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a b s t r a c t

Micro-shear tests are performed in order to characterize the mechanical behavior and the

fracture of the chip/metallized ceramic substrate assemblies of power electronic devices.

These assemblies are elaborated using three types of junctions: AuGe solder/Au or Ag finish,

transient liquid phase bonding (TLPB) AgIn/Ag finish and Ag nanoparticles/Au or Ag finish.

The experiments are associated to finite element simulations of both nano-indentation and

micro-shear tests. The mechanical behavior of the different assembly interfaces is repre-

sented using an in-built cohesive zone model (CZM) available in the user friendly finite ele-

ment code Abaqus!. It is worth noting that the fracture mechanisms observed during the

test and service periods of the power electronic packaging are not only due to the debond-

ing at the interfaces but also to the initiation and growth of voids in the joint. Therefore, in

addition to the CZM model, Gurson-Tvergaard-Needlmann (GTN) damage model is used in

combination with the Rice bifurcation theory to correctly describe the fracture in the joint

and, therefore the overall fracture mechanism of the entire junction. The simulation results

are compared with the experimental force displacement curves and the SEM observations

in order to assess the implemented model.

1. Introduction

One of the challenges in high temperature power electronics is the reliability of the chip/substrate in the packaging

assembly. This concerns not only the quality of the die attachment but also the thermomechanical stability of the thin

or thick metallizations plated either on the chip or on the copper double bonded ceramic substrate (DBC) surfaces.

Experimental studies on power electronics assemblies presented in previous frameworks have shown cohesive and inter-

facial ruptures within the junctions (solder, Ag nanoparticles, . . .), the Cu substrate and the diamond chip [1–3]. At high

loading rates, the damage originates close to the interfaces due to the formation of fragile intermetallic compounds, the

presence of defects at the interfaces or the weak adhesion of certain layers of surface finishing metallization [4,5].

However, fracture mainly remains in the bulk solder at slow strain rates. In order to optimize the design of high-

temperature packaging, in particular with regard to their lifetime, it is no longer sufficient to know the mechanical

behavior of the constitutive materials. Indeed, interfaces and junctions are privileged zones of initiation and propagation
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of cracks in packaging; it is, therefore, important to be able to describe this overall mechanism using finite element mod-

eling tools. The interfaces are mainly represented by cohesive laws which make it possible to evaluate the initiation and

the evolution of the interfacial damage by linking the effort at the interface to its opening distance. However, the param-

eters of these laws are not exploitable from standard characterization tests and specific tests must then be implemented.

The behavior laws of cohesive elements are usually described in terms of traction versus separation, which relates the

interface relative displacement to the traction vector. Generally, the cohesive elements behave elastically until damage ini-

tiation and obey a softening behavior afterwards. The specific energy dissipated by the cohesive element can be calculated

from the area under the curve. Different constitutive laws of the cohesive zone model have been proposed in the literature

[6–11]. Since the shape of the function may influence the results of the simulation [12,13], it is crucial to identify a law that

is suitable for capturing the interfacial fracture extension behavior of the cohesive layers. According to the nature of the

material (ductile, brittle, etc.) and the type of loading considered (monotonic or cyclic loadings), the cohesive zone model

can be defined. The bilinear cohesive zone model is currently the most widely used model for interfacial fracture behavior

simulation due to its ability to describe different fracture modes and its availability in ABAQUS! software. Thus, it has been

widely used to characterize the interfacial damage behavior in power electronic packaging [14,15]. These studies showed

the performance of the bilinear cohesive zone methods for describing and predicting crack initiation and propagation at the

interfaces of electronic assemblies. They also demonstrated the convergence between the numerical simulation and

experimental results.

Damage can also be observed in the solder joints. Damage is mainly present in the form of micro-voids. These voids grow

and nucleate during the service period leading to cracking and failure. To describe this phenomenon and for lifetime predic-

tion, many studies have focused on continuum damage theories or fatigue criteria to describe degradation in solders. These

models are mainly coupled to plasticity or viscoplasticity constitutive equations to describe the plastic deformation prior to

damage initiation [16,17]. For example, some fatigue criteria such as Darveaux [18] or Manson-Coffin [19] are usually used

because they are practical in numerical frameworks and give correct predictions. They can predict the lifetime of real prod-

ucts with complex geometry. However, the models take into account only the initial and final states of the material. The

practical procedure to identify material behavior using these fatigue models is usually geometry dependent. In the general

framework of continuum thermodynamics of irreversible processes, micro mechanical and phenomenological damage

models are widely used [20,21]. These models are built from complex constitutive equations that require advanced integra-

tion methods. Another approach for describing fracture in solders is the maximum entropy fracture model. This type of

Notations

Mathematical operators and symbols
ð _xÞ x derivative with respect to time
(xij) second order tensor x (i and j)
x: x = xij xij contracted product of two second order tensors xij
x # x = xij xkl tensorial product of two second order tensors xij

Variables and parameters
Ce elastic stiffness tensor (MPa)
D;Dp macroscopic strain and plastic strain rate tensors
E, v Young modulus (MPa), Poisson ratio
f ; f 0; f c; f F total, initial, critical, final volume fraction of voids
fN ; sN ; eN nucleation material parameters
Gc fracture energy of the cohesive element (MPa.mm)
K hardening coefficient (MPa)
Kh cohesive element stiffness (MPa.mm$1)
n power exponent
n normal to the Gurson yield surface (tensor)
n
!0 vector normal to the localization band
q1 ; q2; q3 Gurson model parameters
ti; t

0
i dual stress vector of the cohesive element, maximum value of stress (MPa)

di relative displacement of the cohesive element in direction i (mm)
d0i ; d

f
i relative displacement at damage initiation and complete failure (mm)

dmax
i maximum relative displacement reached during loading (mm)
dij second order unit tensor
e0 yield strain of the matrix
#r;#ep effective stress (MPa) and plastic strain of the matrix
R macroscopic stress tensor (MPa)



model permits life predictions for a structure in the presence of microstructural uncertainty using the maximum entropy

principle [22]. Among the interesting features in the model, a single damage parameter is used for the crack initiation

and propagation in solder joints. Some interesting frameworks have used cohesive zone fracture mechanics and the Dis-

turbed State Concept to predict the crack trajectory and fatigue life of solder interconnections subjected to both isothermal

temperature cycling and anisothermal temperature cycling conditions [23]. The method correlates very well with the exper-

imentally observed damage. A number of other studies dealt with the evolution of the damage within the void volume frac-

tion [24–26]. They consider damage as an internal variable which particularly depends on the stress triaxiality. Voids effects

are also taken into account using the specific yield function proposed by Gurson [27] or Tvergaard-Needlman [28] which

introduces the volume fraction of voids in the dissipation or viscoplastic potentials [29]. A major framework consists on

describing voids nucleation and growth of creeping solids using a particular formulation of the Cocks creep law. The model

is successfully applied for the case of cyclic shear of tin based solders [16,17].

