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Abstract

In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equa-
tions. For a given integer k ě 0, the discrete velocity unknowns are vector-valued polynomials
of total degree ď k on mesh elements and faces, while the pressure unknowns are discontinuous
polynomials of total degree ď k on the mesh. From the discrete unknowns, three relevant quanti-
ties are reconstructed inside each element: a velocity of total degree ď pk`1q, a discrete advective
derivative, and a discrete divergence. These reconstructions are used to formulate the discretiza-
tions of the viscous, advective, and velocity-pressure coupling terms, respectively. Well-posedness
is ensured through appropriate high-order stabilization terms. We prove energy error estimates
that are advection-robust for the velocity, and show that each mesh element T of diameter hT

contributes to the discretization error with an Ophk`1
T q-term in the diffusion-dominated regime,

an Ophk` 1
2

T q-term in the advection-dominated regime, and scales with intermediate powers of hT

in between. Numerical results complete the exposition.

Keywords: Hybrid High-Order methods, Oseen equations, incompressible flows, polyhedral
meshes, advection-robust error estimates
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1 Introduction

Since the pioneering works [2626, 3030–3333] of Cockburn, Shu and coworkers in the late 1980s, discontinuous
Galerkin (DG) methods have gained significant popularity in computational fluid mechanics, boosted
by the 1997 landmark papers [77, 88] by Bassi, Rebay and coworkers on the treatment of viscous terms.
At the roots of this success are, in particular: the possibility to handle general meshes (including, e.g.,
nonconforming interfaces) and high approximation orders; the robustness with respect to dominant
advection; the satisfaction of local balances on the computational mesh. The application of DG
methods to the discretization of incompressible flow problems has been considered in several works
starting from the early 2000s; a bibliographic sample includes [33–66, 99, 1717, 2727–2929, 3434, 3535, 4141, 5252, 5454,
5656, 5858, 6161–6363, 6565]; cf. also [4242, Chapter 6] for a pedagogical introduction.

Despite their numerous favorable features in the context of incompressible fluid mechanics, DG meth-
ods suffer from two major drawbacks, particularly when non-standard meshes are considered: first,
the number of unknowns rapidly grows as kdNT , with d denoting the space dimension and NT the
number of mesh elements; second, the inf-sup condition may not be verified, which requires to add
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pressure stabilization terms. Of course, these inconveniences can be overcome in specific cases; see,
e.g., [4242, Section 6.1.5] for a discussion on DG discretizations without pressure stabilization.

A significant contribution to the resolution of both issues was given in the 2009 paper by Cockburn,
Gopalakrishnan, and Lazarov [2424], where the authors provide a unified framework for the hybridiza-
tion of Finite Element (FE) methods for second order elliptic problems. An important side result of
this work is that discontinuous methods featuring a reduced number of globally coupled unknowns can
be devised by enforcing flux continuity through Lagrange multipliers on the mesh skeleton, leading
to the so-called Hybridizable Discontinuous Galerkin (HDG) methods. A first notable consequence
of introducing skeletal unknowns is that efficient implementations exploiting hybridization and static
condensation are possible. This leads to globally coupled problems where the number of unknowns
grows as kd´1NF , with NF denoting the number of faces. A second important consequence is that a
Fortin interpolator is available, paving the way to inf-sup stable methods for incompressible problems
on general meshes.

In their original formulation, HDG methods focused on meshes with standard element shapes, and
had in some cases lower orders of convergence than standard mixed FE methods; see Remark 33 on
this subject. Recently, a novel class of methods that overcome both limitations have been proposed
in [4040, 4444] under the name of Hybrid High-Order (HHO) methods. The relation between HDG and
HHO methods has been explored in a recent work [2121], which points out the analogies and differences
among the two frameworks. In particular, HHO-related advances include the applicability to general
polyhedral meshes in arbitrary space dimension, as well as the identification of high-order stabilizing
contributions which allow to gain up to one order of convergence with respect to classical HDG
methods. Additionally, powerful discrete functional analysis tools have been developed in the HHO
framework that make the convergence analysis using compactness techniques possible for problems
involving complex nonlinearities; see, e.g., [1414, 3636, 3737]. It has to be noted that also other recently
developed methods support polygonal meshes and high-orders. We cite here, in particular, the Virtual
Element methods (VEM) in their primal conforming [1010], mixed [1515], and primal nonconforming [22]
flavors, as well as the recently introduced M -decompositions [2222, 2323]. For a study of the relations
among HDG, HHO, and VEM, we refer the reader to [1313, 3939].

HDG, HHO and related methods have been applied to the discretization of incompressible flows; see,
e.g., [11, 1111, 1919, 2020, 4646, 5151, 5959, 6060, 6464]. In this work, we propose a novel and original study of HHO
discretizations of the Oseen problem highlighting the dependence of the error estimates on the Péclet
number when the latter takes values in r0,`8q. Notice that `8 is excluded since we assume nonzero
viscosity; we refer the reader to [3838, 4343] for the study of DG and HHO methods for locally vanishing
diffusion with advection, where this assumption is removed. It is also worth mentioning that this
type of analysis does not seem straightforward for the Navier–Stokes problem, since error estimates
typically require small data assumptions, essentially limiting the range of Reynolds number; see, e.g.,
[4646], where convergence by compactness is also proved without any small data requirement.

For a given integer k ě 0, the HHO method proposed here hinges on discrete velocity unknowns
that are vector-valued polynomials of total degree ď k on mesh elements and faces, and pressure
unknowns that are discontinuous polynomials of total degree ď k on the mesh. Based on these
discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity one
degree higher than the discrete unknowns; a discrete advective derivative; a discrete divergence whose
composition with the local interpolator coincides with the L2-orthogonal projection of the continuous
divergence. The use of the high-order velocity reconstruction allows one to obtain the Ophk`1q-
scaling for the viscous term typical of HHO methods. The use of the discrete advective derivative
together with a face-element upwind stabilization in the advective contribution, on the other hand,
warrants a robust behaviour in the advection-dominated regime. In particular, the contribution to the
discretization error stemming from the advective term has optimal scaling varying from Ophk`1q in

the diffusion-dominated regime to Ophk` 1
2 q in the advection-dominated regime. Finally, the discrete

divergence operator is designed so as to be surjective in the discrete pressure space, so that an inf-sup
condition is verified.

The rest of the paper is organized as described hereafter. In Section 22 we formulate the continuous
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problem along with the assumptions on the data. In Section 33 we establish the discrete setting (mesh,
notation, basic results). Section 44 contains the formulation of the discrete problem preceeded by the
required ingredients, the statements of the main results corresponding to Theorems 66 and 77, and
numerical examples. Section 55 contains the proofs of the main results. Finally, the flux formulation
of the discrete problem is discussed in Appendix AA.

2 Continuous problem

Let Ω Ă Rd, d P t2, 3u, denote an open bounded connected polytopal set with Lipschitz boundary
BΩ, f P L2pΩqd a volumetric body force, ν P R˚` (with R˚` denoting the set of strictly positive real
numbers) the dynamic viscosity, β P LippΩqd a given velocity field such that ∇¨β “ 0, and µ P R˚`
a reaction coefficient. We consider the Oseen problem that consists in seeking the velocity field
u : Ω Ñ Rd and the pressure field p : Ω Ñ R such that

´ν∆u ` pβ¨∇qu ` µu `∇p “ f in Ω, (1a)

∇¨u “ 0 in Ω, (1b)

u “ 0 on BΩ, (1c)
ż

Ω

p “ 0. (1d)

In what follows, the coefficients ν, β, µ together with the source term f are collectively referred to
as the problem data.

Remark 1 (Reaction coefficients). The assumption µ ą 0 can be relaxed, but we keep it here to
simplify some of the arguments in the analysis. We are, however, not concerned with the reaction-
dominated regime. We notice, in passing, that assuming µ ą 0 brings us closer to the unsteady case,
where reaction-like terms stem from the discretization of the time derivative; see also Remark 1111 on
this point. The case µ “ 0 is considered in the numerical examples of Section 4.74.7.

