, 1[ , (3.33)

and the aHVP
µ (N) approximant to aHVP

µ will be given by the integral in Eq. (2.20) when inserting the
correspondingMN

(
1
2 − iτ

)
in the r.h.s. integrand. Notice that the factor F(s) does not modify the

convergence criteria discussed above for aHVP
µ (N), because F(s) has ∆ = 0 and α = 4.

8It is possible to incorporate αs corrections as well. They don’t change, however, the residue of the pole at s = 1.
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III.4 The ΠN(Q2) are Generalized Hypergeometric Functions,
The ImΠN(t) are Meijer’s G-Functions.

The Generalized Hypergeometric Function [41]

PFQ[a1, a2, . . . aP ; b1, b2, . . . bQ; z] ≡ PFQ

(
a1 a2 . . . aP
b1 b2 . . . bQ

∣∣∣∣ z
)
, (3.34)

is defined, for |z| < 1, by the series

1 +
a1a2 . . . aP
b1b2 . . . bQ

z

1!
+
a1(a1 + 1)a2(a2 + 1) . . . aP (aP + 1)

b1(b1 + 1)b2(b2 + 1) . . . bQ(bQ + 1)

z2

2!
+ · · ·

≡
∞∑

n=0

(a1)n(a2)n . . . (aP )n
(b1)n(b2)n . . . (bQ)n

zn

n!
, (3.35)

where in the second line we use the Pochhammer symbol

(a)n ≡
Γ(a+ n)

Γ(a)
= a(a+ 1)(a+ 2) · · · (a+ n− 1) , (3.36)

with in particular,
(a)0 = 1 , and (1)n = n! . (3.37)

This series has P numerator parameters, Q denominator parameters and one variable z. Any of these
parameters are real or complex, but the b parameters must not be negative integers. The case where
P = 2 and Q = 1 corresponds to the so called Gauss Hypergeometric Function. The sum of this type
of series, when it exists, defines a Generalized Hypergeometric Function (GH-Function).

The reason why we are interested in GH-Functions is that, inserting the general expression in
Eq. (3.30) for theMN (s) approximant in the integrand of the r.h.s. in Eq. (3.33), and then doing the
Mellin-Barnes integral over the s-variable, results in a specific GH-Function of the type:

ΠN (Q2) = −Q
2

t0
CN

N∏

k=1

Γ(ak)

Γ(bk)
1+NFN

(
1 a1 . . . aN

b1 . . . bN

∣∣∣∣−
Q2

t0

)
, (3.38)

which is given by the series in Eq. (3.35) for |Q2

t0
| < 1, with its analytic continuation defined by the

underlying Mellin-Barnes integral, Eq. (3.33) in this case. The corresponding Adler function is also a
GH-Function:

AN (Q2) ≡ −Q2 ∂ΠN (Q2)

∂(Q2)
=
Q2

t0
CN

N∏

k=1

Γ(ak)

Γ(bk)
1+NFN

(
2 a1 . . . aN

b1 . . . bN

∣∣∣∣−
Q2

t0

)
. (3.39)

The reason why we are interested in Meijer’s G-Functions is that the inverse Mellin transform of
MN (s) corresponding to Eq. (2.7), i.e. the Mellin Barnes integrals

t0
t

1

π
ImΠN (t) =

1

2πi

c+i∞∫

c−i∞

ds

(
t

t0

)−s
MN (s) , cs ≡ Re(s) ∈]−∞, 1[ , (3.40)

for arbitrary N and t ≥ t0 are a particular class of Meijer’s G-Functions. Indeed, in full generality,
Meijer’s G-Functions are defined by a complex L-path integral (see e.g. The Meijer G-Function

Gm,n
p,q

(
z

∣∣∣∣
a
b

)
, in sect. 8.2 of ref. [42], pp. 617-626):

Gm,n
p,q

(
z

∣∣∣∣
1− a1, . . . , 1− an ; an+1, . . . , ap
b1, . . . , bm ; 1− bm+1, . . . , 1− bq

)
=

1

2πi

∫

L

ds z−s
Γ(b1 + s) · · ·Γ(bm + s) · Γ(a1 − s) · · ·Γ(an − s)

Γ(an+1 + s) · · ·Γ(ap + s) · Γ(bm+1 − s) · · ·Γ(bq − s)
, (3.41)
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and have the property that

G0,n
p,q

(
z

∣∣∣∣
a
b

)
= 0 for |z| < 1 . (3.42)

For the class of Marichev-likeMN (s) functions in Eq. (3.30) this results in a set of equivalent spectral
functions:

1

π
ImΠN (t) =

t

t0
CN G0,N

0,N

(
t

t0

∣∣∣∣
1− a1, . . . , 1− aN ; −−
−− ; 1− b1, · · · , 1− bN

)
. (3.43)

These successive equivalent spectral functions, alike the physical spectral function, are only defined
for t ≥ t0 but they are not expected to reproduce point by point the detailed physical structure in
the t-variable, until the level of approximation reaches the exact solution. They reproduce, however,
the smooth behaviour of the self-energy functions ΠN (Q2) and of the Adler AN (Q2) functions when
inserted in a dispersion relation and it is in this sense that we call them equivalent.

The explicit form of these general expressions for the first N = 1 and N = 2 cases are as follows:

• N=1
This corresponds to the case where we only know the first momentM(0). Then

M1(s) = C1
Γ(a1 − s)
Γ(b1 − s)

, with C1 =
α

π

5

3

Nc
3

Γ(b1 − 1) and a1 = 1 (3.44)

to ensure the pQCD pole behaviour at s = 1. With b1 fixed by the matching conditionM1(0) =
M(0) one finds

Π1(Q2) = −Q
2

t0
C1

1

Γ(b1)
2F1

(
1 a1

b1

∣∣∣∣−
Q2

t0

)
, (3.45)

and the corresponding Adler function [see Eq. (2.12)] is

A1(Q2) = −Q2 ∂Π1(Q2)

∂(Q2)
=
Q2

t0
C1

1

Γ(b1)
2F1

(
2 a1

b1

∣∣∣∣−
Q2

t0

)
, (3.46)

with an equivalent spectral function:

1

π
ImΠ1(t) =

t

t0
C1 G0,1

0,1

(
t

t0

∣∣∣∣
1− a1 ; −−
−− ; 1− b1

)
. (3.47)

• N=2
This corresponds to the case where we know the first two momentsM(0) andM(−1). Then

M2(s) = C2
Γ(1− s)
Γ(2− s)

Γ(a2 − s)
Γ(b2 − s)

with C2 =
α

π

5

3

Nc
3

Γ(b2 − 1)

Γ(a2 − 1)
, (3.48)

and the parameters a2 and b2 fixed by the two matching conditions

M2(0) =M(0) and M2(−1) =M(−1) . (3.49)