The main aim of the current paper is to conciliate the interfaces and joint damage in a finite element modeling. We intro-

duce the development of a tool to describe the damage behavior of both interfaces and joints of power electronics assemblies

based on experimental observations. The applications are concerned with the elaboration of electronic components by AuGe

soldering, transient liquid phase bonding of Ag-In, or the sintering of Ag nanoparticles. This tool is based on the combination

of simple shear tests coupled with an inverse method of parametric identification.

In this contribution, we first describe the experimental procedure and the results from the shear and nano-indentation

experiments. These experiments will serve as verification and validation of the finite element framework. In the second sec-

tion, a finite element modeling of the performed nano-indentation and shear tests is carried out. A bilinear cohesive zone

model (CZM) and GTN damage model are selected for the interfaces failure and for the description of damage behavior of

the joint, respectively. Since strain localization occurs prior to the initiation of cracks in the joint, the Rice bifurcation theory

is adopted. The most interesting features of this approach are its physically based character and its ability to detect the

occurrence of necking instabilities under complex loading conditions. Accordingly, we selected this approach for use in

the prediction of the moment of strain localization in electronic junctions. The coupled bifurcation theory and GTN model

are implemented in the finite element code Abaqus/explicit! as user subroutine VUMAT. The models are calibrated and val-

idated using the previously obtained experimental results.

2. Experimental characterization

2.1. Elaboration of the shear assemblies

Shear assemblies are manufactured using different techniques. These assemblies are constituted of Ni/Au or Agmetallized

Oxygen/Halogen Free Copper (OHFC) inserts of dimensions 3 mm ' 3 mm ' 2 mm which are bonded on Ni/Au or Ag metal-

lized OHFC copper substrates of dimensions 30 mm ' 20 mm ' 2 mm using different joining techniques: AuGe soldering

with both Ni/Au and Ag metallization on the substrates, transient liquid phase bonding (TLPB) using Ag-In with both In pre-

form and In metallization and, sintering of Ag nanoparticles (melting temperature Tm = 961 #C) with both Au and Ag finish

metallization on the substrates. The thickness of Ni and Au metallization is 4 mm and 3 mm respectively. The thicknesses

of the Ag metallization used to elaborate the AuGe, Ag-In and Ag nanoparticles junctions are 50 mm, 4 mm and 4 mm, respec-

tively. Table 1 summarizes the metallization and thickness for each type of assembly. The gold germanium solder is a

88Au12Ge eutectic alloy with a melting temperature of 356 #C. The TLPB technique is based on the diffusion of In into Agmet-

allization after reflow and annealing of In. The expected Ag-In junction is a solid phase eutectic of which the melting tem-

perature is up to 695 #C. This eutectic is composed of 33 wt% of In. The overall thickness of the junctions (including

metallizations) is about 100 mm. A cross-section of the assemblies is presented to study the chemical composition of the

junctions.

Microstructural observations using SEM and physico-chemical analyses of junctions formed by AuGe soldering on an Au

finish or an Ag finish were carried out on the metallographic cross-sections. For the AuGe junction on an Au finish, these anal-

yses show the formation of a continuous joint, free from defects. No noticeable porosity is observed either at the interfaces or

in the joint, as demonstrated in Fig. 1(a). The microstructure of the joint differs depending on whether it is located near the

Table 1

Metallization thickness of the inserts and substrates used to elaborate the shear

assemblies.

Metallization thickness (mm)

Joint Ni Au Ag

AuGe 4 3 50

Ag nanoparticles – 3 4

Ag-In – – 4



insert or the substrate. The difference is due to a variable cooling rate in the joint during the solidification taking into account

the difference in the size of the insert with respect to the substrate. At the AuGe/Cu insert interface, a gold-rich phase is

observed. In the AuGe/Cu substrate interface, a eutectic structure is observed with the presence of the two phases, an Au-

rich phase and another Ge-rich (Fig. 1(b)). Fig. 1(c) shows the chemical composition of the junction along the thickness.

The evaluation of the chemical composition at the interface illustrated first, the formation of a porous layer due to the dif-

fusion of phosphorus in the NiP layer and secondly, the diffusion of Ge in the Ni barrier layer to a depth of about 1 mm. Thus,

the 3 lm thick gold finish layer deposited on the nickel was dissolved during soldering. Therefore, taking into account the

NiGe phase diagram, an intermetallic type NiGe with a mass composition of 50 wt% of Ni and 50 wt% of Ge was formed in the

AuGe/Cu insert and AuGe/Cu substrate interfaces. This is in agreement with the results by Hornberger et al., concerning this

type of junction [30]. The NiGe intermetallic compound can weaken the solder joints by reducing their resistance to shear

and can be a factor in breaking the interfaces. The migration of Ge to Ni metallizations leads to a decrease of its proportion

in the AuGe layer. This phenomenon can lead to the destruction of the eutectic structure.

For the bond formed by AuGe soldering on an Ag finish, the joints formed are continuous and of high quality, as illustrated

in Fig. 2(a). The morphology of these joints is homogeneous, symmetrical and presents no defects. The Energy-dispersive X-

ray spectroscopy (EDX) analysis in Fig. 2(b) shows the presence of a gold-rich phase at the two interfaces of the AuGe/Cu

insert and AuGe/Cu substrate. In the center of the bond, a regular eutectic structure is observed with the presence of two

phases: a Au-rich phase and a Ge-rich phase. The evaluation of the chemical composition and the micrographic analysis show

the presence of a 5 lm thick interdiffusion zone between the Ag metallization and the AuGe solder at both AuGe/Cu inter-

faces. This new AuGeAg ternary alloy which constitutes an interphase between the Ag layer and AuGe has a melting temper-

ature of 500 #C, higher than that of AuGe which is in the order of 360 #C [30]. In the case of this junction, no intermetallic

layer is observed at the interfaces.

Fig. 3(a) shows the microstructural analyses carried out from metallographic cross-sections of the Ag-In junction

obtained with indium metallization. The micrographs show the formation of a continuous joint with the presence of a

few porosities in the center of the bond. The presence of the porosities in the joint is the result of the reflow operation;

the porosities can be induced in particular by the initially rough structure of the indium. Thus, the evaluation of the chem-

ical composition from an EDX profile reveals that the joint is composed of a maximum of about 20 wt% of indium at the

center of the bond (Fig. 3(c)).

Microstructural analyses of the Ag-In bond carried out with In preform show the formation of a more porous bond than

that produced with Inmetallization (Fig. 3(b)). These porosities are caused by the rough and porous structure of the In solder

before reflow. The EDX analysis of the cross-section profile is almost the same as that observed previously for the Ag-In junc-

tion made with In deposited metallization. The maximum In composition of the junction is about 20 wt% at the center of the

junction. This composition tends to decrease toward the interfaces with the insert or substrate (Fig. 3(d)).

Physicochemical observations were made and analyses were carried out of the bond formed by sintering of the Ag

nanoparticles. As illustrated in Fig. 4(a), the micrographic analysis shows the formation of a continuous, homogeneous,

and uniform joint without macroscopic defects. In the microstructure of the junction, a high porosity ratio is observed among

the Ag grains which are smaller than 10 lm in size. EDX mapping shows the presence of carbon compounds spread over the

entire joint (Fig. 4(b)).

