D. Amelunxen and P. Bürgisser, Intrinsic volumes of symmetric cones and applications in convex programming, Mathematical Programming, pp.105-130, 2015.
DOI : 10.1016/0024-3795(95)00543-9

J. Bochnak, M. Coste, and M. Roy, Real algebraic geometry, p.13, 2013.
DOI : 10.1007/978-3-662-03718-8

A. Ben-tal and A. Nemirovski, Lectures on modern convex optimization: analysis , algorithms, and engineering applications, 2001.
DOI : 10.1137/1.9780898718829

URL : http://iew3.technion.ac.il/Labs/Opt/opt/LN/Final.pdf

K. Marcel, C. De, L. Silva, and . Tunçel, Vertices of spectrahedra arising from the elliptope, the theta body, and their relatives, SIAM Journal on Optimization, vol.25, issue.1 6, pp.295-316, 2015.

O. Debarre, IntroductionàIntroductionà la géométrie algébrique Available online at http, 1999.

J. Fawzi, P. A. Gouveia, R. Z. Parrilo, R. R. Robinson, and . Thomas, Positive semidefinite rank, Mathematical Programming, pp.133-177, 2015.
DOI : 10.1103/PhysRevA.78.062112

URL : https://hal.archives-ouvertes.fr/hal-01657849

X. Michel and . Goemans, Smallest compact formulation for the permutahedron, Mathematical Programming, vol.153, issue.1 2, pp.5-11, 2015.

J. Gouveia, P. A. Parrilo, and R. R. Thomas, Lifts of Convex Sets and Cone Factorizations, Mathematics of Operations Research, vol.38, issue.2, pp.248-264, 2013.
DOI : 10.1287/moor.1120.0575

J. Harris and L. W. Tu, On symmetric and skew-symmetric determinantal varieties, Topology, vol.23, issue.1, pp.71-84, 1984.
DOI : 10.1016/0040-9383(84)90026-0

URL : https://doi.org/10.1016/0040-9383(84)90026-0

M. Laurent and S. Poljak, On a positive semidefinite relaxation of the cut polytope, Linear Algebra and its Applications, vol.223, issue.224, pp.439-461, 1995.
DOI : 10.1016/0024-3795(95)00271-R

J. Nie, K. Ranestad, and B. Sturmfels, The algebraic degree of semidefinite programming, Mathematical Programming, vol.296, issue.12, pp.379-405, 2008.
DOI : 10.1007/978-1-4615-4381-7

K. Ranestad, Algebraic Degree in Semidefinite and Polynomial Optimization, Handbook on Semidefinite, Conic and Polynomial Optimization, pp.61-75, 2012.
DOI : 10.1007/978-1-4614-0769-0_3

[. Rockafellar, Convex analysis, 1997.
DOI : 10.1515/9781400873173

[. Rostalski and B. Sturmfels, Dualities in convex algebraic geometry, Semidefinite Optimization and Convex Algebraic Geometry, pp.203-249, 2012.

R. Schneider, Convex bodies: the Brunn?Minkowski theory. Number 151, 2013.
DOI : 10.1017/cbo9781139003858

I. Shafarevich, Basic Algebraic Geometry 1, 1977.
DOI : 10.1007/978-3-642-37956-7

R. Sinn, Algebraic boundaries of convex semi-algebraic sets, Research in the Mathematical Sciences, 2015.
DOI : 10.1007/s10463-010-0295-4

R. Sinn and B. Sturmfels, Generic Spectrahedral Shadows, SIAM Journal on Optimization, vol.25, issue.2, pp.1209-1220, 2015.
DOI : 10.1137/140978478

H. Graf-von-bothmer and K. Ranestad, A general formula for the algebraic degree in semidefinite programming, Bulletin of the London Mathematical Society, vol.41, issue.2, pp.193-197, 2009.
DOI : 10.1112/blms/bdn114