
HAL Id: hal-01656735
https://hal.science/hal-01656735

Submitted on 6 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed control of a fleet of batteries
Ana Bušić, Md Umar Hashmi, Sean Meyn

To cite this version:
Ana Bušić, Md Umar Hashmi, Sean Meyn. Distributed control of a fleet of batteries. ACC 2017 -
American Control Conference, May 2017, Seattle, United States. pp.1-6. �hal-01656735�

https://hal.science/hal-01656735
https://hal.archives-ouvertes.fr


Distributed control of a fleet of batteries

Ana Bušić1, Md Umar Hashmi1, and Sean Meyn2

Abstract— Battery storage is increasingly important for grid-
level services such as frequency regulation, load following,
and peak-shaving. The management of a large number of
batteries presents a control challenge: How can we solve
the apparently combinatorial problem of coordinating a large
number of batteries with discrete, and possibly slow rates of
charge/discharge? The control solution must respect battery
constraints, and ensure that the aggregate power output tracks
the desired grid-level signal.

A distributed stochastic control architecture is introduced as
a potential solution. Extending prior research on distributed
control of flexible loads, a randomized decision rule is defined
for each battery of the same type. The power mode at each time-
slot is a randomized function of the grid-signal and its internal
state. The randomized decision rule is designed to maximize
idle time of each battery, and keep the state-of-charge near its
optimal level, while ensuring that the aggregate power output
can be continuously controlled by a grid operator or aggregator.
Numerical results show excellent tracking, and low stress to
individual batteries.

I. INTRODUCTION
Future power grids will have greater volatility due to the

higher percentage of weather dependent renewable energy
sources connected to the grid. These sources are intermittent,
and their power generation has sharp peaks and valleys. This
makes load balancing and frequency regulation challenging.

Storage systems have enormous potential value for a range
of services. Individual consumers can use storage to enable
more effective use of residential solar power, or to reduce
electricity costs in regions with time-of-use pricing. Battery
energy storage systems (BESS) are increasingly important
for grid-level services such as frequency regulation, load
following, peak-shaving, and deferral of investment in trans-
mission and generation resources [1].

The value of responsive regulation is now recognized and
incentivized through FERC Order 755, issued in 2011. FERC
755 report [2, pages 23-24] contains a survey of experiments
conducted by Beacon Power and Primus Power to determine
the value of highly responsive resources for ancillary service.
Primus claims that batteries provide approximately 76%
more “area control error” (ACE) correction when compared
with traditional service from generation.

Among the goals of the present paper are:
• Address the apparent combinatorial problem of co-

ordinating a large number of geographically distributed
batteries to provide grid services.
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• Ensure that each battery within the fleet does not
violate local constraints, such as bounds on the state of
charge (SoC).

One challenge is that the grid level signals exhibit ramps
and volatility that may be beyond reach for any individual
battery. Another is that many battery technologies exhibit
strong asymmetry with respect to charging/discharging rates;
this is particularly true for lithium-ion technology.

Whether the batteries are distributed across a region or in
a central location, techniques are required to ensure that the
fleet of batteries can perform desired grid services reliably
and accurately, while respecting the inherent constraints
of individual batteries [3]–[5]. For most cell chemistries,
the effective capacity of a battery is increased with slow
discharge rates [6]. It is argued in [7] that the battery lifetime
is reduced when discharge current is subject to high variance.

Distributed control is adopted so that the complexity of
the control solution does not grow with the number of
batteries. It is useful to employ randomization to introduce
additional degrees of freedom for control. Each battery
in the fleet is modeled as a controlled Markov chain, in
which the controlled transition probabilities are common
among each battery of the same type; this defines a local
randomized control architecture. The randomized decision
rule is designed to encourage idle time for each battery,
and keep the state-of-charge near its optimal level, while
ensuring that the aggregate power output can be continuously
controlled by a grid operator or aggregator.

The aggregate behavior is approximated by a mean field
model, which is a nonlinear input-output system, as in
[8], [9]. This concept was brought to the power systems
community in [10]. In numerical results it is found that
linearized dynamics are nearly flat over a large bandwidth.
An additional macro feedback loop is used to ensure accurate
tracking; integral control is justified because of the simple
aggregate dynamics.

It is found in numerical experiments that the goals can
be achieved with this hierarchical control architecture: the
aggregate of batteries accurately tracks the grid signal, and
constraints on the battery SoC are strictly enforced. It is
also found that individual batteries behave in a nearly de-
terministic manner – randomization leads to smooth input-
output dynamics without causing “chattering” of individual
batteries.