Weak formulations for problem (11) are classical. Denote by H1
0 pΩq the space of functions that are

square-integrable on Ω along with their first weak derivatives and that vanish on BΩ in the sense of
traces, and by L2

0pΩq the space of functions that are square-integrable and have zero mean value on Ω.
For any X Ă Ω, we denote by p¨, ¨qX the usual inner product of L2pXq and by }¨}X the corresponding
norm, and we adopt the convention that the subscript is omitted whenever X “ Ω. The same
notations are used for the spaces of vector- and tensor-valued functions L2pXqd and L2pXqdˆd,
respectively. Setting U – H1

0 pΩq
d and P – L2

0pΩq, a weak formulation for problem (11) reads: Find
pu, pq P U ˆ P such that

apu,vq ` bpv , pq “ pf ,vq @v P U ,

´bpu, qq “ 0 @q P P,
(2)

with bilinear forms a : U ˆU Ñ R and b : U ˆ P Ñ R such that

apu,vq – νp∇u,∇vq ` ppβ¨∇qu,vq ` µpu,vq, bpv , qq – ´p∇¨v , qq. (3)

3 Discrete setting

We consider here polygonal or polyhedral meshes corresponding to couples Mh – pTh,Fhq, where
Th is a finite collection of polygonal elements T of maximum diameter equal to h ą 0, while Fh is
a finite collection of hyperplanar faces F . It is assumed henceforth that the mesh Mh matches the
geometrical requirements detailed in [4949, Definition 7.2]; see also [4848, Section 2]. For every mesh
element T P Th, we denote by FT the subset of Fh containing the faces that lie on the boundary
BT of T . For each face F P FT , nTF is the (constant) unit normal vector to F pointing out of T ,
and we denote by nT the piecewise constant field on FT such that nT |F “ nTF for all F P FT .
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Boundary faces lying on BΩ and internal faces contained in Ω are collected in the sets Fb
h and F i

h,
respectively.

Our focus is on the so-called h-convergence analysis, so we consider a sequence of refined meshes
that is regular in the sense of [4848, Definition 3]. The corresponding positive regularity parameter,
uniformly bounded away from zero, is denoted by %. The mesh regularity assumption implies, among
other, that the diameter hT of a mesh element T P Th is uniformly comparable to the diameter hF
of each face F P FT , and that the number of faces in FT is bounded uniformly in h.

The construction underlying HHO methods hinges on projectors on local polynomial spaces. Let X
denote a mesh element or face. For a given integer l ě 0, we denote by PlpXq the space spanned by
the restriction to X of d-variate polynomials of total degree ď l. The local L2-orthogonal projector
π0,l
X : L2pXq Ñ PlpXq is defined as follows: For all v P L2pXq, the polynomial π0,l

X v P PlpXq
satisfies

pπ0,l
X v ´ v, wqX “ 0 @w P PlpXq. (4)

The vector version of the L2-projector, denoted by π0,l
X , is obtained by applying π0,l

X component-wise.
At the global level, we denote by PlpThq the space of broken polynomials on Th whose restriction
to every mesh element T P Th lies in PlpT q. The corresponding global L2-orthogonal projector

π0,l
h : L2pΩq Ñ PlpThq is such that, for all v P L2pΩq,

pπ0,l
h vq|T – π0,l

T v|T . (5)

Also in this case, the vector version π0,l
h is obtained by applying π0,l

h component-wise. Broken
polynomial spaces are a special instance of the broken Sobolev spaces: For an integer m ě 0,

HmpThq –
 

v P L2pΩq : v|T P H
mpT q @T P Th

(

.

Broken Sobolev spaces will be used to formulate the regularity assumptions on the exact solution
required to derive error estimates.

Let now a mesh element T P Th be given. The local elliptic projector π1,l
T : H1pT q Ñ PlpT q is defined

as follows: For all v P H1pT q, the polynomial π1,l
T v P PlpT q satisfies

p∇pπ1,l
T v ´ vq,∇wqT “ 0 for all w P PlpT q and pπ1,l

T v ´ v, 1qT “ 0. (6)

The vector version π1,l
T is again obtained by applying π1,l

T element-wise. We leave it to the reader
to check that both the local L2-orthogonal and elliptic projectors are linear, onto, and idempotent
(hence, they map polynomials of degree ď l onto themselves).

To avoid the profileration of generic constants, throughout the rest of the paper the notation a À b
means a ď Cb with real number C ą 0 independent of the meshsize h, of the problem data and, for
local inequalities on a mesh element or face X, also on X. The notation a » b means a À b À a.
When useful, the dependence of the hidden constant is further specified.

On regular mesh sequences, both π0,l
T and π1,l

T have optimal approximation properties in PlpT q, as
summarized by the following result (for a proof, see Theorems 1.1, 1.2, and Lemma 3.1 in [3636]): For
ξ P t0, 1u and any s P tξ, . . . , l ` 1u, it holds for all T P Th, and all v P HspT q,

|v ´ πξ,lT v|HmpT q À hs´mT |v|HspT q @m P t0, . . . , su, (7a)

and, if s ě 1,

|v ´ πξ,lT v|HmpFT q À h
s´m´ 1

2

T |v|HspT q @m P t0, . . . , s´ 1u, (7b)

whereHmpFT q –
 

v P L2pBT q : v|F P H
mpF q @F P FT

(

is the broken Sobolev space on the bound-
ary of T . The hidden constants in (77) depend only on d, %, ξ, l, and s.

To close this section, we note the following local trace and inverse inequalities (cf. [4242, Lemmas 1.46
and 1.44]): For all T P Th and all v P PkpT q,

}v}F À h
´ 1

2

F }v}T for all F P FT and }∇v}T À h´1
T }v}T . (8)
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4 Discrete problem

In this section we introduce the main ingredients of the HHO construction, formulate the discrete
problem, state the main results, and provide some numerical examples.

4.1 Discrete unknowns

Let an integer k ě 0 be fixed. We define the following space of discrete velocity unknowns on Th,
which consist of vector-valued polynomial functions of total degree ď k inside each mesh element and
on each mesh face:

Uk
h –

 

vh – ppvT qTPTh
, pvF qFPFh

q : vT P PkpT qd for all T P Th and vF P PkpF qd for all F P Fh
(

.

For all vh P U
k
h, we define the broken polynomial function vh P PkpThqd obtained by patching element

unknowns, i.e.,
vh|T – vT @T P Th.

The global interpolator Ikh : H1pΩqd Ñ Uk
h is such that, for any v P H1pΩqd,

Ikhv – ppπ0,k
T v|T qTPTh

, pπ0,k
F v|F qFPFh

q.

For any mesh element T P Th, we denote by Uk
T and IkT , respectively, the restrictions of Uk

h and Ikh
to T , that is

Uk
T –

 

vT – pvT , pvF qFPFT
q : vT P PkpT qd and vF P PkpF qd for all F P FT

(

and, for any v P H1pT qd,

IkTv – pπ0,k
T v , pπ0,k

F v|F qFPFT
q.

The HHO scheme is based on the following discrete spaces for the velocity and the pressure which
strongly incorporate, respectively, the homogeneous boundary condition on the velocity and the zero-
mean value constraint on the pressure:

Uk
h,0 –

!

vh P U
k
h : vF “ 0 @F P Fb

h

)

, P kh – PkpThq X P.

4.2 Viscous bilinear form

Let a mesh element T P Th be fixed. We define the local velocity reconstruction operator rk`1
T :

Uk
T Ñ Pk`1pT qd such that, for a given vT P U

k
T , rk`1

T vT satisfies

p∇prk`1
T vT q,∇wqT “ ´pvT ,∆wqT `

ÿ

FPFT

pvF ,∇wnTF qF @w P Pk`1pT qd,

ż

T

rk`1
T vT “

ż

T

vT .