2.2. Shear experiments

Displacement rate-controlled shear tests with a constant velocity of 1 mm/min are carried out at room temperature on

elaborated shear test assemblies. The loading corresponds to an estimated strain rate of 0.16/s. The implementation of these

experiments is performed in order to highlight the predominant shear behavior observed during the elaboration process and

thermal cycling. Therefore, it is expected that these experiments activate the same physical phenomena. The choice of the

experiment and the measured quantities are very important and the obtained results must be carefully monitored. The

experiments are carried out using an INSTRON tensile machine dedicated to performing shear tests on electronic devices.

Fig. 1. (a) Micrograph of the cross-section of the AuGe/Au junction. (b) EDX mapping of the junction showing thicknesses and elements present. (c)

Chemical composition of the junction against thickness.



The load cell of the tensile machine can handle forces up to 2 kN. The samples are fixed on the machine tray, while the punch

that must push the insert is driven at a constant displacement. Meanwhile, an innovative non-contact detecting system

using the digital images correlation technique (DIC) was introduced to measure the displacement of the assembly. This tech-

nique is an optical method of non-contact measurement of two-dimensional (2D) kinematic fields. The image correlation

measurement system consists of a Charge Coupled Device (CCD) and an optical system. The system is able to measure

the surface displacements of an object with a displacement resolution of 5 mm. A schematic diagram of the experimental

device is shown in Fig. 5. The method of fine shear displacement measurement involves tracking markers between the

sheared stud and a substrate reference element. The non-contact measuring systemmakes it possible to record the displace-

ment between the two markers A and B located on the upper flat surface of the sheared part and the upper flat surface of a

Fig. 2. (a) Micrograph of the cross-section of the AuGe/Ag junction. (b) EDX mapping of the junction showing thicknesses and elements present. (c)

Chemical composition of the junction against thickness.

Fig. 3. Micrograph of the cross-section of the Ag-In junction performed with (a) In metallization and (b) In preform. Chemical composition of the junction

against thickness. (c) In metallization and (d) In preform.



reference stud, respectively. It should be noted that the dark color reference markers in Fig. 5 represent points A and B to

measure the displacement of the assembly.

The reference pad is placed so that points A and B are in the focal plane of the sensor. Therefore, the measurement is

insensitive to the parasitic displacement induced by the various elements of the machine and the measurement corresponds

to the real shear displacement of the evaluated stud. The results will therefore be used to extract the load-displacement

responses of the assembly and to calibrate the parameters of the interfaces and the junction models.

Fig. 6 shows the force displacement curves recorded by the INSTRON tensile machine. In Fig. 6(a), the results of displace-

ment obtained from the force-displacement curves for the different cases of assemblies correspond to the accumulation of

displacements specific to the joints, the interfaces, and the displacement induced by the mounting rigidity. Since the mount-

ing system is extremely stiff compared to the remaining constitutive materials of the tested assembly, the force displace-

ment responses are quasi-linear. The effect of the mounting rigidity is also deduced by stackable responses at the earliest

stage of loading. Nevertheless, it can observed that the assemblies elaborated with the AuGe solder and Ag metallization

are clearly the strongest. The junctions based on silver nanoparticles are not resistant compared to the other studied junc-

tions. This is due to the nature of this type of junction, which is extremely porous at the gross state and after the thermo-

mechanical process. The initial void density in these junctions is very high leading to weakening of the obtained bond. A fast

drop of the reaction force is observed for all types of junctions. This indicates that immediately before this brittle failure, the

crack propagates least on the assembly interfaces. Fig. 6(b) shows the force displacement curves with the experimental shear

displacements measured using the DIC technique for the two types of junctions i.e. AuGe/Au and nano Ag/Ag. Actually, the

Fig. 4. (a) Micrograph of the cross-section of the Ag nanoparticles junction. (b) EDX mapping of the junction showing thicknesses and present elements.

Fig. 5. Schematic representation of the principle of the performed shear test.

Fig. 6. Force displacement curves of shear tests (V = 1 mm/min and T = 25 #C) for Cu-Cu assemblies. (a) Machine tray displacement. (b) Real shear

displacement.



nonlinear behavior of the force displacement response can be observed, demonstrating that plasticity occurred in this assem-

bly before cracking. This observation is based on the fact that copper and AuGe alloy exhibit plastic deformation before frac-

ture. However, this is different for the Ag nanoparticles/Ag junction where the overall response is linear. Since Ag is a highly

ductile material, the cracking is interpreted as an early debonding of the brittle and weak assembly interfaces.

The shear tests are followed by the fractographic analysis of the various junctions. This analysis makes it possible to locate

the fracture areas and thus to analyze the damage modes in order to identify the fracture path. The micrograph (Fig. 7(a)) and

the EDX analysis of the fracture faces of AuGe specimens on Au finish reveals two distinct zones of different sizes: a Ni-rich

area and smaller Au and Ge-rich areas (Fig. 7(b)). These analyses show that the failure first occurred in the AuGe/deposited Ni

interface at the Cu substrate side, then propagated in the joint to reach the AuGe/deposited Ni interface at the Cu insert side.

Therefore, one can deduce that the rupture is mixed: mainly adhesive at the interfaces between the Ni deposit and the AuGe

solder, but also cohesive in the AuGe solder (Fig. 7(c)). In the case of the AuGe junctions on the Ag finish, the micrographic

analysis (Fig. 8(a)) and the chemical composition show a substantially cohesive failure in the joint, close to the Cu insert.

Indeed, according to Fig. 8(b), the EDX analysis shows high proportions of Au and Ge. However, Ag-rich areas are also present

on the fracture faces of this junction. The rupture of the AuGe junction is therefore mixed: cohesive in the solder and adhesive

at the AuGe/Ag deposit interface of the Cu insert (Fig. 8(c)). No trace of Cu is present on the faces of the two types of junctions.

Analysis of the fracture faces of the Ag-In TLPB specimens showed a cohesive fracture in the joint in the case of assemblies

with In metallization (Fig. 9(a)) and a mixed rupture in the case of assemblies with In preform (Fig. 11(a)). The fracture is

cohesive in the AuGe solder and adhesive in the Ag-In/Ag deposit interface at the insert side. Evaluations of the chemical com-

position and the EDX analysis performed on the fracture faces reveal the exclusive presence of Ag and In after rupture in both

types of assembly (Figs. 9(b) and 11(b)). The evaluation of the fracture faces of the Ag-In assembly with Inmetallization using

3D optical profilometer showed that rupture occurred at 62 lmwith respect to the surface of the Cu substrate while the total

joint has an initial thickness of about 100 lm before loading (Fig. 10).