Related literature

The basic distributed control architecture developed in this
paper is based upon prior work on “demand dispatch” –
the creation of virtual energy storage from flexible loads



[9], [11], [12]. For loads whose power consumption cannot
be varied continuously, a distributed randomized control
architecture provides the needed degrees for freedom to track
a smooth power reference signal, despite the discrete nature
of each load. The use of randomization has been adopted in
other work, such as [13]–[15]. A significant difference is the
design approach: it is argued here and in our prior research
that with appropriate local control at the load or individual
battery, the aggregate of resources will appear to the grid
operator as an input-output system that is easily controlled.
Local control also ensures that strict bounds on quality of
service to the load are maintained.

While there are many papers on BESS, we are not aware of
any work with a comparable distributed control architecture,
or comparable results. The prior work [8], [16] considers
low-frequency services such as “valley filling”, based on
BESS in which each battery is a residential electric vehicle.
There are many recent papers on managing generation along
with grid level storage, such as [17], [18].

The recent work [5] surveys mathematical models for
estimating the cost of running LiIon batteries, emphasizing
the importance of maintaining the SoC near its optimal level.
This paper and [19] focus on control loops to regulate the
SoC level, and the latter focuses on estimating potential
revenue from BESS in typical ancillary service markets.
Reference [20] considers a nonlinear model for a single
battery, and compares control techniques to address the
conflicting goals of managing SoC and tracking a regulation
signal. These papers provided part of the motivation for the
present work.

While the setting is entirely different, [7] provides insights
and control techniques for managing batteries in portable
electronic devices. An MDP (Markov Decision Process)
model is proposed to obtain good performance for the device,
while ensuring that the battery is not subject to stress. It
is claimed that the battery control system will extend the
battery service lifetime by more than 20%. It is not clear if
the methodology of [7] can be extended to grid applications.

II. DISTRIBUTED CONTROL DESIGN

Consider a large collection of batteries, potentially dis-
tributed across a large geographical region within a single
balancing authority (BA). In numerical experiments we will
consider data from PJM; the largest BA in the U.S. [21]. A
BA maintains supply-demand balancing within its operating
region by regulating frequency to its nominal value (60 Hz
in the U.S.), and regulating power flow between adjacent
BAs. This requires resources to provide ancillary services –
traditionally, power output from generators is ramped up and
down to track a signal broadcast from the BA. At PJM, for
frequency regulation there are two signals: RegA and RegD.
The latter is distinguished by its higher frequency content,
and it is also conditioned so that it is approximately zero
energy over long time-horizons. Fig. 1 shows the cumulative
sum of the RegD signal over a typical day in 2015. While
the sum eventually returns to zero, on this day it took a long
positive excursion before returning to zero at midnight.
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Fig. 1. Cumulative sum of PJM RegD – data from January 4, 2015.

The distributed control approach of [9], [22] is based
on a Markovian nominal model for an individual resource
(flexible loads in these papers). The main difficulty of ex-
tending this approach to batteries is that the nominal behavior
for batteries is highly deterministic: if there is no need for
storage, the batteries should stay idle at the mid-range SoC
value. This will extend battery life, and also ensure that there
is ancillary service capacity in each direction (both charging
and discharging). The first step in our design is to construct
a stochastic nominal model that is close to this deterministic
nominal behavior.

A. Nominal model design

Fig. 2 illustrates the overall control architecture in which
design is based on two components: there is a local decision
rule at each battery based on a common signal {ζt} that
is broadcast to all batteries. Error feedback based on the
regulation signal {rt} and measurements of aggregate power
is used to ensure accurate tracking.

Time is discrete with time steps of h seconds. In the next
section, for PJM RegD signal tracking we will use h = 2.
We assume that an individual battery can be in three different
modes of operation: charging, discharging and idle. The state
of a battery has two components, the mode and the state of
charge (SoC):

x = (m, s),

where m ∈ {ch, dis, id} and s ∈ [0, 1], with 1 corresponding
to a fully charged battery.

While a battery is in a charging mode (m = ch), it is
charging with a constant rate denoted δch. Its new state after h
seconds is (ch, s+hδch). Similarly, if a battery is discharging,
then its new state after h seconds is (dis, s−hδdis). A battery
that is idle does not change its SoC, so the new state after
h seconds is (id, s).

We describe next the change of mode of operation of a
battery. Denote by pch, pdis, pid : [0, 1]→ [0, 1] the functions
that model the probability to stay in the charging, discharg-
ing or idle mode respectively. Bounds on SoC impose the
constraint pch(s) = 0, for all s > 1 − hδch and pdis(s) = 0
for all s < hδdis.