(9)

The above definition can be justified observing that, for all v P H1pT qd,

rk`1
T IkTv “ π

1,k`1
T v , (10)

as can be easily verified writing (99) with vT replaced by IkTv and using the definition (66) of the
elliptic projector with l “ k ` 1 in the left-hand side and (44) of the L2-orthogonal projectors on T
and its faces in the right-hand side.
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The discrete viscous bilinear form aν,h : Uk
h ˆU

k
h Ñ R is assembled element-wise as follows:

aν,hpwh,vhq “
ÿ

TPTh

aν,T pwT ,vT q (11a)

where, for any T P Th, the local bilinear form aν,T : Uk
T ˆU

k
T Ñ R is such that

aν,T pwT ,vT q – νp∇prk`1
T wT q,∇prk`1

T vT qqT ` sν,T pwT ,vT q. (11b)

The first contribution in the right-hand side is responsible for consistency, whereas the second is a
stabilization bilinear form which we can take such that

sν,T pwT ,vT q –
ÿ

FPFT

ν

hF
ppδkTF ´ δ

k
T qwT , pδ

k
TF ´ δ

k
T qvT qF (11c)

where, for any vT P Uk
T , we have introduced the difference operators such that for any vT P

Uk
T ,

pδkTvT , pδ
k
TFvT qFPFT

q – IkT pr
k`1
T vT q ´ vT P U

k
T . (12)

Using (1010) together with the linearity and idempotency of the L2-orthogonal projectors on mesh
elements and faces, it can be proved that the following polynomial consistency property holds (see,
e.g., [4848, Section 3.1.4] for the details): For all w P Pk`1pT qd,

pδkT I
k
Tw, pδ

k
TF I

k
TwqFPFT

q “ 0 P Uk
T . (13)

Remark 2 (Viscous stabilization bilinear form). More general viscous stabilization bilinear forms can
be considered. Following [1313, Section 5.3], the following set of sufficient design conditions on sν,T
ensure that the required stability and consistency properties for aν,h hold:

(S1) Symmetry and positivity. sν,T is symmetric and positive semidefinite.

(S2) Stability and boundedness. It holds for all vT P U
k
T ,

ν}vT }
2
1,T » aν,T pvT ,vT q where }vT }

2
1,T – }∇vT }2T `

ÿ

FPFT

h´1
F }vF ´ vT }

2
F .

Summing over T P Th, this implies in particular that it holds, for all vh P U
k
h,

ν}vh}
2
1,h » aν,hpvh,vhq where }vh}

2
1,h –

ÿ

TPTh

}vT }
2
1,T . (14)

(S3) Polynomial consistency. For all w P Pk`1pT qd and all vT P U
k
T , it holds that

sν,T pI
k
Tw,vT q “ 0.

The stabilization bilinear form (11c11c) is clearly symmetric and positive semidefinite, and thus it satisfies
(S1). A proof of (S2) can be found in [4444, Lemma 4], where the scalar case is considered. Finally,
(S3) is an immediate consequence of (1313). To close this remark, we note the following important
consequence of (S1)–(S3): For any w P Hk`2pT qd,

sν,T pI
k
Tw, I

k
Twq

1
2 À νhk`1

T |w|Hk`2pT qd . (15)

Remark 3 (Comparison with the LDG-H stabilization). The extension to the vector case of the
LDG-H stabilization originally introduced in [1818, 2525] for scalar diffusion problems reads

sldg
ν,T pwT ,vT q “

ÿ

FPFT

ηνpwF ´wT ,vF ´ vT qF ,

where η ą 0 is a user-defined stabilization parameter. The main difference with respect to the HHO
stabilization defined by (11c11c) is that sldg

ν,T does not satisfy property (S3). In particular, when using

η “ h´1
F , the consistency estimate (1515) modifies to

sldg
ν,T pI

k
Tw, I

k
Twq

1
2 À νhkT |w|Hk`1pT qd .

As a result, up to one order of convergence is lost in the error estimate. We refer to [2121] for further
details including a discussion on possible fixes.
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4.3 Advection-reaction bilinear form

Let a mesh element T P Th be fixed and set, for the sake of brevity,

βTF – β|F ¨nTF for all F P FT .

We define the local advective derivative reconstruction Gk
β,T : Uk

T Ñ PkpT qd such that, for all

vT P U
k
T and all w P PkpT qd,

pGk
β,TvT ,wqT “ ppβ¨∇qvT ,wqT `

ÿ

FPFT

pβTF pvF ´ vT q,wqF . (16)

The global advection-reaction bilinear form aβ,µ,h : Uk
h ˆ U

k
h Ñ R is assembled element-wise as

follows:
aβ,µ,hpwh,vhq –

ÿ

TPTh

aβ,µ,T pwT ,vT q (17a)

where, for all T P Th, the local bilinear form aβ,µ,T : Uk
T ˆU

k
T Ñ R is such that

aβ,µ,T pwT ,vT q – ´pwT ,G
k
β,TvT qT ` µpwT ,vT qT ` s´β,T pwT ,vT q. (17b)

Here, letting ξ˘ –
|ξ|˘ξ

2 for any ξ P R, we have set

s˘β,T pwT ,vT q –
ÿ

FPFT

pβ˘TF pwF ´wT q,vF ´ vT qF . (17c)

Remark 4 (Reformulation of the advective-reactive bilinear form). It can be checked using the defini-
tion (1616) of Gk

β,T , the regularity of β, the single-valuedness of interface unknowns, and the strongly

enforced boundary condition that it holds, for all wh,vh P U
k
h,0,

aβ,µ,hpwh,vhq “
ÿ

TPTh

´

pGk
β,TwT ,vT qT ` µpwT ,vT qT ` s`β,T pwT ,vT q

¯

. (18)

Summing (17a17a) and (1818) and dividing by two, we arrive at the following equivalent expression:

aβ,µ,hpwh,vhq “
ÿ

TPTh

ˆ

1

2
pGk

β,TwT ,vT qT ´
1

2
pwT ,G

k
β,TvT qT

˙

`
ÿ

TPTh

µpwT ,vT qT

`
ÿ

TPTh

ÿ

FPFT

p
|βTF |

2
pwF ´wT q,vF ´ vT qF .

(19)

This reformulation of aβ,µ,h shows that (i) the consistent contribution in the advective term, corre-
sponding to the first addend in the right-hand side of (1919), is skew-symmetric. As a result, it does
not contribute to the global kinetic energy balance obtained by setting vh “ uh in (31a31a) below;
(ii) the upwind stabilization can in fact be interpreted as a least-square penalization of face-element
differences. A similar interpretation in the context of DG methods was discussed in [1616].

Remark 5 (Advective stabilization bilinear form). Following [3838, Section 4.2], in (17b17b) we can consider
the following more general stabilization bilinear form:

s´β,T pwT ,vT q “
ÿ

FPFT

p
ν

hF
A´pPeTF qpwF ´wT q,vF ´ vT qF ,

where, for all T P Th and all F P FT , the local face Péclet number is such that

PeTF –
βTFhT
ν

, (20)

while the function A´ : R Ñ R is such that A´psq “ 1
2 p

pApsq ´ sq with pA : R Ñ R matching the
following sufficient design conditions:
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(A1) Lipschitz continuity, positivity, and symmetry. pA is a Lipschitz-continuous function such that
pAp0q “ 0 and, for all s P R, pApsq ě 0 and pAp´sq “ pApsq.

(A2) Growth. There exists CA ě 0 such that pApsq ě CA|s| for all |s| ě 1.

Besides the upwind stabilization (17c17c), notable examples of stabilizations that match the above design
conditions include the locally upwinded θ-scheme and the Scharfetter–Gummel scheme.

4.4 Velocity-pressure coupling

Let a mesh element T P Th be fixed, and define the discrete divergence operator Dk
T : Uk

T Ñ PkpT q
such that, for all vT P U

k
T and all q P PkpT q,

pDk
TvT , qqT – ´pvT ,∇qqT `

ÿ

FPFT

pvF ¨nTF , qqF . (21)

For any T P Th and any v P H1pT qd, writing (2121) for vT “ I
k
Tv and using the definitions (44) of the

L2-orthogonal projectors on T and its faces, we infer that

Dk
T I

k
Tv “ π0,k

T p∇¨vq. (22)

We define the velocity-pressure coupling bilinear form bh : Uk
h ˆ P

k
h Ñ R such that

bhpvh, qhq – ´
ÿ

TPTh

pDk
TvT , qhqT . (23)

4.5 Reference quantities, Péclet numbers, and discrete norms

For any mesh element T P Th, we define the following local reference velocity and time:

βref,T – }β}L8pT qd , τref,T –
1

maxpµ,Lβ,T q
with Lβ,T – max

1ďiďd
}∇βi}L8pT qd , (24)

as well as the following local Péclet number (see (2020) for the definition of PeTF ):

PeT – max
FPFT

}PeTF }L8pF q. (25)