The EDX analyses of the fracture faces of the Ag nanoparticle sintering specimens show the exclusive presence of Ag

(Fig. 12(b)). The micrograph analysis (Fig. 12(a)) and evaluation of the chemical compositions of the Ag nanoparticle assem-

blies illustrate a mixed mode of failure. The rupture is cohesive in the Ag nanoparticles joint and adhesive at the Ag nanopar-

ticles/Ag deposit interface of the Cu insert (Fig. 12(c)). From these various tests, it is concluded that the mechanical strength

of the AuGe assembly is better on the Ag deposit. This can be explained in two ways: the solder forms an interphase com-

posed of an Au-Ag solid solution at the AuGe/Ag deposit interface. This is possible because the two constituents Au and

Ag, are perfectly miscible. Nevertheless, a seemingly fragile AuNiGe compound is formed at the interface between the solder

and the Ni deposit because the thin Au deposit dissolves during the reflow of AuGe. The better mechanical strength of the Ag-

In junction with the deposited In compared to that with the In preform can be explained by the better metallurgical quality of

the Ag-In junction performed by deposition which is void-free. Finally, the junction with the Ag nanoparticles has a limited

mechanical strength considering the porous structure of the bond. It should be noted that the shear strength of 28 MPa that

was obtained with the Ag deposit corresponds to the maximum mechanical strength of 30 MPa recommended by the sup-

plier (NBETech).

2.3. Nano-indentation experiments

Additional nano-indentation tests were performed at room temperature on the cross-section of the shear assemblies.

Specifically, 15 idents were made in the AuGe and Ag nanoparticles layers. The tip used for the test is a Berkovich indenter

with a Dynamic Contact Module (DCM) to determine the force displacement response of the joint materials. The nano-

indentation test includes a unique loading unloading cycle with a maximum imposed displacement of the tip of 1 mm.

The loading unloading curves are illustrated in Fig. 13. Different behaviors are recorded for the two tested materials. The

AuGe alloy exhibits more hardening than the Ag nanoparticles as the load reached is 3 times higher than that of Ag.

3. Finite element modeling

The performed nano-indentation and the shear tests are simulated using the finite element code Abaqus/Explicit. The

experimental data such as force displacement responses are employed to calibrate the material parameters of the CZM

and GTN models. More specifically, the nano-indentation tests are retained as reference results to determine the parameters

of the Swift law. Subsequently, the damage parameters including those of the GTN and CZMmodels are obtained using shear

tests with a fixed insert dimension of 3 mm ' 3 mm. Finally, in order to evaluate the robustness of the entire set of model

parameters, a finite element simulation of a validation shear test is performed using a different geometry configuration for

the assembly.

3.1. Nano-indentation test

Finite element simulation of a 2-D axisymmetric nano-indentation model was performed as illustrated in Fig. 14. The

model consists of a rigid conical indenter that moves toward an elastoplastic substrate. A loading and unloading cycle is

applied in this model. The indenter reaches a maximal displacement of 1 mm and is then retrieved. The substrate was meshed



with 6874 four-node bilinear axisymmetric quadrilateral, reduced integration elements as shown in Fig. 14. For more pre-

cision in stress distribution, a fine mesh was used under the contact area and in the vicinity of the tip. However, the mesh is

coarser everywhere else to reduce the computational time. The simulations are performed using Abaqus/explicit solver with

a nonlinear geometry option. As noted previously, the substrate shows an elastoplastic behavior that obeys the Swift law. No

damage is considered in these simulations. The substrate has an ‘‘infinite” thickness (100 mm) compared to the imposed tip

displacement.

3.2. Shear test

A simplified finite elements simulation of the tested assembly is performed under the FE code Abaqus. The aim of these

computations is to simulate the crack initiation and propagation in the assembly. The fractography results for both the AuGe

solder and the Ag nanoparticles based assemblies discussed in Section 1, showed a brittle damage in the Cu/solder interfaces.

To predict the interfacial and brittle damage behavior observed experimentally, the irreversible and bilinear cohesive zone

model [14,15] can be applied. The 2D configuration of the assembly or the elementary packaging shown in Fig. 15 is com-

posed of an OHFC copper insert and an OHFC copper substrate that are bonded together with the different junctions

described previously, as well as two cohesive layers and a rigid shear tool. The two cohesive zone layers are placed in the

junction/insert and junction/substrate interfaces, where fracture is typically observed. The whole part is subjected to shear

within a displacement controlled loading. The imposed tool velocity is 0.2 mm/s for a total time of 1 s. These conditions lead

to a maximal insert displacement of 0.2 mm since fracture is initiated at a maximum of 0.15 mm displacement. Thus, the

simulations are quasi-static. For the copper insert and substrate, an elastoplastic model with isotropic hardening is adopted

[31]. For the behavior of the junctions, Swift plastic law is retained. Indeed, most of the commonly used solders exhibit vis-

coplastic behavior since the temperature of the power electronic assembly is high compared to the melting temperature of

the solder. This is the case for many alloys such as tin, lead or leadfree solders that have a melting temperature close to the

application temperature. In the present case, the choice of elastoplastic modeling of the junctions is motivated by the fact

that the targeted new packaging assemblies were initially designed and tested for temperatures up to 125 #C. This temper-

ature represents about one-third of the melting temperature of the AuGe solder alloy (Tm: 365 #C). This temperature is also

Fig. 7. Analysis of fracture faces of the Cu-Cu assemblies in the case of the AuGe junction on (b, c) Au finish. (a) SEM micrograph of the substrate fracture

faces. (b) EDX chemical composition of the insert fracture faces. (c) Schematic of the crack path in the shear assembly.



very low compared to the melting temperature of silver nanoparticles (Tm: 800 #C). In the case of extreme temperature, the

model needs to be extended to the case of viscoplasticity. A complete description of the viscoplastic modeling of the tin sol-

der behavior using unified Chaboche constitutive equations and using the Chaboche-type model combined with the Cocks’s

damage law for porous creep can be found in [16,17], respectively. The models have previously been implemented in the FE

code Abaqus. The Chaboche-type model is especially interesting as it can capture commonly observed features such as kine-

matic hardening as well as voids nucleation and growth in the solders under cyclic shear. It proposes a modified viscoplastic

potential based on the Cocks creep law which can be a convenient alternative to incorporating damage in the modeling

framework.

Since the main mechanism of initiation and propagation of cracks in the junction is due to the nucleation and growth of

voids, this law is then coupled to the GTN damage model to describe degradation in the solder. To determine the moment of

strain localization in the junction, a bifurcation approach is used based on the calculation of the preferred orientation of the

sliding plane. The thickness of the cohesive and joint layers, measured experimentally, is about 4 and 5 mm, respectively. The

two cohesive layers were modeled using a 4-nodes bilinear quadrilateral element of type 2D cohesive (COH2D4). The length

of the cohesive elements was 100 mm. In the thickness, the cohesive zone must be discretized with a single layer of cohesive

elements [8]. In this case, the path of the cracking is naturally determined by the overall field and the cohesive response. The

junction, the insert and the substrate layers were meshed with a 4-node bilinear 2D plane strain quadrilateral elements

(CPE4R). The size of the elements in the solder is the same as that of the cohesive elements.