Then

Π2(Q2) = −Q
2

t0
C2

Γ(a2)

Γ(b2)
3F2

(
1 1 a2

2 b2

∣∣∣∣−
Q2

t0

)
; (3.50)

the corresponding Adler function is

A2(Q2) = −Q2 ∂Π2(Q2)

∂(Q2)
=
Q2

t0
C2

Γ(a2)

Γ(b2)
3F2

(
2 1 a2

2 b2

∣∣∣∣−
Q2

t0

)
, (3.51)

and the equivalent N = 2 spectral function is 9:

1

π
ImΠ2(t) =

t

t0
C2 G0,2

0,2

(
t

t0

∣∣∣∣
0, 1− a2 ; −−
−− ; −1, 1− b2

)
. (3.52)

9By contrast, the equivalent spectral function of the Padé approximant constructed with M(0) and M(−1) is just
a delta function.
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In the particular case of the lowest order vacuum polarization in QED discussed above, we have
(cs ≡ Re(s) ∈]0, 1[):

ΠQED(Q2) = −α
π

1

3
Γ(5/2)

Q2

4m2

1

2πi

cs+i∞∫

cs−i∞

ds

(
Q2

4m2

)−s
Γ(s)Γ(1− s) Γ(1− s)

Γ(2− s)
Γ(3− s)
Γ( 7

2 − s)
, (3.53)

which is a typical N = 2 case, with a2 = 3 and b2 = 7
2 . Then, setting z ≡

Q2

4m2 , one finds

ΠQED(Q2) = −α
π

1

3
Γ

(
5

2

)
Γ(3)

Γ(7/2)
z 3F2

(
1 1 3

2 7/2

∣∣∣∣−z
)

(3.54)

=
α

π

(−3 + 5z)
√
z + 3(1− 2z)

√
1 + z ArcSinh(

√
z)

9z3/2
. (3.55)

In this case the GH-function has an explicit analytic form, which we give in the second line, and it
coincides with the well known QED result. Notice that for z = − t

4m2 with t ≥ 4m2, this expression
develops an imaginary part which coincides with the Meijer’s G-Function representation

1

π
ImΠQED(t) =

t

t0

α

π

1

3
Γ

(
5

2

)
G0,2

0,2

(
t

t0

∣∣∣∣
0,−2 ; −−
−− ; −1,− 5

2

)
, (3.56)

and reproduces the exact spectral function in Eq. (3.10).
Obviously, QED at lowest order is a very particular example where it just happens that one can

reconstruct the exact function already at the level of the N = 2 MBa. In the next section we discuss
a much more complicated example.

IV Mellin-Barnes-approximants (MBa) in QED at two loops.
We wish to test the techniques developed in the previous section with a more complicated example
than the lowest order QED vacuum polarization. We suggest to examine the case of the QED vacuum
polarization at two loops. The proper fourth order QED spectral function was first calculated by
Källen and Sabry in 1955 [43] and later on in ref. [44]. It is given by the following expression:

With

δ =

√
1− 4m2

t
, (4.1)

1

π
ImΠQED

4th (t) =
(α
π

)2
{
δ

(
5

8
− 3

8
δ2 −

(
1

2
− 1

6
δ2

)
log

[
64

δ4

(1− δ2)3

])

+

(
11

16
+

11

24
δ2 − 7

48
δ4 +

(
1

2
+

1

3
δ2 − 1

6
δ4

)
log

[
(1 + δ)3

8δ2

])
log

[
1 + δ

1− δ

]

+ 2

(
1

2
+

1

3
δ2 − 1

6
δ4

)(
2 Li2

[
1− δ
1 + δ

]
+ Li2

[
−1− δ

1 + δ

])}
θ(t− 4m2) . (4.2)

The asymptotic behaviours of this spectral function are

1

π
ImΠQED

4th (t) ∼
t→4m2

(α
π

)2
{
π2

4
− 2

√
t

4m2
− 1 +

π2

6

(
t

4m2
− 1

)
+O

[(
t

4m2
− 1

)3/2
]}

, (4.3)

1

π
ImΠQED

4th (t) ∼
t→∞

(α
π

)2
{

1

4
+

3

4

4m2

t
+O

[(
4m2

t

)2

log

(
t

4m2

)]}
. (4.4)
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Figure 5:

Shape of the Spectral Function in Eq. (4.2) in
(
α
π

)2 units.
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Figure 6:

Shape of the Mellin Transform of the Spectral Function in Eq. (4.2) in
(
α
π

)2 units.

Notice that the behaviour at threshold t ∼ 4m2 is rather different to the lowest order one and the
shape of the spectral function, which is shown in Fig. (5), is also very different.

The shape of the Mellin transform of the 4th order spectral function in Eq. (4.2) is shown in
Fig. (6). Like the Mellin transform of QCD it is also singular at s = 1 but with a different residue

MQED
4th (s) ∼

s→1

(α
π

)2 1

4

1

1− s , (4.5)

and shares with QCD the property of being a monotonously increasing function from s = −∞ to
s < 1.

The real part of the fourth order vacuum polarization in QED is also known analytically [43]. It
is a rather complicated expression and, therefore, it is a good test to see how well it is approximated
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by the successive GH-Functions in Eq. (3.38). The shape of the ΠQED
4th (Q2) function in the Euclidean

is shown in Fig. (7).
We shall discuss this 4th order QED example in a way as close as possible to the QCD case which

we shall later be confronted with. Therefore, the input will be the successive values of the moments
of the spectral function, i.e. of the derivatives of ΠQED

4th (Q2) at Q2 = 0.

0 2 4 6 8 10
0

0.5

1

1.5

z = Q2

t0

−
Π

Q
E
D

4t
h

(z
)

Figure 7:

Shape of the 4th order QED vacuum polarization function in the Euclidean(
α
π

)2 units.

The first few Mellin moments

MQED
4th (s) ≡

∫ ∞

t0

dt

t

(
t

t0

)s−1
1

π
ImΠQED

4th (t) , (4.6)

for s = 0,−1,−2,−3,−4,−5, in units of
(
α
π

)2 are tabulated below in Table (1).

Table 1: M(s) Moments in units of
(
α
π

)2.

Moment Exact result Numerical value
M(0) 81/82 1.012356796
M(−1) 449/675 0.665185185
M(−2) 249916/496125 0.503735936
M(−3) 51986/127575 0.407493631
M(−4) 432385216/1260653625 0.342984946
M(−5) 5415247216/18261468225 0.296539531

IV.1 Successive Approximations to MQED
4th (s), ΠQED

4th (Q2) and aVP
µ .

