Efficient sequential experimental design for surrogate modeling of nested codes

Abstract : Thanks to computing power increase, the certification and the conception of complex systems relies more and more on simulation. To this end, predictive codes are needed, which have generally to be evaluated in a huge number of input points. When the computational cost of these codes is high, surrogate models are introduced to emulate the response of these codes. In this paper, we consider the situation when the system response can be modeled by two nested computer codes. By two nested computer codes, we mean that some inputs of the second code are outputs of the first code. More precisely, the idea is to propose sequential designs to improve the accuracy of the nested code's predictor by exploiting the nested structure of the codes. In particular, a selection criterion is proposed to allow the modeler to choose the code to call, depending on the expected learning rate and the computational cost of each code. The sequential designs are based on the minimization of the prediction variance, so adaptations of the Gaussian process formalism are proposed for this particular configuration in order to quickly evaluate the mean and the variance of the predictor. The proposed methods are then applied to examples.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01657827
Contributeur : Sophie Marque-Pucheu <>
Soumis le : jeudi 7 décembre 2017 - 10:30:02
Dernière modification le : jeudi 26 juillet 2018 - 12:07:59

Fichier

2017_12_04_SMP_ArticleNested_P...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01657827, version 1

Collections

Citation

Sophie Marque-Pucheu, Guillaume Perrin, Josselin Garnier. Efficient sequential experimental design for surrogate modeling of nested codes. 2017. 〈hal-01657827〉

Partager

Métriques

Consultations de la notice

120

Téléchargements de fichiers

35