3.3. CZM model

For pure-mode I and pure-mode II or mode III loading, the available traction separation law (TSL) assumes the linear elas-

tic behavior followed by the initiation and evolution of damage. A high initial stiffness is used to hold together the top and

bottom faces of the debonding element in the linear elastic range. Once the peak values of the normal or shear nominal stress

have been reached, the stiffnesses are gradually reduced to zero. The analytical expression of the bilinear cohesive model law

relating the traction or the dual stress vector t to the interface’s relative displacement vector d is expressed as follows

[12,32]:

Fig. 8. Analysis of fracture faces of the Cu-Cu assemblies in the case of the AuGe junction on Ag finish. (a) SEMmicrograph of the substrate fracture faces. (b)

EDX chemical composition of the insert fracture faces. (c) Schematic of the crack path in the shear assembly.
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Fig. 9. Analysis of the fracture faces of the Cu-Cu assemblies performed using Ag-In TLPB with Inmetallization. (a) SEM micrograph of the substrate fracture

faces. (b) EDX chemical composition of the insert fracture faces. (c) Schematic of the crack path in the shear assembly.

Fig. 10. Scanned profile of the fracture faces (substrate side) obtained from 3D optical profilometry.



where d0i and d
f
i represent the relative displacement at damage initiation and complete failure, respectively. dmax

i refers to the

maximum value of the relative displacement attained during the loading history. Kh is the cohesive element stiffness. d0i and

d
f
i are given by Alfano [12]:

d0i ¼ t0i
Kh

and d
f
i ¼ 2Gc

t0i
ð3Þ

Gc represents the fracture energy of the cohesive elements. A fundamental aspect in the formulation of the cohesive model is

the requirement that the energy dissipated at a fracture propagation must be equal to the fracture energy, so that the fol-

lowing relation (Eq. (3)) must be satisfied:

Gi ¼
Z d

f

i

0

tiddi ¼ Gc ð4Þ

In this paper, only the pure-mode II debonding problem is considered, so that the analysis is simplified by focusing on

scalar interface relationships relating one relative-displacement component d to t. In this case, the CZM characteristic param-

eters are the cohesive element stiffness Kh which is related to the cohesive layer modulus Ec , the fracture energy Gc and the

strength t0. Fig. 16 illustrates the different variables of the CZM model in the case of a pure-mode II debonding problem.

3.4. GTN model

The original version of the Gurson model [27] was extended by Tvergaard and Needleman [28] and the latter version is

referred to as the Gurson, Tvergaard, and Needleman (GTN) model. The GTNmodel considers ductile failure as a repercussion

of nucleation and growth as well as the coalescence of spherical voids. The expression of the yield function is given as

follows:

UGTN ¼ q
#r

' (2

þ 2q1 f
*
cosh

3q2Rm

2 #r

* +

$ 1$ q3 f
*2 ¼ 0; ð5Þ

Fig. 11. Analysis of the fracture faces of the Cu-Cu assemblies performed using Ag-In TLPB with In preform. (a) SEM micrograph of the substrate fracture

faces. (b) EDX chemical composition of the insert fracture faces. (c) Schematic of the crack path in the shear assembly.



R is the macroscopic stress vector. The effective stress q and the pressure stress Rm are equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3R : R=2
p

and trðRÞ=3,
respectively, #r is the flow stress of the fully dense matrix, and f

*
is the modified volume fraction of voids. q1, q2 and q3

are material constants and take the values of 1.5, 1 and 2.25, respectively [33].

f
*
is introduced in order to improve the description of the coalescence stage. Its expression is given by the empirical for-

mula introduced by Tvergaard and Needleman [28]:

Fig. 12. Analysis of failure faces of the Cu-Cu assemblies performed using sintering of Ag nanoparticles. (a) SEM micrograph of the substrate fracture faces.

(b) EDX chemical composition of the insert fracture faces. (c) Schematic of the crack path in the shear assembly.

Fig. 13. Loading unloading curves for AuGe and Ag Nanoparticles joints.
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In the previous equation, f F represents the final volume fraction prior to failure, f c is the critical volume fraction of voids,

and f u is mainly expressed as a function of the parameters q1, q2 and q3:

f u ¼ q1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
1 $ q3

q

* +/

q3: ð7Þ

For the evolution of the void volume fraction, the porosity rate _f is additively decomposed into the nucleation [34] and

growth contributions, denoted as _f n and _f g , respectively:

Fig. 14. Schematic representation of the tip and the sample used in the finite element model.

Fig. 15. 2D finite element configuration of the shear specimen. Cohesive elements (COH2D4) are adopted for the modeling of debonding in the junction

interfaces.
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and

_f g ¼ ð1$ f ÞtrðDpÞ; ð9Þ

where Dp is related to UGTN by the normality rule:

Dp ¼ _c
@UGTN

@R
: ð10Þ

_c denotes the plastic multiplier. f N represents the volume fraction of inclusions that are likely to nucleate, eN refers to the

equivalent plastic strain for which half of the inclusions have nucleated, and sN is the standard deviation on eN .
The expression of the flow stress #r of the fully dense matrix is defined by the Swift law:

#r ¼ Kðe0 þ #epÞn: ð11Þ

The equivalence between the rates of macroscopic and microscopic (matrix) plastic work is deduced from the following

equation:

ð1$ f Þ#r _#ep ¼ R : Dp: ð12Þ

3.4.1. Bifurcation approach

The Rice bifurcation theory [35] is used to predict the onset of plastic strain localization in the sheet metals studied. In

this approach, bifurcation should be interpreted as the occurrence of a nonhomogeneous strain mode, in the form of an infi-

nite localization band defined by its normal n
!0, within a continuous medium that is subjected to a homogeneous strain state

(Fig. 17). Making use of the equilibrium and compatibility conditions, it is possible to derive the following localization

criterion, namely the singularity of the acoustic tensor, which only involves the normal n
!0 to the localization band and

the analytical tangent modulus L:

Fig. 17. Infinite localization band in the metal sheet at the moment of strain localization and the associated angles that defines the normal in the (X, Y) and

(X, Z) plane.

Fig. 16. Schematic of a traction separation curve for cohesive elements showing the main variables of the CZM model.



detðn
!0:L:n

!0Þ ¼ 0: ð13Þ

The normal n
!0 can be defined geometrically in the (X, Y) and (X, Z) planes by the angles h and w (Fig. 17). In order to com-

pute the determinant of Eq. (13) for every time increment, the normal n
!0 is swept in the half range of the coordinates system

at intervals of 1#. This obviously implies that h e [0,p) and w e [0,p/2) due to the plane symmetry are considered for the sheet

(finite element). As noted previously, the strain localization is reached when Eq. (13) reaches a global negative minimum

which implies that the normal n
!0 takes a particular orientation defined by the two angles (hmin, wmin).