We can now proceed to the construction of a successive set of MBa’s toMQED
4th (s) of the type shown

in Eq. (3.30) and to the evaluation of the corresponding GH-function approximation to ΠQED
4th (Q2) of

the type shown in Eq. (3.38). At each approximation step we shall then evaluate the corresponding
contribution to the anomalous magnetic moment of a fermion of mass m induced by the 4th order
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vacuum polarization generated by the same fermion (see the corresponding Feynman diagrams in
Fig. (8)), and compare it with the exact result which is known analytically [45]:

aVP
µ =

(α
π

)3
{

673

108
− 41

81
π2 − 4

9
π2 log(2)− 4

9
π2 log2(2) +

4

9
log4(2)− 7

270
π4

+
13

18
ζ(3) +

32

3
PolyLog

[
4 ,

1

2

]}
=
(α
π

)3

0.0528707 . (4.7)

Figure 8:
Feynman diagrams contributing to the muon anomaly in Eq. (4.7).

The result in Eq. (4.7) is a rather complicated expression involving higher transcendental numbers
with important numerical cancellations among the different terms and, therefore, it should provide a
good test. We want to investigate how well we reproduce this exact result using the Mellin-Barnes
integral representation in Eq. (2.20) which, when adapted to this case, reads as follows:

aVP(N) =
(α
π

) 1

2

1

2π

+∞∫

−∞

dτ eiτ log 1
4 F

(
1

2
− iτ

)
MN

(
1

2
− iτ

)
, (4.8)

withMN (s) the successive Mellin approximants.

IV.1.1 The N = 1 MBa.

This corresponds to the case where we only knowMQED
4th (0). Following Eq. (3.30) we are instructed

to consider as a first Mellin approximant:

MQED
4th (s)⇒M1(s) = C1

Γ(a− s)
Γ(b− s) , (4.9)

which must be singular at s = 1. This fixes the a parameter to a = 1 and the overall normalization to

C1 =
(α
π

)2 1

4
Γ(b− 1) , (4.10)

so as to reproduce the leading singularity when s→ 1. MatchingM1(s) at s = 0 with the numerical
value ofMQED

4th (0) in Table (1) fixes the b parameter to

b = 1.24695122 . (4.11)

We can then perform the corresponding integral in Eq. (4.8) which gives as a result for the first
N = 1 approximant:

aVP(N = 1) =
(α
π

)3

× 0.0500007 . (4.12)

It already reproduces the Mignaco-Remiddi exact result in Eq. (4.7) to an accuracy of 5%.
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IV.1.2 The N = 2 MBa.

This corresponds to the case where we know the slope and curvature of ΠQED
4th (Q2) at Q2 = 0, i.e.

MQED
4th (0) andMQED

4th (−1). This information is similar to that already available from LQCD 10. We
shall therefore discuss it in detail.

The Mellin approximant in this case has two parameters a and b:

MQED
4th (s)⇒M2(s) = C2

Γ(1− s)
Γ(2− s)

Γ(a− s)
Γ(b− s) , (4.13)

and the leading short-distance constraint fixes the overall normalization to

C2 =
(α
π

)2 1

4

Γ(b− 1)

Γ(a− 1)
, (4.14)

with the parameters a and b fixed by the two matching equations:

1

4

a− 1

b− 1
=MQED

4th (0) and
1

8

a

b

a− 1

b− 1
=MQED

4th (−1) , (4.15)

or equivalently

1

4

a− 1

b− 1
= MQED

4th (0) (4.16)

1

2

a

b
=
MQED

4th (−1)

MQED
4th (0)

. (4.17)
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Figure 9:

Plot of the real part of the integrand R2(τ) in Eq. (4.19):
the red curve corresponds to inserting the exactMQED

4th

(
1
2 − iτ

)
in the integrand

the dashed blue curve from inserting the approximationM2

(
1
2 − iτ

)
.

Inserting the numerical values in Table (1) forMQED
4th (0) andMQED

4th (−1) results in the values

a = 1.46508 and b = 1.11485 . (4.18)
10See refs. [11, 12, 13] and references therein.
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Figure 10:

The red curve is the Mellin Transform of the Spectral Function in Eq. (4.2).
The dotted blue curve is the N = 2 Mellin approximant in Eq. (4.13).

Both curves are shown in
(
α
π

)2 units.

With these parameter values inserted in M2(s) in Eq. (4.13), and performing the corresponding
integral in Eq. (4.8), i.e. the integral

aVP
µ (N = 2) =

(α
π

) 1

2

1

2π

+∞∫

−∞

dτ eiτ log(4) F
(

1

2
− iτ

)
M2

(
1

2
− iτ

)

︸ ︷︷ ︸
R2(τ)

, (4.19)

gives the result

aVP(N = 2) =
(α
π

)3

× 0.0531447 , (4.20)

which reproduces the Mignaco-Remiddi result in Eq. (4.7) to an accuracy of 0.5%, a significant im-
provement with respect to the N = 1 approximant. Figure (9) shows the behaviour of the real part
of the integrand R2(τ) in Eq. (4.19) as a function of τ , where the red curve is the one when one
inserts the exact Mellin transform MQED

4th

(
1
2 − iτ

)
in the integrand and the dashed blue curve the

one associated to the N = 2 approximation. Already at this level of approximation the agreement
between both integrands is quite impressive.

At this stage it is also interesting to compare the exact Mellin transform shown in Fig (6) with the
one corresponding to the N = 2 approximation. This is shown in Fig. (10) where the blue dotted curve
is the N = 2 approximation. The agreement of the two curves down to s ' −3 is quite remarkable. In
order to see the difference between these two curves we show in Fig. (11) the plot of their ratio. The
M2(s)/M(s) ratio turns out to be greater than one everywhere, except in the interval −1 ≤ s ≤ 0.
This is why the N = 2 result approaches the exact value of the anomaly from above. The quality of
the interpolation between s = 0 and s = −1 provided by the N = 2 approximation is shown at the
right in Fig. (11). Notice the scale in the figure, e.g. the value at the minimum of the ratio shown in
this figure is 0.9937 compared to one.

According to Eq. (3.38), the N = 2 GH-function approximant to ΠQED
4th (Q2) is given by the

expression (z ≡ Q2

t0
):

ΠQED
4th (Q2)⇒ ΠQED

(N=2)(Q
2) =

(α
π

)2

(−z)1

4

a− 1

b− 1
3F2

(
1 1 a

2 b

∣∣∣∣−z
)
, (4.21)
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Figure 11:

Plots of the ratio M2(s)
M(s) versus s. Notice the scale of the plots.
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Figure 12:

The red curve is the exact 4th order QED VP-function.
The dotted blue curve is the N = 2 approximant.