In the discussion, we will also need the following global reference time τref,h and Péclet numbers Peh
and PeΩ:

τref,h – min
TPTh

τref,T , Peh – max
TPTh

PeT , PeΩ –
}β}L8pΩqddΩ

ν
, (26)

where we have denoted by dΩ the diameter of Ω. We equip the discrete pressure space P kh with the

L2-norm and the discrete velocity space Uk
h,0 with the following energy norm:

}vh}U ,h –
`

}vh}
2
ν,h ` }vh}

2
β,µ,h

˘
1
2 , (27)

where we have set

}vh}
2
ν,h – aν,hpvh,vhq and }vh}

2
β,µ,h –

ÿ

TPTh

˜

1

2

ÿ

FPFT

}|βTF |
1
2 pvF ´ vT q}

2
F ` τ

´1
ref,T }vT }

2
T

¸

. (28)

Given a linear functional f on Uk
h,0, its dual norm is given by

}f}U˚,h – sup
vhPU

k
h,0zt0u

|xf,vhy|

}vh}U ,h
. (29)
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4.6 Discrete problem and main results

Introducing the diffusion-advection-reaction bilinear form

ah – aν,h ` aβ,µ,h, (30)

with aν,h defined by (1111) and aβ,µ,h by (1717), the HHO scheme for problem (11) reads: Find puh, phq P

Uk
h,0 ˆ P

k
h such that

ahpuh,vhq ` bhpvh, phq “ pf ,vhq @vh P U
k
h,0, (31a)

´bhpuh, qhq “ 0 @qh P P
k
h . (31b)

In the rest of this section, we state and comment the main results of the analysis, whose proofs are
postponed to Section 55. The well-posedness of problem (3131) is studied in the following theorem.

Theorem 6 (Well-posedness). The following holds:

(i) Coercivity of ah. It holds for all vh P U
k
h,0,

Ca}vh}
2
U ,h À ahpvh,vhq with Ca – min

TPTh

p1, τref,Tµq . (32)

(ii) Inf-sup condition on bh. For all qh P P
k
h , it holds that

Cb}qh} À sup
vhPU

k
h,0zt0u

bhpvh, qhq

}vh}U ,h
with Cb –

”

νp1` Pehq ` τ
´1
ref,h

ı´ 1
2

. (33)

(iii) Continuity of ah. It holds for all wh,vh P U
k
h,0,

|ahpwh,vhq| À p1` PeΩq}wh}U ,h}vh}U ,h. (34)

As a consequence, problem (3131) is well-posed and the following a priori bounds hold:

}uh}U ,h À
1

Ca
ν´

1
2 }f }, }ph} À

1

Cb

ˆ

1`
1` PeΩ

Ca

˙

ν´
1
2 }f }. (35)

Proof. See Section 5.15.1.

We next investigate the convergence of the method. We measure the error as the difference between
the discrete solution and the interpolant of the exact solution defined as

ppuh, pphq – pIkhu, π
0,k
h pq P Uk

h,0 ˆ P
k
h .

Upon observing that, as a consequence of (2222), bhppuh, qhq “ ´pπ0,k
h p∇¨uq, qhq “ ´p∇¨u, qhq “ 0,

straightforward manipulations show that the discretization error

peh, εhq – puh, phq ´ ppuh, pphq

solves the following problem:

ahpeh,vhq ` bhpvh, εhq “ xRpu, pq,vhy @vh P U
k
h,0, (36a)

´bhpeh, qhq “ 0 @qh P P
k
h , (36b)

where Rpu, pq is the residual linear functional on Uk
h,0 such that, for all vh P U

k
h,0,

xRpu, pq,vhy – pf ,vhq ´ ahppuh,vhq ´ bhpvh, pphq. (37)
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Theorem 7 (Error estimates and convergence). Denote by pu, pq P UˆP and by puh, phq P U
k
h,0ˆP

k
h

the unique solutions of the weak (22) and discrete (3131) problems, respectively. Then, recalling the
notation of Theorem 66, the following abstract error estimates hold:

}eh}U ,h À
1

Ca
}Rpu, pq}U˚,h, }εh} À

1

Cb

ˆ

1`
1` PeΩ

Ca

˙

}Rpu, pq}U˚,h. (38)

Moreover, assuming the additional regularity u P Hk`2pThqd and p P H1pΩqXHk`1pThq, it holds that

}Rpu, pq}U˚,h À

«

ÿ

TPTh

´

h
2pk`1q
T N1,T `minp1,PeT qh

2k`1
T N2,T

¯

ff
1
2

, (39)

where, for the sake of brevity, we have defined for all T P Th the following bounded quantities:

N1,T – ν|u|2Hk`2pT qd ` ν
´1|p|2Hk`1pT q, N2,T – βref,T |u|

2
Hk`1pT qd .

Proof. See Section 5.25.2.

Remark 8 (Robustness of the a priori estimates (3838)). The constant Ca in the a priori estimate for
the velocity is independent of the Péclet number, hence the resulting error estimate is robust with
respect to the latter. Plugging the definition (2424) of the local reference time into that of Ca (see
(3232)), one can additionally see that the factor 1

Ca
depends adversely on the local Lipschitz module of

the velocity, meaning that the accuracy of the results is expected to be lower when the velocity field
has abrupt spatial variations.

The multiplicative constant in the a priori estimate for the pressure, on the other hand, depends on
the global Péclet numbers defined in (2626), showing that the control of the error on the pressure is not
robust for dominant advection (formally corresponding to Peh Ñ `8).

Remark 9 (Convergence rate). Using the local Péclet number in (3939) allows us to establish an esti-
mate on }Rpu, pq}U˚,h which locally adjusts to the various regimes of (11). In mesh elements where

diffusion dominates so that PeT ď hT , the contribution to the right-hand side of (11) is Oph2pk`1q
T q.

In mesh elements where advection dominates so that PeT ě 1, on the other hand, the contribution
is Oph2k`1

T q. The transition region, where PeT is between hT and 1, corresponds to intermediate or-
ders of convergence. Notice also that the viscous contribution exhibits the superconvergent behavior

Oph2pk`1q
T q typical of HHO methods, see [4444]. As a result, the balancing with the advective contribu-

tion is slightly different with respect to, e.g., the DG method of [4343], where the viscous contribution
scales as Oph2k

T q.

Remark 10 (Static condensation). The size of the linear system corresponding to the discrete prob-
lem (3131) can be significantly reduced by resorting to static condensation. Following the procedure
hinted to in [11] and detailed in [4545, Section 6.2], it can be shown that the only globally coupled
variables are the face unknowns for the velocity and the mean value of the pressure in each mesh
element. As a result, after statically condensing the other discrete unknowns, the size of the matrix
in the left-hand side of the linear system is, denoting by N i

F the number of internal faces and by NT
the number of mesh elements,

ˆ

k ` d´ 1

k

˙

N i
F `NT .

Remark 11 (An improved pressure estimate). The dependence on the global Péclet number PeΩ in the
pressure error estimate (3838) can be removed by working with two velocity norms, as briefly described
hereafter. We define on Uk

h,0 the augmented norm such that, for all vh P U
k
h,

~vh~U ,h –

˜

}vh}
2
U ,h `

ÿ

TPTh

hTβ
´1
ref,T }G

k
β,TvT }

2
T

¸
1
2

,

10



Figure 1: Triangular and hexagonal meshes.

where the last summand is taken only if βref,T ‰ 0. We additionally assume that

βref,T

hTµ
ď 1 @T P Th. (40)

This assumption has a straightforward interpretation when considering unsteady problems for which
the reaction term stems from the finite difference discretization of a time derivative, and µ is therefore
proportional to the inverse of the discrete time step δt. As a matter of fact, in this case the condition
(4040) stipulates that, when βref,T ‰ 0, δt ď hT {βref,T , that is to say, the time step is less than the
caracteristic time required to cross the mesh element T . In the above framework, one can show that
(i) the inf-sup condition (3333) holds with }¨}U ,h replaced by ~¨~U ,h, and (ii) the following improved

boundedness can be proved for ah: For all wh,vh P U
k
h,0, ahpwh,vhq À }wh}U ,h~vh~U ,h. As a

result, we have the following estimate for the error on the pressure:

Cb}εh} À sup
vhPU

k
h,0zt0u

bhpvh, εhq

~vh~U ,h

“ sup
vhPU

k
h,0zt0u

xRpu, pq,vhy ´ ahpeh,vhq

~vh~U ,h

À ~Rpu, pq~U˚,h ` }eh}U ,h,

where we have used the inf-sup condition on bh with respect to the augmented norm in the first line,
the error equation (36a36a) to pass to the second, and ~¨~U˚,h is the dual norm of Uk

h,0 defined as in
(2929) with }¨}U ,h replaced by ~¨~U ,h. Under the regularity assumptions of Theorem 77, an inspection
of (6666) reveals that a bound analogous to (3939) holds for ~Rpu, pq~U˚,h, so that the error estimate
on the pressure becomes

}εh} À
1

Cb

ˆ

1`
1

Ca

˙

«

ÿ

TPTh

´

h
2pk`1q
T N1,T `minp1,PeT qh

2k`1
T N2,T

¯

ff
1
2

,

and the global Péclet number PeΩ no longer appears in the multiplicative constant in the right-hand
side.