The analytical tangent modulus L is related to the elastic-plastic tangent modulus Cep by:

L ¼ Cep þ C1 $ C2 $ C3; ð14Þ

where C1, C2 and C3 are fourth-order tensors that can be expressed, after some mathematical derivations, as:

C1ijkl ¼ Rij dkl; C2ijkl ¼
1

2
ðRjl dik þ Rjk dilÞ; C3ijkl ¼

1

2
ðRik djl $ Ril djkÞ: ð15Þ

Note that if the fourth order elasto-plastic tensor Cep is symmetric, the analytical tangent modulus L is not symmetric

because of the contribution of the convective terms in Eq. (14). The elastic-plastic tangent modulus Cep is determined by

expressing the improved GTN yield function and the plastic multiplier in the Kuhn–Tucker form as follows:

UGTN 6 0; _cP 0; UGTN _c ¼ 0: ð16Þ

This form is convenient because it reveals that there is no plastic flow (i.e., _c ¼ 0) when UGTN < 0, while a strict plastic

loading (i.e., _c > 0) necessarily implies that UGTN ¼ 0 and _UGTN ¼ 0. The latter represents the consistency condition, and

can be developed as follows:

_UGTN ¼ VR : _Rþ V #r
_#rþ V f *

_f * ¼ 0: ð17Þ

The derivatives VR;V #r and V f * are obtained analytically in the following forms:
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The rate form of the hypo-elastic law allows us to express the stress rate in terms of the plastic multiplier _c:

_R ¼ Ce
: ðD$ _cVRÞ ¼ Cep

: D: ð19Þ

D is the macroscopic strain rate tensor. After some mathematical derivations involving the normality rule (10) and Eqs. (13)

and (14), the elastic-plastic tangent modulus is obtained as follows:

Cep ¼ Ce $ ðCe
: VRÞ # ðVR : CeÞ

Hc
; ð20Þ

where Hc is defined by the following relation:

Hc ¼ VR : Ce
: VR $

V #r
@#r
@#ep

ð1$ f Þ
R : VR

#r
$ V f * dGTN

An

ð1$ f Þ
R : VR

#r
þ ð1$ f ÞVR : I

* +

: ð21Þ

3.4.2. Numerical implementation of the model

The numerical algorithm for the integration of the GTN model is described in this section. The GTN model will be dis-

cretized into incremental equations. We selected an implicit integration scheme for the GTN model since it is uncondition-

ally stable, so convergence could be obtained for large time increments and therefore, a gain in the computation time could

be achieved. The system of nonlinear equations is solved by the Newton-Raphson iterative method according to Ben Bettaieb

et al. [36] at the Gauss point level. The procedure involves two steps: elastic predictor and plastic corrector. The total strain is

decomposed into elastic and plastic parts:

e ¼ ee þ ep ð22Þ

The total plastic strain increment is also separated into two parts:

Dep ¼ 1

3
DepI þ Deqn ð23Þ

with



Dep ¼ Dc
@UGTN

@Rm

ð24Þ

Deq ¼ Dc
@UGTN

@q
ð25Þ

n ¼ 3S
2q

is the flow direction for the isotropic material. Combining Eqs. (19) and (20) leads to the equality:

Deq
@UGTN

@Rm

þ Dep
@UGTN

@q
¼ 0 ð26Þ

From the equivalence of the plastic work, one can deduce:

D#ep ¼ RmDep þ qDeq
ð1$ f Þ#r : ð27Þ

Finally, from the expression of the rate of the void volume fraction, it can be written that

Df ¼ f N

sN
ffiffiffiffiffiffiffi

2p
p exp $1

2

#ep $ eN
sN

* +2
" #

D#ep þ ð1$ f ÞDep ð28Þ

In the case of isotropic materials, the normal to the yield surface n is collinear to the direction of the deviatoric stress

vector S. The system of Eqs. (6), (26)–(28) need to be solved numerically by using the Newton-Raphson iteration scheme.

Accordingly, a trial elastic stress is first calculated by assuming that strain increment is purely elastic in the current time

step. If UGTN 6 0, only the trail elastic stress is updated and one can proceed to the next time step. Otherwise, if UGTN > 0,

the Newton–Raphson scheme is used to solve the set of equations described above. Four scalar variables

(Dep;Deq;Df ;D#ep) need to be determined at the end of each time step. Further details on the integration procedure and

the determination of the consistent tangent modulus can be found in [36], where representative benchmarks are fully

patented. The relevant algorithm was implemented into the finite element code ABAQUS/Explicit as a user subroutine

VUMAT. The state variable controlling the element deletion for the crack propagation is the cubic square of the localization

criterion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðn
!0:L:n

!0Þ3

q

. The element is deleted when this variable becomes less than or equal to zero.

3.4.3. Validation of the integration algorithm

An essential step involves assessing the implemented integration algorithm of the GTN equations. Therefore, the GTN

model is used to describe the deformation of one CPE4R finite element. The element is represented as a cube with an edge

dimension of 1 mm and is subjected to uniaxial tension. The loading and boundary conditions imposed on the cube are pre-

sented in Fig. 18.

The material parameters for the Al5754 aluminum material identified in [33] are used in this simulation. In the latter

framework, the Swift hardening law has been adopted for the matrix material [33]. The material parameters of the Swift

model were fitted on the basis of the experimental stress–strain curve [37]. The material parameters of the GTN model

are given in Table 2:

Fig. 19 compares the numerical uniaxial response using the Abaqus GTN model and the response using the present GTN

model integrated using the previously presented implicit algorithm (VUMAT). As shown in this figure, the responses

obtained from implementation closely fit the Abaqus numerical curves. The onset of void coalescence is reached when

the void volume fraction f becomes greater than the critical void volume fraction fc (fc = 0.00284) as indicated in Fig. 19

(a) and (b). The material then softens and a stress drop is obtained as illustrated in Fig. 19(a).

Fig. 18. Loading and boundary conditions applied to a single finite element.



3.4.4. General procedure for parameters calibration

To evaluate the parameters of the CZM and GTN models, the nano-indentation and shear characterization tests of the

assembly are related to their finite element models by using a parametric identification algorithm. The algorithm is based

on the resolution of the inverse problem using a parametric calibration of the finite element model. First, the adopted

method involves performing finite element simulations of the nano-indentation test in order to calibrate the parameters

of the Swift law (n, K, e0). Then, the optimized values of (n, K, e0) are fixed and used to simulate the shear tests in order

to calibrate the damage parameters of the GTN and CZM models. For each identification step, the unknown model param-

eters vector x is determined in order to ensure good agreement between the numerical response of the model and the exper-

imental data. Thus, an error function is defined which corresponds to the difference between the numerical and

experimental responses that will be minimized using one or more optimization methods. This identification procedure is

summarized in Fig. 20. An initial model parameters set can be roughly determined provided that it gives the closest numer-

ical response to the experimental data. The aim of this step is to minimize the computation time due to the numerous

inverse problem iterations.

Table 2

Material parameters for the Al5754 aluminum material.

Junction E (GPa) m n K (MPa) e0 f0 fc q1 q2 q3 sN eN fN

Al5754 70 0.33 0.177 309.1 0.0017 10$3 0.00284 1.5 1 2.15 0.1 0.32 0.034

Fig. 19. Comparison of the numerical responses for the uniaxial tension issued from the predefined GTN model (Abaqus) and the implemented GTN model

(VUMAT). (a) Stress strain curve and (b) evolution of the void volume fraction.