Both curves are shown in
(
α
π

)2 units.

where 3F2

(
1 1 a

2 b

∣∣∣∣−
)

is the GH-Function defined by the series:

3F2

(
1 1 a

2 b

∣∣∣∣−z
)

=

∞∑

n=0

(1)n(1)n(a)n
(2)n(b)n

(−z)n
n!

, (4.22)

and a and b have the values given in Eq. (2.20). Figure (12) shows how well the MBa ΠQED
(N=2)(Q

2)

(blue curve) does when compared to the exact function (red curve). From this comparison, one can
qualitatively understand why the N = 2 approximation already reproduces the exact value of aVP in
Eq. (4.7) at the 0.5% level.
The equivalent spectral function corresponding to the N = 2 approximation is given by the Meijer’s
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G-Function:
1

π
ImΠ2(t) =

t

t0

(α
π

)2 1

4
G0,2

0,2

(
t

t0

∣∣∣∣
0, 1− a ; −−
−− ; −1, 1− b

)
, (4.23)

and its shape, compared to the exact spectral function, is shown in Fig. (13).
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Figure 13:

The red curve is the exact 4th order QED spectral function.
The dotted blue curve is the N = 2 approximant.

Both curves are shown in
(
α
π

)2 units.

IV.1.3 The N = 3 MBa.

This corresponds to the Mellin approximant

MQED
4th (s)⇒M3(s) = C3

Γ(1− s)Γ(a1 − s)
Γ(b1 − s)Γ(b2 − s)

, (4.24)

with
C3 =

(α
π

)2 1

4

Γ(b1 − 1)Γ(b2 − 1)

Γ(a1 − 1)
, (4.25)

and the three parameters a1, a2 and b1 fixed by matchingM3(s) to the values of the three moments
MQED

4th (0),MQED
4th (−1), andMQED

4th (−2). The matching equations in this case are:

(α
π

)2 1

4

1

b1 − 1
(a1 − 1)

1

b2 − 1
= MQED

4th (0) , (4.26)

1

b1
a1

1

b2
=
MQED

4th (−1)

MQED
4th (0)

, (4.27)

2
1

b1 + 1
(a1 + 1)

1

b2 + 1
=
MQED

4th (−2)

MQED
4th (−1)

, (4.28)

which results in the values:

a1 = 2.528554853 , b1 = 1.163614902 , b2 = 3.307115556 , (4.29)
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or the equivalent solution with b1 
 b2. With these values inserted in M3(s) in Eq. (4.13), and
performing the corresponding integral in Eq. (4.8) gives the result

aVP(N = 3) =
(α
π

)3

× 0.0528678 , (4.30)

which now reproduces the Mignaco-Remiddi result in Eq. (4.7) to the remarkable accuracy of 0.004%.
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Figure 14:

The red curve is the Mellin Transform of the exact Spectral Function.
The dashed blue curve is the N = 3 Mellin approximant. Both curves are shown in

(
α
π

)2 units.
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Figure 15:

Plots of the ratio M3(s)
M(s) versus s. Notice the vertical scales of these plots.

As an illustration of the quality of the approximation, we show in Fig. (14) the Mellin transform
of the N = 3 approximation (the blue dashed curve) compared to the exact Mellin transform (the
red curve). At the scale of the figure it is practicably impossible to see the difference. In order to see
that, we show plots of the ratioM3(s)/M(s) in Fig. (15). Notice the scale in the left plot of Fig. (15)

22



as compared to the one in Fig. (11) and the improvement in the figure at the right which is plotted
at the same scale as Fig. (11).

An accuracy of 0.004% is already much beyond what is required of the HVP contribution to
the muon anomaly in QCD, but for the sake of testing the approximation procedure that we are
advocating, let us try further possible improvements.

IV.1.4 The N = 4 MBa.

The N = 4 approximant is

MQED
4th (s)⇒M4(s) = C4

Γ(1− s)Γ(a1 − s)Γ(a2 − s)
Γ(2− s)Γ(b1 − s)Γ(b2 − s)

, (4.31)

with
C4 =

(α
π

)2 1

4

Γ(b1 − 1)Γ(b2 − 1)

Γ(a1 − 1)Γ(a2 − 1)
, (4.32)

and the four parameters a1, a2, b1 and b2 solutions of the matching equations:

1

4

a1 − 1

b1 − 1

a2 − 1

b2 − 1
= MQED

4th (0) , (4.33)

1

2

a1

b1

a2

b2
=
MQED

4th (−1)

MQED
4th (0)

, (4.34)

2

3

(a1 + 1)

(b1 + 1)

(a2 + 1)

(b2 + 1)
=
MQED

4th (−2)

MQED
4th (−1)

, (4.35)

3

4

(a1 + 2)

(b1 + 2)

(a2 + 2)

(b2 + 2)
=
MQED

4th (−3)

MQED
4th (−2)

, (4.36)

which give the values:

a1 = 2.829673582 , b1 = 3.528046148 , a2 = 1.902891314 , b2 = 1.161374634 , (4.37)

or the equivalent solution with a1 
 a2 and b1 
 b2.
The corresponding prediction for the muon anomaly is

aVP
µ (N = 4) =

(α
π

)3

0.0528711 , (4.38)

which reproduces the exact value at the level of 0.00075%, practically the exact result.
It seems fair to conclude from these examples that the successive use of MBa of the Marichev

class in Eq. (3.30) is an excellent method to approach, rather quickly in this case, the exact result
with an excellent accuracy. The question which, however, arises is: how far can one go?. The exact
Mellin transform of the QED fourth order spectral function, contrary to the second order one which
we discussed earlier, is expected to be a much more complicated expression than just a simple standard
product of the Marichev class in Eq. (3.30). Therefore, one normally expects that these approximations
should break at some N -level. Let us then proceed to examine what happens when one tries higher
N -MBa’s of this type.

IV.1.5 The N = 5 MBa.