4.7 Numerical examples

In order to confirm the error estimates of Theorem 77, we use the well-known exact solution due
to Kovasznay [5757], which we adapt here to the Oseen setting using the analytical expression of
the velocity for the advection field β. For a given value Pe P R˚` of the Péclet number, setting

λ – Pe´
a

Pe2
` 4π2, we take

uλpxq –
`

1´ exppλxq cosp2πyq, λ2π exppλxq sinp2πyq
˘

, pλpxq – p´ 1
2 expp2λxq,

with ν – p2Peq´1, β – uλ, µ – 0, and p chosen such that ppλ, 1q “ 0. The computational
domain is the square Ω “ p´0.5, 1.5q ˆ p0, 2q, approximated with refined families of triangular and
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(predominantly) hexagonal meshes; see Figure 11. The former correspond to the mesh family mesh1
of the FVCA5 benchmark [5555], whereas the latter is taken from [4747]. Dense and sparse linear algebra
are based on the C++ library Eigen [5353].

In Figures 22 and 33 we plot the errors }eh}U ,h and }εh} estimated in Theorem 77 as functions of the
meshsize h for polynomial degrees k ranging from 0 to 3. In all the cases, the errors are normalized
using the corresponding norm of the interpolant of the exact solution on a fine mesh with k “ 3.
We estimate the asymptotic convergence rates in Tables 11 and 22, respectively, based on the following
formula:

estimated convergence rate –
logp}eh2

}U ,h2
q ´ logp}eh1

}U ,h1
q

logph2q ´ logph1q
,

where h1 ă h2 are the meshsizes corresponding to the last two mesh refinements. We also display
the results for }eh}, the L2-norm of the error on the velocity.

From Figure 22 and Table 11, we see that the estimated orders of convergence are almost perfectly
matched for the energy norm of the velocity error }eh}U ,h, with convergence in hk`1 for Pe “ 0.01,

hk`
1
2 for Pe “ 10000, and intermediate powers in between. Similar considerations hold for the pressure

error }εh} for Pe “ 0.01 and Pe “ 1, whereas higher convergence rates than expected are observed
for Pe “ 10000. This phenomenon will be further investigated in future works. The L2-norm of the
velocity error, on the other hand, exhibits convergence in hk`2, which corresponds to the classical
supercloseness behaviour for HHO methods; see, e.g., [4444, Theorem 10]. Similar considerations hold
for the hexagonal mesh sequence (see Figure 33 and Table 22) where, however, a slight degradation of
the order of convergence for the energy norm of the velocity is observed already for the smallest value
of the Péclet number. In Figures 33a and 33c, it can be seen that the slope of the velocity error is still
increasing in the last mesh refinement, which suggests that the asymptotic convergence rate has not
been reached yet for Pe “ 0.01 and Pe “ 1.

5 Proofs

In this section we prove the main results stated in Section 4.64.6.

5.1 Well-posedness

Proof of Theorem 66. (i) Coercivity of ah. Let vh P U
k
h,0. Writing (1919) for wh “ vh and using the

definition (2424) of the reference time, we obtain for the advection-reaction norm

Ca}vh}
2
β,µ,h ď aβ,µ,hpvh,vhq.

By definition (2828) of the viscous norm we have, on the other hand, }vh}
2
ν,h “ aν,hpvh,vhq. Observing

that Ca ď 1 and recalling the definition (2727) of the }¨}U ,h-norm, the conclusion follows.

(ii) Inf-sup condition on bh. Let qh P P
k
h Ă P . From the surjectivity of the continuous divergence

operator from U to P , we infer the existence of vqh P U such that ´∇¨vqh “ qh and }v}H1pΩqd À }q},
with hidden constant only depending on Ω. Using the fact above together with the definition (55) of
the global L2-orthogonal projector, the commuting property (2222) of Dk

T , and the definition (2323) of
bh, we infer that

}qh}
2 “ ´p∇¨vqh , qhq “ ´pπ

0,k
h p∇¨vqhq, qhq “ bhpI

k
hvqh , qhq. (41)

Hence, denoting by $ the supremum in the right-hand side of (3333), we can write

}qh}
2 ď $}Ikhvqh}U ,h.

The conclusion follows observing that

}Ikhvqh}U ,h À C´1
b }Ikhvqh}1,h À C´1

b }vqh}H1pΩqd À C´1
b }qh}, (42)
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Figure 2: Velocity error (left) and pressure error (right) versus meshsize h on the triangular mesh sequence
for Pe P t10´2, 1, 104

u.

Table 1: Estimated asymptotic orders of convergence of the relative errors on the triangular mesh sequence.

Pe “ 0.01 Pe “ 1 Pe “ 10000

}eh}U ,h }eh} }εh} }eh}U ,h }eh} }εh} }eh}U ,h }eh} }εh}

k “ 0 0.99 1.96 1.02 0.93 1.81 1.09 0.50 0.96 1.29
k “ 1 1.91 3.02 1.94 1.83 2.71 1.96 1.49 1.79 1.64
k “ 2 2.94 3.97 2.94 2.78 3.64 2.97 2.49 2.96 2.84
k “ 3 3.93 4.94 3.98 3.75 4.59 3.95 3.49 3.97 3.94
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Figure 3: Velocity error (left) and pressure error (right) versus meshsize h on the hexagonal mesh sequence
for Pe P t10´2, 1, 104

u.

Table 2: Estimated asymptotic orders of convergence of the relative errors on the hexagonal mesh sequence.

Pe “ 0.01 Pe “ 1 Pe “ 10000

}eh}U ,h }eh} }εh} }eh}U ,h }eh} }εh} }eh}U ,h }eh} }εh}

k “ 0 0.86 1.42 1.18 0.75 1.49 0.84 0.50 0.83 0.73
k “ 1 1.84 2.91 2.32 1.70 2.74 2.20 1.50 2.78 2.65
k “ 2 2.84 3.89 2.96 2.45 3.34 2.84 2.51 3.59 4.15
k “ 3 3.59 4.57 3.74 3.37 4.20 3.52 3.51 4.67 4.44
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where the first inequality follows from (5050) below, while for the second we have used the following
continuity property for Ikh, which can be inferred from the continuity properties of L2-projectors
proved in [3737, Lemma 3.2]: For all v P U , }Ikhv}1,h À }v}H1pΩqd .