Fig. 20. Flowchart for the identification of model parameters using a parametric calibration procedure of the inverse problem.



The resolution of the inverse parametric identification problem is performed by the Levenberg-Marquardt algorithm. The

measurement of the error between the measured experimental response and the corresponding simulated value using the

finite element model is taken through the calculation of the error function I given by Eq. (29).

I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X
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i¼1

FNum
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i
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i

 !2
v

u

u

t ð29Þ

FExp represents the experimental measure of the reaction force and FNum represents the force obtained by the FE model. Np

is the number of points for the shear test and x is the vector of model parameters. After obtaining the best set of model

parameters, a final verification procedure is performed to assess the accuracy of the parameters. Then, finite element sim-

ulations of the shear test are conducted using a different geometry of the assembly. The dimension of the insert and the joint

are increased from 3 mm ' 3 mm to 4.7 mm ' 4.7 mm in the case of the AuGe based assembly. Conversely, the metalliza-

tions thickness is changed from 5 mm to 50 mm for the Ag nanoparticles assembly. The latter steps are essential as they enable

validation of the accuracy of the selected parameters for simulations of assemblies under different geometries and loading

conditions. Based on this method, the identified material parameters for the GTN damage model and for the hardening law

providing a good fit to the experimental data for the different types of junction are summarized in Table 3.

4. Results and discussion

As abovementioned, the behavior of the system is quasi-static. A solver using an implicit numerical integration scheme is

mainly used for the simulations. Nevertheless, the main limits could be the difficulty in converging this solver up to the total

rupture of the rupture zone, especially when the fracture energy is small; in other words, brittle damage occurs in the inter-

faces. This results in a major disadvantage in the identification procedure since it is not possible to fully construct the force-

displacement curve used to form the residual vector. In addition, element deletion cannot be recovered for the solid joint

with the implicit solver, and crack propagation therefore cannot be observed. To solve this problem, we used a solver with

an explicit numerical integration scheme (Abaqus/Explicit); these solvers have a considerable robustness within strong non-

linearities. The explicit solver permits the use of the element deletion technique, which enables the representation of the

discontinuity by gradual element deletion from the mesh. The element status is linked to a state variable, of which the

default value is 1. When the state variable was equal to 0, the associated element is deleted by prescribing a zero stress state

within the element. However, using an explicit solver, excessive computational times and oscillating force due to stress wave

propagation in the element may be exhibited. To overcome this obstacles, a time scaling factor of 10$6 is adopted.

Fig. 21 shows the nano-indentation and shear force-displacement curves obtained for the two types of assemblies. Good

agreement between the experimental data and numerical results are recorded. With the set of parameters presented, the

explicit solver allow the complete construction of the curve. For the Cu/Cu assembly with the AuGe alloy, the experimental

and numerical shear responses are close, provided that the crack is not initiated. Beyond an overall displacement of the order

of 0.13 mm and a force of 770 N, the numerical curve drops with a combined interface/solder cracking. The rupture failure

with the numerical model is slightly faster than that of the experimental system as the acceleration factor deduced from the

critical void volume fraction is slightly overestimated.

For sintered silver nanoparticle joints, the numerical force displacement response closely matches the experiment result

since the crack propagates rapidly in the brittle Ag metallization. Therefore, small plasticity is recorded for the silver

nanoparticles joint that is concentrated in the nanoparticles layer borders. In this case, the straightforward rupture on the

test is fairly well represented by the numerical model.

Fig. 22 illustrates the results of the Von Mises equivalent stress distributions at the final state (total failure) in the differ-

ent layers of the assemblies studied. Naturally, interest is only focused on layers where damage is observed and/or crack

have occurred. This means that only the cohesive elements layers and the joint are represented. Fig. 22(a) illustrates the final

crack appearing in the Cu/Cu assembly performed with the AuGe solder. A very short time is recorded between the initiation

and total failure of the junction. The crack initiation is produced at the left side of the junction in a small portion of the cohe-

sive layer. It then propagates in the middle of the junction inside the solder layer until total failure. Other very small cohesive

delaminations are dispersed along the junction width. This numerical result is in agreement with the experimental

observations shown in Fig. 7 where traces of Au and solder are detected on the insert surface using EDX spectroscopy.

Table 3

Material parameters of GTN model and the cohesive zone model for the studied junctions.

Junction E

(GPa)

m n K

(MPa)

e0 f0 fc q1 q2 q3 sN eN fN Ec

(GPa)

Gc t0

AuGe/Au finish 80 0.32 0.3 960 2.'10$3 10$3 1.147 ' 10$3 1.5 1 2.25 0.1 0.27 0.11 20 0.01 230

Ag nano/Ag finish 70 0.3 0.17 200 2.'10$3 10$1 0.101 1.5 1 2.25 0.1 0.27 0.35 1 0.01 30

Cu 115 0.36 0.19 297 3.7 ' 10$3 –



The experimental result showed a mixed fracture of the solder layer and Au metallization. As shown in Fig. 22(b), a crack

initiates first at the Ag nanoparticles layer in both the right and left sides of the joint and across the entire thickness. The

crack then propagates rapidly in the bottom Ag interface until total failure of the assembly. Therefore, the major part of

the crack is located on the Ag interface leaving a small amount of Ag nanoparticles on the top of the substrate. This observed

phenomenon corroborates the obtained fracture faces of the Ag nanoparticles/Ag assemblies where the Ag nanoparticles are

detected over almost the entire surface of the insert, while only leaving two small Ag areas near the insert borders.

Fig. 23 shows the distribution of the volume fraction of voids f in the AuGe and Ag nanoparticles joints. For the AuGe joint,

a crack propagates from the left side to the right side of the junction. Elements deletion first acts in the left side of the solder

joint along the interface neighbor. Then, the cracking path changes the direction to a privileged orientation (i.e. the middle of

the junction), and finally deviates again towards the cohesive layer at the right side of the junction until total failure. For the

Ag nanoparticles joint, a small crack occurs at the borders of the layer and evolves towards the bottom interface of the junc-

tion (Fig. 23(b)). The Ag nanoparticles layer has a high initial void volume fraction f0 (0.1) which is very close to the critical

void volume fraction fc (0.101). Therefore, the early cracking of the joint is due to the rapid increase of the void volume frac-

tion from f0 to fc. The volume fraction of voids is high at the borders and at the middle of the joint since a significant amount

of plastic deformation is recorded early at these regions.

Fig. 24 corroborates the previously exposed comments and illustrates the evolution of damage or the void volume frac-

tion f obtained by finite element simulations against the undeformed junction width. The figure shows that most of the dam-

age occurs at the left side of the AuGe joint (Fig. 24(a)). The void volume fraction takes a value of 9.5 ' 10$4 smaller than f0
(f0 = 10$3) in the right side corner of the solder layer (distance of 3 mm along path). This is due to the compressive stress

generated in this junction area. For the Ag nanoparticles layer, the fracture occurs on the borders of the junction. Fig. 24

(b) also shows that the highest void volume fractions are recorded in these areas. Since the initial void volume fraction is

Fig. 21. Comparison between experimental data and calibrated force displacement responses. (a) Nano-indentation tests and (b) shear tests.