The N = 5 Mellin approximant is

MQED
4th (s)⇒M5(s) = C5

Γ(1− s)Γ(a1 − s)Γ(a2 − s)
Γ(b1 − s)Γ(b2 − s)Γ(b3 − s)

, (4.39)
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with
C5 =

(α
π

)2 1

4

Γ(b1 − 1)Γ(b2 − 1)Γ(b3 − 1)

Γ(a1 − 1)Γ(a2 − 1)
, (4.40)

and the parameters a1, a2, b1, b2, b3 solutions of the matching equations:

1

4

a1 − 1

b1 − 1

a2 − 1

b2 − 1

1

b3 − 1
= MQED

4th (0) , (4.41)

a1

b1

a2

b2

1

b3
=
MQED

4th (−1)

MQED
4th (0)

, (4.42)

2
a1 + 1

b1 + 1

a2 + 1

b2 + 1

1

b3 + 1
=
MQED

4th (−2)

MQED
4th (−1)

, (4.43)

3
a1 + 2

b1 + 2

a2 + 2

b2 + 2

1

b3 + 2
=
MQED

4th (−3)

MQED
4th (−2)

, (4.44)

4
a1 + 3

b1 + 3

a2 + 3

b2 + 3

1

b3 + 3
=
MQED

4th (−4)

MQED
4th (−3)

, (4.45)

with solution values:

b1 = 1.16249580 , a1 = 4.111523616 , b2 = 4.354959443 , a2 = 2.360299888 , b3 = 2.917297589 , (4.46)

and other equivalent solutions permutations of a1, a2 and b1, b2, b3.
The corresponding prediction for the muon anomaly is now

aVP
µ (N = 5) =

(α
π

)3

0.0528706 , (4.47)

which reproduces the exact value at the level of 0.00018%, still an improvement with respect to the
N = 4 Approximation! This is, however, the best one can do in the two loop QED case with Mellin
approximants of the type shown in Eq. (3.30). Indeed, if one tries to improve with a N = 6 MBa of
this type, one finds that all the solutions for the parameters a1, a2, a3, b1, b2, b3 from the matching
equations bring in complex numbers with real parts which are inside of the fundamental strip, in
contradiction with the initial requirements for an acceptable solution that we imposed. This is the
signal that the method of simple Marichev-like approximants that we are using breaks down at that
level. It breaks down because, beyond a certain level of accuracy, the function ΠQED

4th (Q2) cannot be
approximated by just one GH-Function. It is possible, however, as we shall next discuss in the QCD
case, to improve on the class of Marichev-like approximants introducing superpositions of standard
products of gamma functions.

From the previous analysis we conclude that, in the case of the QED fourth order vacuum polar-
ization, the best prediction we can make with simple Marichev-like MBa’s is an average of the N = 4
and N = 5 approximants with an error estimated from the deviation of this average to the N = 4 and
N = 5 results i.e.,

aVP
µ (QED 4th order) =

(α
π

)3

(0.0528709± 0.0000003) . (4.48)

This is already an excellent prediction when compared to the exact result in Eq. (4.7).

V Test of MBa with experimental HVP Moments.
The KNT collaboration [9] has kindly provided us with preliminary values of the first few moments of
the hadronic spectral function with errors, as well as their covariance matrix. These results provide a
good test of how well the MBa method that we propose works when applied to a set of moments with
realistic errors.
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The first five moments with their errors are given in Table (2) and their correlation matrix is given
in Table (3) in the next section. We observe that the relative errors of the first two moments M(0)
andM(−1) in Table (2) are smaller than the relative error in the determination of the lowest order
HVP contribution to aHVP

µ in Eq. (1.3) [9]. The higher momentsM(−n) for n = 2, 3, ... have higher
relative errors but they of course contribute less and less to the total aHVP

µ determination.

Table 2: M(s) Moments and Errors in 10−3 units .

Moment Experimental Value Relative Error
M(0) 0.7176± 0.0026 0.36%
M(−1) 0.11644± 0.00063 0.54%
M(−2) 0.03041± 0.00029 0.95%
M(−3) 0.01195± 0.00017 1.4%
M(−4) 0.00625± 0.00011 1.8%
M(−5) 0.003859± 0.000078 2.0%

We shall next proceed, like in the previous section, to the construction of successive MBa’s of the
type shown in Eq. (3.30) and to the evaluation of the corresponding GH-Functions ΠQCD

N (Q2) and
1
π ImΠN (t). At each approximation we shall then evaluate the corresponding aHVP

µ (N) contribution to
the muon anomlay. Here we shall only consider as input the center values of the moments in Table (2)
and postpone the error analysis for later discussion in the next subsection.

V.1 Successive MBa’s to MQCD(s), ΠQCD(Q2), 1
π
ImΠQCD(t) and aHVP

µ .

V.1.1 The N = 1 MBa.

This corresponds to the MBa which one can construct when only the first moment M(0) is known.
In this case

M1(s) =
α

π

5

3
Γ(1− s)Γ(b1 − 1)

Γ(b1 − s)
, (5.1)

where the singularity at s = 1 is the one associated to the asymptotic leading behaviour of the QCD
spectral function with u, d, s, c, b and t quarks in Eq. (2.1). Matching the value ofM1(s) at s = 0
with the one from the experimental determination in Table (2) fixes the b1-parameter to the value:

b1 = 6.395 . (5.2)

Figure (16) shows the shape of the predicted Mellin transform. The blue points in the figure
correspond to the experimental values of the moments in Table (2) with their errors, which are too
small to be seen at the scale in the figure. The agreement, at the precision of the scale of the figure,
is excellent.

Inserting the expression of the first Mellin approximant M1(s) in the integrand at the r.h.s. of
Eq. (2.15) gives the result of the first MBa to the muon anomaly:

aHVP
µ (N = 1) =

(α
π

)
√
m2
µ

t0

1

2π

+∞∫

−∞

dτ eiτ log
m2
µ
t0 F

(
1

2
− iτ

)
MN=1

(
1

2
− iτ

)
(5.3)

= 6.991× 10−8 , (5.4)
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Figure 16:

The red curve shows the shape of the N = 1 MBa in Eq. (5.1).
The blue circles are the experimental values in Table (2).
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Figure 17:

Plot of the ratio of the experimental moments in Table (2) with their errors
to those predicted by the N = 1 Mellin-Barnes-Approximation.

which reproduces the central value result in Eq. (1.3) [9] surprisingly well: to 0.8%.
In order to understand why the N = 1 MBa is already so good, let us explore more in detail

the plot of M1(s) in Fig (16). To better observe the deviations between the experimental moments
and the predicted moments we plot in Fig. (17) their ratio as a function of s = −n, n = 0, 1, 2, . . . .
The deviation of this ratio from one shows the discrepancy. Notice that, here, only the value of the
M(0) moment has been used as an input. The predicted values ofM(−1),M(−2) and evenM(−3)
turn out to be rather close to the experimental values, although already the predicted M(−3) and
certainly the predicted higher moments are not compatible with the experimental statistical errors.
Higher moments, however, contribute less ans less to the total value of the anomaly and this is why
aHVP
µ (N = 1) turns out to be such a good approximation.
Why does the N = 1 MBa do a better job in the case of QCD than in the two loop QED case we

discussed before? The reason for this is that in the QCD case, contrary to the QED case, there are
resonances in the low energy region of the spectral function with mass scales which, relative to the
muon mass, enhance the contribution of the low moments, in particularM(0). If instead of the muon
anomaly we were considering the electron anomaly, the N = 1 MBa would already be giving a result
with an accuracy comparable to the full determination.
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Although, given the result in Eq. (5.3) and the present accuracy from experiment, there seems to
be little room for improvement, let us examine what happens when one tries the N = 2 MBa.