(iii) Continuity of ah. Let wh,vh P U
k
h,0. The Cauchy–Schwarz inequality readily yields for the

viscous bilinear form:
|aν,hpwh,vhq| ď }wh}ν,h}vh}ν,h. (43)

To prove the boundedness of the advection-reaction bilinear form, we plug the expression (17b17b) of
aβ,µ,T into the definition (17a17a) of aβ,µ,h and proceed to bound the three terms in the right-hand

side. For any mesh element T P Th, recalling the definition (1616) of Gk
β,T , and using Hölder and

Cauchy–Schwarz inequalities, it is inferred that

|pwT ,G
k
β,TvT qT | ď βref,T }wT }T }vT }1,T

À
βref,T dΩ

ν
ν

1
2 }wT }T ν

1
2 }vT }1,T

“ PeΩ ν
1
2 }wT }T ν

1
2 }vT }1,T ,

(44)

where we have used the fact that d´1
Ω À 1 to pass to the second line and the definition (2626) of PeΩ

to conclude. We next recall the following discrete Poincaré inequality for HHO spaces proved in [3737,
Proposition 5.4]: For all wh P U

k
h,0,

}wh} À }wh}1,h, (45)

where the }¨}1,h-norm is defined by (1414). Using (4444) followed by a discrete Cauchy–Schwarz inequality
on the sum over T P Th, (4545), and the global norm equivalence (1414) yields

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPTh

pwT ,G
k
β,TvT qT

ˇ

ˇ

ˇ

ˇ

ˇ

À PeΩ ν
1
2 }w} ν

1
2 }vT }1,h À PeΩ}wh}ν,h}vh}ν,h. (46)

For the second term, the Cauchy–Schwarz inequality followed by the definition (2424) of the reference
time τref,T give

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPTh

µpwT ,vT qT

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

ÿ

TPTh

τ´1
ref,T }wT }

2
T

¸
1
2
˜

ÿ

TPTh

τ´1
ref,T }vT }

2
T

¸
1
2

. (47)

Finally, using again the Cauchy–Schwarz inequality together with the fact that β´TF ď |βTF |, we have
for the third term

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

TPTh

s´β,T pwT ,vT q

ˇ

ˇ

ˇ

ˇ

ˇ

À

˜

1

2

ÿ

TPTh

ÿ

FPFT

}|βTF |
1
2 pwF ´wT q}

2
F

¸
1
2
˜

1

2

ÿ

TPTh

ÿ

FPFT

}|βTF |
1
2 pvF ´ vT q}

2
F

¸
1
2

.

(48)
Combining (4646)–(4848), and recalling the definition (2828) of the viscous and advection-reaction norm,
we conclude that

|aβ,µ,hpwh,vhq| À PeΩ}wh}ν,h}vh}ν,h ` }wh}β,µ,h}vh}β,µ,h ď p1` PeΩq}wh}U ,h}vh}U ,h. (49)

Observing that
|ahpwh,vhq| ď |aν,hpwh,vhq| ` |aβ,µ,hpwh,vhq|

and using (4343) and (4949) to bound the terms in the right-hand side, (3434) follows.

(iv) Well-posedness and a priori bounds. Denote by f the linear functional on Uk
h,0 such that xf,vhy “

pf ,vhq for all vh P U
k
h,0. The well-posedness of problem (3131) with a priori bounds as in (3535) but

with ν´
1
2 }f } replaced by }f}U˚,h follows from an application of [5050, Theorem 2.34] after observing

that the second condition in Eq. (2.28) therein is a consequence of the first in a finite-dimensional
setting; see also [1212, Theorem 3.4.5] for the corresponding algebraic result.
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The estimate }f}U˚,h À ν´
1
2 }f } that allows one to write (3535) is proved bounding the argument of

the supremum in the definition (2929) of the dual norm as follows:

xf,vhy “ pf ,vhq ď }f } }vh} À }f } }vh}1,h À }f } ν
´ 1

2 }vh}ν,h À }f } ν
´ 1

2 }vh}U ,h,

where we have used the Cauchy–Schwarz inequality in the first bound, the discrete Poincaré inequality
(4545) in the second bound, the norm equivalence (1414) in the third bound, and the definition (2727) of
the }¨}U ,h-norm to conclude.

The following proposition was used in point (ii) of the above proof.

Proposition 12 (Equivalence of global norms). For all vh P U
k
h,0 it holds with Cb as in (3333):

ν
1
2 }vh}1,h À }vh}U ,h À C´1

b }vh}1,h. (50)

Proof. Let vh “ ppvT qTPTh
, pvF qFPFh

˘

P Uk
h,0. To prove the first inequality in (5050), it suffices to use

(1414) followed by (2727) to infer

ν
1
2 }vh}1,h À }vh}ν,h ď }vh}U ,h.

To prove the second inequality in (5050), we estimate the terms that compose the }¨}U ,h-norm; see (2727).
We start by observing that, using again (1414), it holds

}vh}
2
ν,h À ν}vh}

2
1,h. (51)

Let us bound the second term in the right-hand side of (2727). By definition (2525) of the local Péclet
number PeT , it is readily inferred for all T P Th that

1

2

ÿ

FPFT

}|βTF |
1
2 pvF ´ vT q}

2
F ď

1

2
νPeT

ÿ

FPFT

h´1
F }vF ´ vT }

2
F À νPeT }vT }

2
1,T .

Summing over T P Th and recalling (1414), we conclude that

1

2

ÿ

TPTh

ÿ

FPFT

}|βTF |
1
2 pvF ´ vT q}

2
F À νPeh}vT }

2
1,h.

On the other hand, using the definition (2626) of the global reference time together with the Poincaré
inequality for HHO spaces proved in [3737, Proposition 5.4] yields

ÿ

TPTh

τ´1
ref,T }vT }

2
T À τ´1

ref,h}vh}
2
1,h.

From the above relations, we get the following bound for the second term in the right-hand side of
(2727):

}vh}
2
β,µ,h À

´

νPeh ` τ
´1
ref,h

¯

}vh}
2
1,h. (52)

The second inequality in (5050) then follows using (5151) and (5252) to bound the right-hand side of (2727).

5.2 Convergence

This section contains the proof of Theorem 77 preceeded by the required preliminary results.
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5.2.1 Preliminary results

In this section we prove three lemmas that contain consistency results for the bilinear forms appearing
in (3131).

Lemma 13 (Consistency of the viscous bilinear form). For any w P H1
0 pΩq

d XHk`2pThqd such that
∆w P L2pΩqd and all vh P U

k
h,0, it holds that

Ea,ν,hpw;vhq –

ˇ

ˇ

ˇ
νp∆w,vhq ` aν,hpI

k
hw,vhq

ˇ

ˇ

ˇ
À

˜

ÿ

TPTh

νh
2pk`1q
T |w|2Hk`2pT qd

¸
1
2

}vh}ν,h. (53)

Proof. In the proof we set, for the sake of brevity, w̌T – rk`1
T IkTw “ π1,k`1

T w (see (1010)). Integrating
by parts element by element, it is inferred that

νp∆w,vhq “ ´
ÿ

TPTh

˜

νp∇w,∇vT qT `
ÿ

FPFT

νp∇wnTF ,vF ´ vT qF

¸

, (54)

where we have used the fact that ∇w has continuous normal trace across any F P F i
h (cf., e.g., [4242,

Lemma 1.24]) and that vF “ 0 for all F P Fb
h to insert vF into the second term. On the other hand,

expanding first aν,h then aν,T according to their respective definitions (11a11a) and (11b11b), and using for
any T P Th the definition (99) of rk`1

T vT with w “ w̌T , we arrive at

aν,hpI
k
hw,vhq “

ÿ

TPTh

˜

νp∇w̌T ,∇vT qT `
ÿ

FPFT

νp∇w̌TnTF ,vF ´ vT qF

¸

`
ÿ

TPTh

sν,T pI
k
Tw,vT q.

(55)
Summing (5454) and (5555), observing that the first terms inside parentheses cancel out by definition (66)

of π1,k`1
T since vT P PkpT qd Ă Pk`1pT qd, and using Cauchy–Schwarz inequalities, we infer that

Ea,ν,hpw;vhq ď

˜

ÿ

TPTh

νhT }∇pw̌T ´wqnT }
2
BT

¸
1
2
˜

ν
ÿ

TPTh

ÿ

FPFT

h´1
F }vF ´ vT }

2
F

¸
1
2

`

˜

ÿ

TPTh

sν,T pI
k
Tw, I

k
Twq

¸
1
2
˜

ÿ

TPTh

sν,T pvT ,vT q

¸
1
2

— T1 ` T2.

(56)

Using the optimal approximation properties (7b7b) of the elliptic projector with ξ “ 1, l “ k ` 1,
s “ k ` 2, and m “ 1 together with the norm equivalence (1414), it is readily inferred that

T1 À

˜

ÿ

TPTh

νh
2pk`1q
T |w|2Hk`2pT qd

¸
1
2

}vh}ν,h.

On the other hand, recalling the approximation properties (1515) of the stabilization bilinear form and
the definition (1414) of }¨}ν,h, we get

T2 À

˜

ÿ

TPTh

νh
2pk`1q
T |w|2Hk`2pT qd

¸
1
2

}vh}ν,h.