Fig. 22. Final crack configurations of the Cu/Cu assemblies and VonMises stress distribution in the different junction layers. (a) AuGe/Au finish assembly and

(b) Ag nanoparticles/Ag finish assembly.



close to the critical void volume fraction for both the AuGe and Ag nanoparticles junctions, the crack initiates and propagates

rapidly, since the coalescence stage appears early.

Fig. 25 shows the evolution of the cubic square of the localization criterion against strain for the first failed element of the

AuGe and Ag nanoparticles joints. The bifurcation theory needs to be used with a damage model (GTN in this case) in order to

obtain softening (stress drop). The localization criterion is the principal indicator of the failure in the material. Indeed, this

condition depends on the stress state which, in turn depends of the void volume fraction. In the first stage of loading, the

criterion considerably decreases as the stress increases due to the elastic and plastic deformation. Subsequently, the criterion

stabilizes rapidly when the stress reaches a steady state, indicating the approach of coalescence. At the moment of the strain

localization (onset of coalescence), the material begins to soften, a drop of stress is generated and the localization criterion

decreases again until zero value at total failure. At this time, the element is deactivated (fail). Therefore, the localization cri-

terion detðn
!0:L:n

!0Þ is considered as the state variables controlling the element deletion.

Fig. 23. Distribution of void volume fraction in the joint layer during initiation and propagation as well as at the total failure of the joint. (a) AuGe/Au based

assembly. (b) Silver nanoparticles based assembly.

Fig. 24. Evolution of the void volume fraction f along a path crossing the joint layer during initiation and propagation as well as at the total failure of the

joint. (a) AuGe/Au based assembly. (b) Ag nanoparticles based assembly.



Fig. 26 shows the evolution of stress in the first cohesive element undergoing failure. Debonding begins when the stress

reaches its maximum value and is completed when the stress reaches a zero value. The evolution of debonding from the ini-

tiation to the complete failure is very rapid as demonstrated by the vertical drop of the stress. The Au interfaces response

(AuGe solder based assembly) is nonlinear as the fracture energy and the magnitude of the stress vector of the interface ele-

ment are high. Subsequently, the Ag interface (Ag nanoparticles based assembly) is very brittle. It undergoes just a small

straining before element failure since the magnitude of the stress vector in this case is considerably small.

Some concerns could arise about the accuracy of the identified model parameters and their ability to represent material

behavior in a different geometry or configuration of the shear assembly. Therefore, additional shear tests are performed

using the two types of junctions previously modeled using finite element simulations. In the present simulations, the same

loading and boundary conditions are adopted. Nevertheless, for the AuGe based assembly, the dimension of the insert is

Fig. 25. Strain localization condition until total failure of the material, extracted in the first failed element in the joints.

Fig. 26. Von Mises stress in the first element of the cohesive layer undergoing deletion. The figure shows both cases of AuGe/Au and Ag nanoparticles/Ag

assemblies.

Fig. 27. Force displacement curves issued from validation shear tests.



increased from 3 mm ' 3 mm to 4.7 mm ' 4.7 mm. Consequently, the associated cohesive layers and joint follow the same

change in dimensions. For the Ag nanoparticles based assembly, the thickness of the metallizations is modified. Henceforth,

it takes the value of 50 mm instead of 5 mm. Moreover, copper is replaced by a purely elastic diamond as the insert material.

This enables the present configuration to be closer to the real configuration. The numerical results and the experimental data

are compared in terms of force displacement curves. Fig. 27 shows the force displacement curves of the relevant shear tests.

The finite element modeling gives correct general trends but slightly underestimates the force level for the two types of

assemblies. Higher forces are recorded for these assemblies as the geometric and material configuration changed. For the

AuGe based assembly, the surface of contact between the different layers increased considerably leading to an increase of

the reaction force. In the Ag nanoparticles assembly, replacing copper with diamond leads to a small increase of the exper-

imental shear force from 230 N to 280 N. A small variation of the numerical force is observed which is due to a change in the

crack direction. Progressive softening then occurs until total failure of the assembly.

5. Conclusion

To study the crack initiation and propagation in power electronic assemblies, shear lap specimens are manufactured and

subjected to micro-shear tests. The specimen consists of an Ni/Au or Ag metallized copper stud which is assembled into an

Ni/Au or Agmetallized copper substrate using two types of joints: AuGe alloy joint and Ag nanoparticles joint. The experimen-

tal data obtained at room temperature showed that, for the AuGe based junction, the cracks propagate evenly along the sur-

face of the joint and the interface, leading to a total break in the middle of the junction. The SEM and EDX fractography

analyses show almost a mixed fracture: adhesive in the two Cu/solder interfaces and cohesive in the joint. However, the

Ag nanoparticles based junction shows a failure mainly produced at the bottom Ag interface after a small initiation in the

Ag nanoparticles joint. The SEM and EDX fractography analyses show a failure face advancing almost along the entire surface

of the interface. For the two types of junction, the crack propagation is rapid either in the solder layer or in the Ag interface,

as the latter is very brittle. Finally, regarding the obtained results from experiments, it seems that the soldering technique

using AuGe alloy is the most convenient solution for power electronic components undergoing temperatures up to 125 #C.

Moreover, the deposited Ag metallization performed on the copper stud and substrate is compatible with the solder compo-

nents. Therefore, the junction formed with the AuGe solder layer and Ag metallization presents better mechanical behavior

compared to the brittle junction formed with Ag nanoparticles and Ag metallization. The fragile aspect of the Ag nanoparti-

cles junction is due to the poor quality of the interface between the Ag metallization and the Ag nanoparticles layer, even

though the Ag nanoparticles layer presents good mechanical and thermal properties. To take further advantages of this Ag

junction, the parameters of the sintering process may need to be better controlled in order to improve the solid diffusion

of the Ag present in the substrates and the nanoparticles layer. Finite element modeling of the micro-shear tests is performed

by using a bilinear CZM parameters for the Cu/AuGe and the Cu/Ag nanoparticles interfaces. A GTN damage model is coupled

to the Rice bifurcation theory to describe damage initiation and propagation in the joints. The interfacial fracture of these

assemblies was then simulated using 2D finite element modeling. The models parameters were identified using the inverse

method involving the additional nano-indentation data, shear data and iterative finite element simulations. The obtained

results show good agreement between the experimental data and the numerical responses. The coupled model demon-

strated its ability to describe the mechanical behavior of the junctions until the strain localization. Finally, finite element

simulations are needed to assess the behavior of the AuGe and Ag junctions during thermal cycling and to predict the lifetime

of the obtained power electronics assemblies. Microstructural changes must be thoroughly studied in order to determine

rupture mechanisms under cyclic thermal conditions. The parameters for the elaboration process have a direct influence

on the thermomechanical behavior of the packaging. Therefore, an investigation of the effect of these control parameters

is required mainly to overcome the causes of cracking in the elaborated electronic devices.
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