V.1.2 The N = 2 MBa.

Here the Mellin approximant has the analytic form

M2(s) =
α

π

5

3

Γ(1− s)
Γ(2− s)

Γ(a1 − s)
Γ(a1 − 1)

Γ(b1 − 1)

Γ(b1 − s)
, (5.5)

and the parameters a1 and b1 are fixed by the matching equations:

M2(0) =M(0) and M2(−1) =M(−1) , (5.6)

withM(0) andM(−1) given in Table (2). This results in the values:

a1 = 1.900 and b1 = 5.855 . (5.7)

The shape of theM2(s) Mellin transform turns out to be rather similar to theM1(s) one in Fig. (17).
In order to appreciate the differences between the N = 1 and N = 2 MBa’s, we compare in Fig. (18)
the ratios of the experimental moments to those of theM2(s) prediction (the red dots) and to those
of the M1(s) prediction (the blue dots). The overall shape of the red dots is clearly better because
they are nearer to one.
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Figure 18:

Plot of the ratio of the experimental moments in Table (2) with their errors
to those predicted by the N = 2 MBa in red and the N = 1 MBa in blue.

With the expression of the second Mellin approximant M2(s) inserted in the integrand at the
r.h.s. of Eq. (2.15) we get as a result of the N = 2 MBa to the muon anomaly:

aHVP
µ (N = 2) =

(α
π

)
√
m2
µ

t0

1

2π

+∞∫

−∞

dτ eiτ log
m2
µ
t0 F

(
1

2
− iτ

)
MN=2

(
1

2
− iτ

)

︸ ︷︷ ︸
R(τ)

(5.8)

= 6.970× 10−8 , (5.9)
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which reproduces the central value result in Eq. (1.3) [9] at the 0.5% level, i.e. an improvement by a
factor of 1.6 with respect to the N = 1 case. Figure (19) shows the shape of the integrand R(τ) in
Eq. (5.8) which, as expected, has a rapid decrease as |τ | & 1.
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Figure 19:

Plot of the integrand in Eq. (5.8) as a function of τ .

As discussed in the previous section, the MBa technique allows to reconstruct as well ΠN (Q2)
approximants of the HVP self energy in terms of GH-functions. The correspondingN = 2 approximant
is (z = Q2

t0
):

ΠQCD
N=2(Q2) =

(α
π

)
(−z)5

3

a1 − 1

b1 − 1
3F2

(
1 1 a1

2 b1

∣∣∣∣−z
)
, (5.10)

with a1 and b1 given in Eq. (5.7). The shape of the function ΠQCD
N=2(Q2) is shown in Fig. (20).
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Figure 20:

Shape of the function ΠQCD
N=2(Q2) in Eq. (5.10) as a function of z = Q2

t0
.
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Plots of the N = 2 MBa Spectral Function.

Plots of the spectral function associated to the N = 2 MBa are also shown in Figs.(21). Although,
asymptotically, theN = 2 MBa spectral function approaches the pQCD value it can only be considered
a smooth interpolation of the physical spectral function which, as we know, has a lot of local structure.
This interpolation, however, when inserted in the r.h.s. of Eq. (1.4) reproduces the determination of
the anomaly using the experimental spectral function at the 0.5% level already mentioned. It is in
this sense that it is a good interpolation.

We shall next explore what happens when one tries to improve the N = 2 MBa with higher
approximants and further input from the experimental values of higher moments.

V.1.3 The N = 3 MBa.

The corresponding Mellin approximant which generalizes the one in Eq. (5.1) has the analytic form

M3(s) =
α

π

5

3
Γ(1− s)Γ(b1 − 1)

Γ(b1 − s)
Γ(a1 − s)
Γ(a1 − 1)

Γ(b2 − 1)

Γ(b2 − s)
, (5.11)

with the parameters a1, b1 and b2 solutions of the matching equations

M3(0) =M(0) , M3(−1) =M(−1) and M3(−2) =M(−2) . (5.12)

In this case one finds a “possible solution” where

a1 = −0.362 , b1 = 6.462 , b2 = −0.346 , (5.13)

and the equivalent one with b1 
 b2. These “solutions”, however, are not acceptable because they
generate a pole at s = a1 which is inside of the fundamental strip in contradiction with first principles,
as discussed in Section III.3. Nevertheless, the negative numerical values of a1 and b2 are in fact rather
close to each other. Had they been exactly the same, there would have been a cancellation between
Γ(a1 − s) and Γ(b2 − s) in Eq. (5.11) indicating that it is not possible to improve beyond N = 2 with
a single Marichev-like function. The situation here is rather similar to the one encountered earlier
when considering the N = 6 MBa in the QED example.

The fact that in QCD the simple Marichev-like approximants fail to find physical solutions already
at theN = 3 level is perhaps not so surprising. One does not expect, beyond a certain level of accuracy,
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to be able to approximate ΠQCD(Q2) at all Q2 values with just one GH-function. One may, however,
ask: is it possible to find generalizations of the simple Marichev-like MBa’s which, when using more
than the first two moments in Table (2) as an input, provide acceptable solutions to compare with
aHVP
µ in Eq. (1.3) [9]? There is a positive answer to that, as we shall next discuss. It consists in

using superpositions of Mellin approximants of the Marichev type. This, in turn, implies specific
superpositions of GH-Functions which approximate the self-energy ΠQCD(Q2) in the Euclidean, and
hence aHVP

µ .

V.1.4 The N = (2) + (1) MBa.

The simplest superposition which gives acceptable solutions to the matching equations, when one
knows three moments, is the one which consists of the sum of one N = 2 MBa and one N = 1 MBa,
with the correct pQCD behaviour at s = 1 (hence the overall factor 1/2), i.e.

M2+1(s) =
α

π

5

3

1

2

{
1

1− s
Γ(a1 − s)
Γ(a1 − 1)

Γ(b1 − 1)

Γ(b1 − s)
+ Γ(1− s)Γ(b2 − 1)

Γ(b2 − s)

}
, (5.14)

and the parameters a1, b1 and b2 solutions of the matching equations:

M2+1(0) =M(0) , M2+1(−1) =M(−1) and M2+1(−2) =M(−2) . (5.15)

There is only one acceptable solution to these equations with the values:

a1 = 5.2668, b1 = 14.514 , and b2 = 19.177 . (5.16)

With M2+1(s) inserted in the integrand at the r.h.s. of Eq. (2.15) we get as a result for the muon
anomaly:

aHVP
µ (N = 2 + 1) = 6.957× 10−8 (5.17)

which reproduces the central value result in Eq. (1.3) [9] at the 0.4% level, and is an improvement
with respect to the N = 2 case.
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Figure 22:

Plots of the N = 2 + 1 Adler Function versus z = Q2

t0
.