Plugging the above estimates into (5656), (5353) follows.

Lemma 14 (Consistency of the advection-reaction bilinear form). For all w P H1
0 pΩq

dXHk`1pThqd
and all vh P U

k
h,0, it holds that

Ea,β,µ,hpw;vhq –

ˇ

ˇ

ˇ
ppβ¨∇qw ` µw,vhq ´ aβ,µ,hpI

k
hw,vhq

ˇ

ˇ

ˇ

À

˜

ÿ

TPTh

βref,T minp1,PeT qh
2k`1
T |w|2Hk`1pT qd

¸
1
2

}vh}U ,h.
(57)
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Proof. Integrating by parts the first term inside absolute value in (5757), recalling that ∇¨β “ 0 by
assumption, and adding the following quantity (recall that w has continuous trace across interfaces
and that vF “ 0 for all F P Fb

h ):

´
ÿ

TPTh

ÿ

FPFT

pβTFw,vF qF “ 0,

we have, expanding the definition (1616) of the discrete advective derivative and of the upwind stabi-
lization,

Ea,β,µ,hpw;vhq “

����������ÿ

TPTh

pw ´ pwT , µvT qT `
ÿ

TPTh

ppwT ´w|T , pβ¨∇qvT qT
looooooooooooooooomooooooooooooooooon

T1

`
ÿ

TPTh

ÿ

FPFT

pβTF ppwT ´w|T q,vF ´ vT qF ´
ÿ

TPTh

ÿ

FPFT

pβ´TF ppwF ´ pwT q,vF ´ vT qF

looooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooon

T2

,

where we have used the definition (44) of the orthogonal projector (recall that pwT “ π
0,k
T w) together

with the fact that pµvT q P PkpT qd since µ is constant over Ω by assumption to cancel the first term
in the right-hand side.

Observing that pπ0,0
T βq¨∇vT P Pk´1pT qd Ă PkpT qd, we can use again the definition (44) of the L2-

orthogonal projector to write

T1 “
ÿ

TPTh

ppwT ´w, pβ ´ π
0,0
T βq¨∇vT q.

Using the Hölder and Cauchy–Schwarz inequalities, we can now estimate the first term as follows:

|T1| ď
ÿ

TPTh

}β ´ π0,0
T β}L8pT qd}pwT ´w}T }∇vT }T

À
ÿ

TPTh

τ
´ 1

2

ref,Th
k`1
T |w|Hk`1pT qd τ

´ 1
2

ref,T }vT }T

ď

˜

ÿ

TPTh

τ´1
ref,Th

2pk`1q
T |w|2Hk`1pT qd

¸
1
2

}vh}β,µ,h.

(58)

To pass to the second line, we have used the Lipschitz continuity of β together with the definition
(2424) of the reference time τref,T to write for the first factor }β ´ π0,0

T β}L8pT qd ď Lβ,ThT ď τ´1
ref,ThT ,

the approximation properties (7a7a) of π0,k
T with ξ “ 0, l “ k, m “ 0, and s “ k ` 1 to bound the

second factor, and the inverse inequality (88) to bound the third. The inequality in the third line is
an immediate consequence of the discrete Cauchy–Schwarz inequality.

The term T2 is estimated using the following decomposition based on the local Péclet number:

T2 “ Td
2 ` Ta

2,

where the subscript “d” (for “diffusion-controlled”) corresponds to integrals where |PeTF | ă 1, while
the subscript “a” (for “advection-controlled”) to integrals where |PeTF | ě 1. Henceforth, we denote
by χ|PeTF |ă1 and χ|PeTF |ě1 the two characteristic functions of the corresponding regions. The linearity

and idempotency of π0,k
F followed by its L2pF qd-continuity yield

}pwF ´ pwT }F “ }π
0,k
F pw ´ pwT q}F ď }w ´ pwT }F .

Hence we can write for the diffusion-controlled contribution, using the Hölder and Cauchy–Schwarz
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inequalities,

Td
2 À

ÿ

TPTh

ÿ

FPFT

}βTFχ|PeTF |ă1}L8pF q p}pwT ´w}F ` }pwT ´ pwF }F q }vF ´ vT }F

À
ÿ

TPTh

ÿ

FPFT

β
1
2

ref,T }PeTFχ|PeTF |ă1}
1
2

L8pF q}w ´ pwT }F

ˆ

ν

hF

˙
1
2

}vF ´ vT }F

À

˜

ÿ

TPTh

βref,T minp1,PeT q}w ´ pwT }
2
BT

¸
1
2

}vh}ν,h.

(59)

To pass to the second line, we have multiplied and divided by pν{hF q
1
2 » phT {νq

´ 1
2 , recalled the defini-

tion (2020) of the local face Péclet number to write phT {νq
´ 1

2 }βTFχ|PeTF |ă1}
1
2

L8pF q “ }PeTFχ|PeTF |ă1}
1
2

L8pF q,

and estimated }βTFχ|PeTF |ă1}
1
2

L8pF q ď }βTF }
1
2

L8pF q ď β
1
2

ref,T . To pass to the third line, we have used

a discrete Cauchy–Schwarz inequality together with the definition (2828) of the }¨}ν,h-norm.

For the advection-controlled contribution, using again the Hölder and Cauchy–Schwarz inequalities
we have, on the other hand,

Ta
2 ď

˜

ÿ

TPTh

ÿ

FPFT

}βTFχ|PeTF |ě1}L8pF q}w ´ pwT }
2
F

¸
1
2

ˆ

˜

ÿ

TPTh

ÿ

FPFT

`

|βTF |χ|PeTF |ě1pvF ´ vT q,vF ´ vT
˘

F

¸
1
2

À

˜

ÿ

TPTh

βref,T minp1,PeT q}w ´ pwT }
2
BT

¸
1
2

}vh}β,µ,h.

(60)

Owing to the approximation properties (7b7b) of pwT “ π
0,k
T w it holds, for all T P Th and all F P FT ,

}w ´ pwT }
2
F À h

k` 1
2

T |w|Hk`1pT qd .

Plugging this bound into (5959) and (6060), we conclude that

|T2| À

˜

ÿ

TPTh

βref,T minp1,PeT qh
2k`1
T |w|2Hk`1pT qd

¸
1
2

}vh}U ,h. (61)

Combining (5858) and (6161), (5757) follows.

Lemma 15 (Consistency of the velocity-pressure coupling bilinear form). For any q P P XH1pΩq X
Hk`1pThq and all vh P U

k
h,0, it holds that

Eb,hpq;vhq –

ˇ

ˇ

ˇ
´pvh,∇qq ` bhpvh, π

0,k
h qq

ˇ

ˇ

ˇ
À

˜

ÿ

TPTh

ν´1h
2pk`1q
T |q|2Hk`1pT q

¸
1
2

}vh}ν,h. (62)

Proof. Expanding bh then Dk
T according to their respective definitions (2323) and (2121), we obtain

bhpvh, π
0,k
h qq “ ´

ÿ

TPTh

˜

´pvT ,∇π0,k
T qqT `

ÿ

FPFT

pvF ¨nTF , π
0,k
T qqF

¸

“ ´
ÿ

TPTh

˜

p∇¨vT , qqT `
ÿ

FPFT

ppvF ´ vT q¨nTF , π
0,k
T qqF

¸

,

(63)
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where, to pass to the second line, we have integrated by parts the first term inside parentheses and
we have used the fact that ∇¨vT P Pk´1pT q Ă PkpT q and the definition (44) of the L2-orthogonal

projector to write q instead of π0,k
T q in the first term. On the other hand, an element by element

integration by parts gives

´ pvh,∇qq “
ÿ

TPTh

˜

p∇¨vT , qqT `
ÿ

FPFT

ppvF ´ vT q¨nTF , qqF

¸

, (64)

where, to insert vF into the second term, we have used the fact that the jumps of q vanish across
interfaces (a consequence of the regularity assumption q P H1pΩq, see [4242, Lemma 1.23]) together
with the fact that vF “ 0 for all F P Fb

h . Summing (6363) and (6464), taking absolute values, and using
the Cauchy–Schwarz inequality to bound the right-hand side of the resulting expression, it is inferred
that

Eb,hpq;vhq ď

˜

ÿ

TPTh

ÿ

FPFT

ν´1hF }π
0,k
T q ´ q}2F

¸
1
2
˜

ν
ÿ

TPTh

ÿ

FPFT

h´1
F }vF ´ vT }

2
F

¸
1
2

À

˜

ÿ

TPTh

ν´1hk`1
T |q|2Hk`1pT q

¸
1
2

}vh}ν,h,

where we have used the optimal approximation properties (7b7b) of π0,k
T with ξ “ 0, l “ k, s “ k ` 1,

and m “ 0 together with the definition (1414) of the }¨}1,h norm and the norm equivalence (1414) to
conclude.