In a state (m, s), a first decision (first coin flip) is made to
decide if there is a change of mode of the battery. If so then
the second decision is made to decide which of the remaining
two modes the battery is going to switch to. This choice is
done with the probabilities proportional to the values of the
p functions of the remaining two modes.
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Fig. 2. BESS control architecture: Local control at each battery combined with error feedback based on aggregate power is used to track the regulation
signal. The power output of an individual battery Y i

t takes on a finite number of values.

As an example, suppose the current state is x = (ch, s).
The new state, after h seconds is then:

x+ := (ch, s+ hδch), with probability p+0 (x)

x0 := (id, s), with probability p00(x)

x− := (dis, s− hδdis), with probability p−0 (x)

(1)

where p+0 (x) = pch(s),

p00(x) = (1− pch(s))
pid(s)

pid(s) + pdis(s)

and p−0 (x) = (1− pch(s))
pdis(s)

pid(s) + pdis(s)

The design of pch, pdis, pid used in the numerical results
of this paper is given in Fig. 3. In this design, the target
SoC interval was set to 40 - 80% SoC. If the battery is
charging, it will remain charging with probability almost 1
until it reaches 40% SoC. The probability to keep charging
then decreases and reaches almost 0 at 80% SoC. The design
of pdis is symmetrical. The function pid has values almost 1
for 50-70% SoC values and it is almost 0 outside the target
interval.
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Fig. 3. Design of switching probability functions pch, pdis, pid.

The nominal Markov model for an individual battery is
then given by a transition kernel P0. Its state space X is
the union of three intervals; let B denotes its Borel sigma
field. For any state x, the probability measure P0(x, · ) is
supported on at most three states. From (1) we see that for
the state x = (ch, s), and for any A ∈ B, P0(x,A) =

p+(x)I{x+ ∈ A}+ p0(x)I{x0 ∈ A}+ p−(x)I{x− ∈ A}

B. Controlled Markov model for an individual battery

Based on this nominal model, a controlled Markov model
for an individual battery can be obtained following similar
steps as in [22]. The main difference is that our model
evolves on a continuous state space compared to the discrete
state space design in this previous work.

Let U(x) denote the power output at state x; it is assumed
that this takes on just three values: U(x) = 0 for x = (id, s),

and the remaining values are consistent with the Markov
model: |U(ch, s)|

U(dis, s)
=
δch

δdis
, 0 ≤ s ≤ 1.

For any fixed value of ζ, the probability measure Pζ(x, · )
is also supported on at most three states. For the family of
transition matrices, the three states (x+, x0, x−) depend on
x but not on ζ: Pζ(x,A) = p+ζ (x)I{x+ ∈ A}+p0ζ(x)I{x0 ∈
A}+ p−ζ (x)I{x− ∈ A}, x ∈ X, A ∈ B.

The values of p+ζ (x), p0ζ(x) and p−ζ (x) are set as follows:

p+ζ (x) = p+0 (x) exp
(
ζU(x+)− Λζ(x)

)
p0ζ(x) = p00(x) exp

(
ζU(x0)− Λζ(x)

)
p−ζ (x) = p−0 (x) exp

(
ζU(x−)− Λζ(x)

) (2)

with Λζ(x) = log
(∑

m∈{−,0,+} p
m
0 (x) exp

(
ζU(xk)

))
.

This is similar to the myopic design introduced in [23].
It can be interpreted as an instance of the optimal design
introduced in [9], but with a time-horizon of one rather
than infinite. This transformation of the nominal model will
encourage discharge when ζ > 0, and charging when ζ < 0.

C. Mean Field Model

The family of transition kernels {Pζ : ζ ∈ R} is
constructed to define local decision making: Each battery
evolves as a controlled Markov chain on a finite state space,
with common input ζ = (ζ0, ζ1, . . . ). It is assumed that the
scalar signal ζ is broadcast to each battery. If a battery is
in state x at time t, and the value ζt is broadcast, then the
battery transitions to the state x′ according to the probability
measure Pζt(x, ·).

Let Xi
t = (M i

t , S
i
t) denote the state of the ith battery at

time t. The dynamics of the first component are governed by
the randomized policy; the second component denotes SoC,
which evolves as a controlled random walk:

Sit+1 = Sit + hδch charge mode, M i
t = 1

Sit+1 = Sit − hδdis discharge mode, M i
t = −1

Sit+1 = Sit idle, M i
t = 0

(3)

The empirical probability measure is defined as the average,

µNt (A) =
1

N

N∑
i=1

I{Xi
t ∈ A}, A ∈ B.