The corresponding sum of HG-Functions to the M2+1(s) MBa in Eq. (5.15) which results as an
approximation to the HVP self-energy is now
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ΠQCD
N=2+1(Q2) =

(α
π

)
(−z)5

3

1

2

{
a1 − 1

b1 − 1
3F2

(
1 1 a1

2 b1

∣∣∣∣−z
)

+
1

b2 − 1
2F1

(
1 1
b2

∣∣∣∣−z
)}

, (5.18)

and the corresponding approximation to the Adler function is

AQCD
N=2+1(Q2) =

(α
π

)
z

5

3

1

2

{
a1 − 1

b1 − 1
3F2

(
2 1 a1

2 b1

∣∣∣∣−z
)

+
1

b2 − 1
2F1

(
2 1
b2

∣∣∣∣−z
)}

. (5.19)

The shape of this Adler function is shown in Fig. (22).

V.1.5 The N = (2) + (1) + (1) MBa.

With the first four moments as an input, there is a new superposition of MBa’s which gives an
acceptable solution to the matching equations. It is the following linear combination of a N = 2 MBa
and two N = 1 MBa’s:

M2+1+1(s) =
α

π

5

3

{
1

1− s
Γ(a1 − s)
Γ(a1 − 1)

Γ(b1 − 1)

Γ(b1 − s)
+ Γ(2− s)Γ(b2 − 1)

Γ(b2 − s)
+ Γ(2− s)Γ(b3 − 1)

Γ(b3 − s)

}
. (5.20)
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Figure 23:

The red curve is the shape ofM2+1+1 in Eq. (5.20) for −5 ≤ s ≤ 0.
The dots are the experimental values of the moments.

The matching equations:

M2+1+1(0) =M(0) , M2+1+1(−1) =M(−1) ,

M2+1+1(−2) =M(−2) , and M2+1(−3) =M(−3) , (5.21)
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give an acceptable solution with values:

a1 = 1.0190 , b1 = 1.7495 , (5.22)

and two complex conjugate values for b2 and b3, or equivalently b2 
 b3:

b2 = 12.822 + i 2.6069 , b3 = 12.822− i 2.6069 , (5.23)

which gives a total real contribution to the sum of the two N = 1 terms in Eq. (5.20).
The expression of the N = 2 + 1 + 1 Mellin approximantM2+1+1(s) inserted in the integrand at

the r.h.s. of Eq. (2.15) results in a value for the muon anomaly:

aHVP
µ (N = 2 + 1 + 1) = 6.932× 10−8 , (5.24)

which almost exactly reproduces the central value result in Eq. (1.3) [9], and represents a net im-
provement with respect to the previous N = 2 + 1 approximation.

The shape of the Mellin transformM2+1+1(s) is shown in Fig. (23) together with the experimental
values of the first five moments. Figure (24) shows the ratio of the experimental values of the first
five moments to the values predicted byM2+1+1 in Eq. (5.20).
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Figure 24:
Plot of the ratio of the experimental moments in Table (2) to those of the N = 2 + 1 + 1 MBa.

The Adler function associated toM2+1+1(s) in Eq. (5.20) is the sum of three GH-Functions:

AQCD
N=2+1+1(Q2) =

(α
π

)
z

5

3

{
a1 − 1

b1 − 1
3F2

(
2 1 a1

2 b1

∣∣∣∣−z
)

+
1

b2 − 1
2F1

(
2 2
b2

∣∣∣∣−z
)

+
1

b3 − 1
2F1

(
2 2
b3

∣∣∣∣−z
)}

, (5.25)

and its shape is shown in Fig. (25).
Plots of the spectral function corresponding to the N = 2 + 1 + 1 MBa are also shown in Fig. (26).

The plots already exhibit underlying features of the hadronic structure.

V.2 Uncertainties of the Successive MBa’s to aHVP
µ .

We shall finally examine the sensitivity of the results obtained for the aHVP
µ (N) to small variations

in the input parameters ak and bk of the successive MN (s), as well as to the choice of the N -
approximant itself. The errors in the experimental determination of the momentsM(−n) have been
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Figure 25:

Plot of the Adler function in Eq. (5.25).
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Figure 26:

Plots of the N = 2 + 1 + 1 Spectral Function.

tabulated in Table (2) and their correlation matrix is given in Table (3). One can see that the values
of these moments are highly correlated, reflecting the fact that they all have been extracted from
different integrals of the same input data on the spectral function.

The statistical part of the analysis is standard. We first construct the covariance matrix Cij of
the first N moments obtained from experimentM(1− i) , i = 1, . . . , N :

Cij = ρijσiσj , with ρii = 1 , −1 < ρi,j < +1 and i, j = 1, . . . , N , (5.26)

where ρij is the correlation coefficient between the moment #i and the moment #j, each with Gaussian
uncertainty σi and σj . Then we define a χ2 function associated to a given Mellin-Barnes approximant
MN (s), which depends on a set of parameters (ak , bk):

χ2 =

N∑

i,j=1

[MN (1− i)−M(1− i)]C−1
ij [MN (1− j)−M(1− j)] . (5.27)

and minimize this χ2 with respect to the set of parameters (ak , bk). The errors are sufficiently small to
ensure that a point-like estimate is an excellent approximation, and we obtain the covariance matrix
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Table 3: Correlation Matrix of the MomentsM(0), . . . ,M(−5) in Table (2)



1 0.83 0.62 0.50 0.42 0.37
1 0.93 0.84 0.77 0.70

1 0.98 0.93 0.88
1 0.987 0.96

1 0.991
1



.

in the (ak, bk) parameter space from the Hessian matrix of the χ2 function computed at its minimum.
Using linear error propagation we can then calculate the statistical uncertainty on aHVP

µ , as reported
in the third column of Table (4). The fact that all the approximants have a similar uncertainty that
coincides with the one of the complete evaluation of aHVP

µ [9] is a sign that the statistical information
is saturated by all our MBa’s.

Table 4: Numerical results on the determination of aHVP
µ (10−8 units), for each considered MBa.

MBa Ansatz Central Value Stat. Uncertainty
Eq. (5.1) (N = 1) 6.991 0.023
Eq. (5.5) (N = 2) 6.970 0.024

Eq. (5.14) (N = (2) + (1)) 6.957 0.025
Eq. (5.20) (N = (2) + (1) + (1)) 6.932 0.025

Our results would not be complete without a study of the systematic shift associated to the
successive MBa’s which interpolate the values of the experimental moments and reconstruct the full
Mellin functions. With this aim, in addition to the MBa’s discussed in detail in the previous section,
we have also tested alternative parameterizations for N = 2, 3, 4 which are obtained by changing the
location of the poles in the superposition terms ( e.g. Γ(2−s) instead of Γ(1−s) in Eq. (5.14)). These
alternative MBa’s have also valid solutions for the corresponding (ak , bk) parameters and, therefore,
can also be considered as good alternative choices. The results of all the evaluations of aHVP

µ which
we have made are plotted in Fig. (27), as a function of the number of input moments N . We observe
that the successive results converge towards the experimental value in Eq. (1.3).