5.2.2 Error estimates and convergence

We are now ready to prove Theorem 77.

Proof of Theorem 77. (i) Error estimates. The error estimates (3838) are a consequence of [5050, Theorem
2.34] applied to the error equation (3636); see also the discussion in point (iv) of the proof of Theorem
66 in Section 5.15.1.

(ii) Convergence rate. Let vh P U
k
h,0. Using the definition (3737) of Rpu, pq together with the fact

that (1a1a) is satisfied almost everywhere in Ω by the weak solution pu, pq of (22), it is inferred for all
vh P U

k
h,0

xRpu, pq,vhy “ ´νp∆u,vhq ´ aν,hppuh,vhq

` ppβ¨∇qu ` µu,vhq ´ aβ,µ,hppuh,vhq

` p∇p,vhq ´ bhpvh, pphq.

Hence, passing to absolute values and using the triangle inequality, we can write

|xRpu, pq,vhy| ď Ea,ν,hpu;vhq ` Ea,β,µ,hpu;vhq ` Eb,hpp;vhq, (65)

with error contributions respectively defined in Lemmas 1313, 1414, and 1515. Using (5353), (5757), and (6262),
respectively, to bound the terms in the right-hand side of (6565), it is readily inferred that

|xRpu, pq,vhy| ď

«

ÿ

TPTh

´

h
2pk`1q
T N1,T `minp1,PeT qh

2k`1
T N2,T

¯

ff
1
2

}vh}U ,h. (66)

Expanding }Rpu, pq}U˚,h according to its definition (2929) and using (6666), (3939) follows.
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A Flux formulation

In this section we reformulate the discrete problem in terms of numerical fluxes, and show that local
momentum and mass balances hold. Let a mesh element T P Th be fixed, and define the boundary
difference space

Dk
BT –

 

αBT “ pαF qFPFT
: αF P PkpF qd for all F P FT

(

.

We introduce the boundary difference operator ∆k
BT : Uk

T ÑDk
BT such that, for all vT P U

k
T ,

∆k
BTvT – pvF ´ vT |F qFPFT

.

The following result was proved in the scalar case in [4848, Proposition 3].

Proposition 16 (Reformulation of the viscous stabilization bilinear form). Let an element T P Th
be fixed, and let tsν,T : T P Thu denote a family of viscous stabilization bilinear forms that satisfy
assumptions (S1)–(S3) in Remark 22, and which depend on their arguments only via the difference
operators defined by (1212). Then, for all T P Th and all wT ,vT P U

k
T it holds that

sν,T pwT ,vT q “ sν,T pwT , p0,∆
k
BTvT qq. (67)

The reformulation (6767) of the viscous stabilization term prompts the following definition: For all
T P Th, the boundary residual operator Rk

BT : Uk
T ÑDk

BT is such that, for all wT P U
k
T ,

Rk
BTwT “ pR

k
TFwT qFPFT

satisfies
´

ÿ

FPFT

pRk
TFwT ,αF qF “ sν,T pwT , p0,αBT qq @αBT PD

k
BT . (68)

Theorem 17 (Flux formulation). Under the assumptions of Proposition 1616, denote by puh, phq P
Uk
h,0ˆP

k
h the unique solution of problem (3131) and, for all T P Th and all F P FT , define the numerical

normal trace of the momentum flux as

ΦTF – Φcons
TF `Φstab

TF

with consistency and stabilization contributions given by, respectively,

Φcons
TF – ´ν∇prk`1

T uT qnTF ` βTFuT ` pTnTF , Φstab
TF – Rk

TFuT ` β
´
TF puT ´ uF q.

Then, for all T P Th the following local balances hold: For all vT P PkpT qd and all qT P PkpT q,

νp∇prk`1
T uT q,∇vT qT ´ puT , pβ¨∇qvT qT ` µpuT ,vT qT ´ ppT ,∇¨vT qT

`
ÿ

FPFT

pΦTF ,vT qF “ pf ,vT qT ,
(69a)

pDk
TuT , qT qT “ 0, (69b)

where pT – ph|T and, for any interface F P F i
h such that F Ă BT1 X BT2 for distinct mesh elements

T1, T2 P Th, the numerical traces of the flux are continuous in the sense that

ΦT1F `ΦT2F “ 0. (70)

Proof. (i) Local momentum balance. Let vh P U
k
h,0 be fixed. Expanding aν,h according to its definition

(1111) then using, for all T P Th, the definition (99) of rk`1
T vT with w̌T “ r

k`1
T uT and the definition

(6868) of the boundary residual operator with wT “ uT and αBT “ ∆k
BTvT , we can write

aν,hpuh,vhq “
ÿ

TPTh

˜

νp∇prk`1
T uT q,∇vT qT ´

ÿ

FPFT

p´ν∇prk`1
T uT q `R

k
TFuT ,vF ´ vT qF

¸

,
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where the viscous stabilization was reformulated using (6767) then (6868). In a similar way, expanding
aβ,µ,h then, for all T P Th, Gk

β,TvT according to their respective definitions (1717) and (1616), we have
that

aβ,µ,hpuh,vhq “
ÿ

TPTh

˜

´puT , pβ¨∇qvT qT ` µpuT ,vT qT ´
ÿ

FPFT

pβTFuT ` β
´
TF puT ´ uF q,vF ´ vT qF

¸

.

Finally, recalling the definition (2323) of bh and (2121) of the discrete divergence operator, we have that

bhpvh, phq “
ÿ

TPTh

˜

´pph,∇¨vT qT ´
ÿ

FPFT

ppTnTF ,vF ´ vT qF

¸

.

Plugging the above expressions into (31a31a), we conclude that

ÿ

TPTh

˜

νp∇prk`1
T uT q,∇vT qT ´ puT , pβ¨∇qvT qT ` µpuT ,vT qT ´ ppT ,∇¨vT qT

´
ÿ

FPFT

pΦTF ,vF ´ vT qF

¸

“ pf ,vhq.

Selecting now vh such that vT spans PkpT qd for a selected mesh element T P Th while vT 1 “ 0 for all
T 1 P ThztT u and vF “ 0 for all F P Fh, we obtain the local momentum balance (69a69a). On the other
hand, selecting vh such that vT “ 0 for all T P Th, vF spans PkpF qd for a selected interface F P F i

h

such that F Ă BT1 X BT2 for distinct mesh elements T1, T2 P Th, and vF 1 “ 0 for all F 1 P FhztF u
yields the flux continuity (7070) after observing that pΦT1F `ΦT2F q P PkpF qd.

(ii) Local mass balance. We start by observing that (31b31b) holds in fact for all qh P PkpThq, not
necessary with zero mean value on Ω. This can be easily checked using the definition (2323) of bh and
(2121) of the discrete divergence to write

bhpuh, 1q “ ´
ÿ

TPTh

pDk
TuT , 1qT “ ´

ÿ

TPTh

ÿ

FPFT

puF ¨nTF , 1qF “ ´
ÿ

FPFh

ÿ

TPTF

puF ¨nTF , 1qF “ 0,

where we have denoted by TF the set of elements that share F and the conclusion follows from the
single-valuedness of uF for any F P F i

h and the fact that uF “ 0 for any F P Fb
h . In order to

prove the local mass balance (69b69b), it then suffices to take qh in (31b31b) equal to qT inside T and zero
elsewhere.
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[27] B. Cockburn, G. Kanschat, and D. Schötzau. “A locally conservative LDG method for the
incompressible Navier-Stokes equations”. In: Math. Comp. 74.251 (2005), pp. 1067–1095. doi:
10.1090/S0025-5718-04-01718-110.1090/S0025-5718-04-01718-1.
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