As in prior work for the discrete state space [9], [11], [22],
we assume that average power output is obtained through
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Fig. 4. Bode plots for linear models obtained using Least Squares.

measurements or state estimation. At time t, this is expressed
in terms of the empirical probability measure:

yNt =
1

N

N∑
i=1

Y it =

∫
U(x)µNt (dx), t ≥ 0, x ∈ X,

where Y it = U(Xi
t) as shown in Fig. 2.

The mean field model is defined by the recursion

µt+1(A) =

∫
Pζt(x,A)µt(dx) (4)

Under general conditions on the model and on µ0 it can be
shown that µNt is approximated by µt. One condition is that
the input ζt is a continuous function of (yN0 , . . . , y

N
t−1, . . . )

that depends upon t, but does not depend upon N .
Under these conditions, the average power output is ap-

proximated using the mean-field model:

yt =

∫
U(x)µt(dx), t ≥ 0. (5)

In prior work on demand dispatch it is found that although
the input-output mean field dynamics are nonlinear, the
dynamics are accurately approximated by a linear model,
and often the linearized dynamics are minimum phase [9].
Desirable aggregate behavior can also be obtained through
design [22], [23].

III. NUMERICAL RESULTS

The following three scenarios were considered, differenti-
ated by their time-to-charge Tch, time-to-discharge Tdis, and
power ratings:

Scenario Tch U(ch, s) Tdis U(dis, s)

S1: 2hr -0.5kW 2hr 0.5kW
A1: 2hr -0.5kW 1hr 1kW
A2: 2hr -0.5kW 30min 2kW

(6)

In each case, a collection of 1,000 batteries can deliver at
most 500kW of power. In the symmetric model the lower
limit is -500kW. The regulation signal was scaled to respect
these constraints.

In each of these three scenarios, a linear approximation of
the input-output dynamics was obtained using Least Squares.
A seventh order model was sufficient in all cases.

Fig. 4 shows the Bode plots obtained for models S1 and
A1. In each case, the magnitude plot is nearly constant over
the frequency range of interest, f ∈ [10−4, 5× 10−2].
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While the magnitude plots are nearly perfectly flat, the true
dynamics are only approximately linear. To achieve accurate
tracking we introduce error feedback, with input ζt, error
et = rt − yNt , and “plant transfer function” Gp: the linear
model for input-output dynamics.

Consider the symmetric model S1 for which the Bode plot
of Gp is shown in Fig. 4. Design of the compensator Gc is
simplest in continuous time. The loop transfer function is the
product G = GcGp, and the compensator Gc is constructed
so that it has high gain at low frequencies, and the crossover
frequency fc is chosen at the desired closed-loop bandwidth.
Since by definition |G(jfc)|dB = 0, a glance at Fig. 4
implies that |Gc(jfc)|dB ≈ 35 if fc ∈ [10−4, 5× 10−2].

The flat magnitude plot for Gp motivates the use of pure
integral control, Gc(s) = K◦I s

−1, with K◦I = 50fc (using
|50|dB ≈ 35). This is implemented in discrete time:

ζt = KI

t∑
i=0

ei , KI = hK◦I (7)

where h = 2 is the sampling time in seconds.
On choosing fc = 5× 10−2 we obtain K◦I = 250× 10−2,

and hence KI = 5. Fig. 5 shows a Bode plot of the loop
transfer function with this design (represented in continuous
time), along with the root locus plot for the discrete-time
loop transfer function.

A. Tracking and SoC Performance

RegD reference signal
Power output of batteries400

200

-200

-400

0kW

-6
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control signal ζ

0 500 1000 1500 2000 t (secs)

Fig. 6. Tracking of PJM’s RegD Normalized Signal Test in Scenario S1
with 1000 batteries. Also shown is the control signal (7)

All experiments use PJM’s Normalized Signal Test for
RegD to define the reference signal {rt} [21]. The initial
condition for each battery was at rest, with SoC at 50%. The
impact on the initial condition was insignificant in these and
other experiments.

Consider first the symmetric model, Scenario S1, in which
each battery requires 2hr to fully charge (resp. discharge),
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and draws 0.5 kW when charging. The tracking results and
control signal obtained using the integral gain KI = 5 are
displayed in Fig. 6.

It is found that an individual battery operates in a nearly
deterministic manner, and the SoC is maintained to the
desired limits, even though the local control is randomized.
The plots marked “η = 1.0” in Fig. 7 show a comparison
of the mean SoC and the evolution of SoC for an individual
battery. All goals have been achieved: grid level tracking is
nearly perfect, and battery constraints are maintained.