VI Conclusions and Outlook
Equation (2.3) shows that moments of the hadronic spectral function are equivalent to derivatives of
the hadronic self-energy function Π(Q2) at Q2 = 0. The latter are accessible to LQCD simulations as
well as to eventual dedicated experiments. We have shown how, from an accurate determination of
the first few moments, one could reach an evaluation of the HVP contribution to the muon anomaly
with a competitive precision, or even higher, than the present experimental determinations.

The method that we propose uses a new technique of Mellin-Barnes approximants which has
been explained and justified in detail in the text. Essentially it is based on generic QCD properties
which fix the class of Mellin transformsM(s) of the spectral function that one can use as successive
approximants. The muon anomaly aHVP

µ , in terms of these M(s)-functions, is given by the Fourier
transform in Eq. (2.20). The corresponding approximations to the hadronic self-energy function
Π(Q2) are well defined Generalized Hypergeometric Functions which we have given explicitly and the
approximations to the spectral function are also given in terms of Meijer’s G-Functions. This offers
the possibility of applying the same techniques developped here to the case where the information
from LQCD, or from experiment, is given in terms of determinations of the self-energy function Π(Q2)
at fixed Euclidean Q2-values, as e.g. in ref. [16]. We plan to discuss this in the near future.
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Figure 27:

Results for aHVP
µ as a function of the number of input moments N . The blue points correspond to

alternative choices of MBa’s (two choices for N = 2, 3, 4) with their statistical uncertainty.
The pink band is the full experimental result of ref. [9].

We have illustrated the practical application of the method with the example of the QED contribu-
tion to the muon anomaly from the vacuum polarization Feynman diagrams in Fig. (8). We have also
discussed the case where one uses as an input the experimental values of the first moments provided
to us by the collaboration of ref. [9]. We find that, in this case, our approach reproduces very well
their complete phenomenological analysis.
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APPENDIX

In this appendix we discuss various technical details which appear in the main text
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A The Basic Mellin-Barnes Identity

The identity in Eq. (2.10) is a particular case of the identity (N = 1, 2, 3, . . . ):

1

(1 +A)N
=

1

2πi

cs+i∞∫

cs−i∞

ds (A)
−s Γ(s)Γ(N − s)

Γ(N)
. (A.1)

We shall first show how performing the integral in the r.h.s. for N = 1 reproduces the l.h.s. For that
we make a choice of s with Re(s) ∈]0, 1[, e.g. s = 1

2 + iτ . Then

1

2πi

cs+i∞∫

cs−i∞

ds (A)
−s

Γ(s)Γ(1− s)

=
1√
A

1

2π

∫ +∞

−∞
dτ exp (−iτ logA)

π

cosh(πτ)

=
1√
A

1

2π

π

cosh
(

logA
2

) =
1√
A

1

2

1

e
1
2

logA+e−
1
2

logA

2

=
1√
A

1√
A+ 1√

A

=
1

1 +A
, c.q.d. (A.2)

Taking N -derivatives with respect to A in this identity reproduces Eq. (A.1).
We shall next evaluate the Mellin transform of 1

(1+A)N
and show that

∫ ∞

0

dA As−1 1

(1 +A)N
=

Γ(s)Γ(N − s)
Γ(N)

. (A.3)

We do that by applying Ramanujan’s Master Theorem to the Taylor expansion:

1

(1 +A)N
=

∑

k=0 ,1 ,2...

(−1)k
[

Γ(N + k)

Γ(N)Γ(k + 1)

]
Ak , (A.4)

from which Ramanujan allows us to conclude that

∫ ∞

0

dA As−1 1

(1 +A)N
= Γ(s)Γ(1− s)×

[
Γ(N − s)

Γ(N)Γ(−s+ 1)

]
(A.5)

=
Γ(s)Γ(N − s)

Γ(N)
, c.q.d. . (A.6)

B Positivity Properties of the Mellin Moments

Because of the positivity property of the spectral function 1
π ImΠ(t) the Mellin Moments M(−N)

which, here, for convenience, we write as follows

Σ(N) =

∫ ∞

t0

dt

t0

(
t0
t

)2+N
1

π
ImΠ(t) , N = 0, 1, 2, . . . , (B.1)

must satisfy certain constraints which we next discuss. Notice that with this definition:

M(−n) ≡ Σ(N = n) . (B.2)
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It is useful to change variables slightly: set

z =
t0
t
,

dt

t0
= −dz

z2
, (B.3)

and, therefore,

Σ(N) =

∫ 1

0

dzzN
1

π
ImΠ

(
1

z
t0

)
. (B.4)

The positivity constraints follow from the fact that

∑

N,N ′

[∫ 1

0

dzzN+N ′ 1

π
ImΠ

(
1

z
t0

)]
ξNξ

′
N ≥ 0 , (B.5)

where ξN and ξ′N are the components of arbitrary positive real vectors. This implies that the matrix

Σ(N,N ′) ≡
∫ 1

0

dzzN+N ′ 1

π
ImΠ

(
1

z
t0

)
, (B.6)

must be positive definite. The relevant constraints are then the following:

• N = N ′ = 0:

Σ(0) ≥ 0 . (B.7)

• (N,N ′) = 0, 1

Σ(0) ≥ 0 , Σ(1) ≥ 0 , Σ(1) ≤ Σ(0) . (B.8)

• (N,N ′) = 0, 1, 2

Σ(0) ≥ 0 , Σ(1) ≥ 0 , Σ(2) ≥ 0 , Σ(1) ≤ Σ(0) , Σ(2) ≤ Σ(1) , Σ(0)Σ(2) ≥ [Σ(1)]2 . (B.9)

• (N,N ′) = 0, 1, 2, 3

Σ(0) ≥ 0 , Σ(1) ≥ 0 , Σ(2) ≥ 0 , Σ(3) ≥ 0 , (B.10)

Σ(1) ≤ Σ(0) , Σ(2) ≤ Σ(1) , Σ(3) ≤ Σ(2) , (B.11)

Σ(0)Σ(2) ≥ [Σ(1)]2 , Σ(1)Σ(3) ≥ [Σ(2)]2 , (B.12)

and
[Σ(0)− Σ(1)][Σ(2)− Σ(3)] ≥ [Σ(1)− Σ(2)]2 . (B.13)

LQCD determinations of Mellin Moments should be consistent with these constraints.
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