Tracking results obtained with only 200 batteries are
shown in Fig. 8. There is some extra high-frequency error
due to quantization, but the performance is well within the
requirements of PJM.
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Fig. 8. Tracking of PJM’s RegD Normalized Signal Test in Scenario S1
with only 200 batteries

The PI design was repeated in the two asymmetric models.
Tracking is more challenging in these cases. This is true in
part because there is a capacity reduction associated with
asymmetry. It is also found that nonlinear effects are more
apparent in asymmetric models.

Results for the asymmetric case A2 are displayed in
Fig. 9. It is clear that the true system is nonlinear: when the
regulation signal is large and positive, the closed loop system
appears to be under-damped (oscillation is observed). When
the regulation signal is negative then the closed loop system
appears over-damped. Similar but less extreme results were
observed in the case A1.

B. Impact of efficiency loss

In the preceding experiments efficiency losses have been
ignored. For example, the round trip efficiency of Tesla’s
Powerwall is just 92.5%. A linear model was used to test
the impact of efficiency losses. For an efficiency parameter
η ∈ (0, 1], the evolution of the state of charge of battery i is

RegD reference signal
Power output of batteries

0 500 1000 1500 2000
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-200

-400
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Fig. 9. Tracking of PJM’s RegD Normalized Signal Test in Scenario A2.

given by

Sit+1 = Sit + η × hδch charge mode, M i
t = 1

Sit+1 = Sit − hδdis/η discharge mode, M i
t = −1

(8)

The power output of the battery remains the same: Y it =
U(Xi

t) for each t and i.
In the results described below we take η = 0.9. For the

40 minute PJM test signal, this loss presents no impact on
tracking performance. There is an observable negative drift
in SoC over this time interval – typical results are shown
in Fig. 7 in Scenario S1 with 1,000 batteries. The SoC at
the end of the experiment is slightly smaller than observed
with η = 1. This would be unacceptable on a 24 hour run:
an additional feedback loop is required to draw additional
power to make up for losses.
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Fig. 10. Mileage nearly reaches the ideal with and without losses. The
error at the end of the run is under 3% in case S1.

Excess operation of the fleet of batteries was computed
based on mileage – a traditional metric of service from bat-
teries [2]. For an individual battery, the cumulative mileage
by time T and its average are defined by

RkT =

T∑
t=1

|U(Xk
t )| , RT =

1

N

N∑
k=1

RkT T ≥ 1 . (9)

The following sequence is regarded as a metric for excess
operation:

ET =
RT −R∗T
R∗T

, where R∗T =
1

N

T∑
t=1

|rt|

It can be shown using Jensen’s inequality that ET ≥ 0 in
the ideal case of perfect tracking. We obtain ET = 0 if each
battery tracks the reference exactly.



With E defined to be the final value at the end of the
40min PJM test signal, the following are typical values:

Scenario E , η = 1 E , η = 0.9

S1 2.51% 2.54%
A1 3.30% 3.62%

with scenario data given in (6). The impact of losses is
negligible in these experiments. In all cases, it is surprising
to see only about 3% beyond the ideal mileage using a
distributed randomized control strategy.

The evolution of mileage in these four cases is shown in
Fig. 10. The close match with the ideal means that most
batteries in the fleet are cooperating, in the sense that the
sign of U(Xi

t) matches the sign of rt, or is equal to zero,
for the overwhelming majority of indices i = 1, . . . , 1, 000.

IV. CONCLUSIONS

It is remarkable that a fleet of ‘dumb, slow batteries’
can accurately track a grid level signal with much faster
temporal characteristics, while maintaining individual SoC
within desired bounds.

There is of course much more work to be done on local
control design, and control techniques for the aggregate.
What is the best way to resolve the asymmetric behavior
observed in Fig. 9? One approach is at the macro-level: gain
scheduling could be used, in which the gain KI is reduced
when the regulation signal is positive, and increased when it
is negative. An alternative is to refine the local control design
to make the aggregate appear more linear, as in [23].

Further research is needed to investigate the heterogeneous
setting (e.g. with respect to the capacity, charging and dis-
charging rates), and the robustness to un-modelled dynamics
(e.g. charging/discharging rates that depend on the current
SoC level). Another direction concerns state estimation both
for the aggregate power consumption used as a control
feedback and state estimation for the local control.
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[9] S. Meyn, P. Barooah, A. Bušić, Y. Chen, and J. Ehren, “Ancillary
service to the grid using intelligent deferrable loads,” IEEE Trans.
Automat. Control, vol. 60, no. 11, pp. 2847–2862, Nov 2015.

[10] R. Malhame and C.-Y. Chong, “Electric load model synthesis by dif-
fusion approximation of a high-order hybrid-state stochastic system,”
IEEE Trans. Automat. Control, vol. 30, no. 9, pp. 854 – 860, Sep
1985.
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