Cationic microbubbles and antibiotic-free miniplasmid for sustained ultrasound–mediated transgene expression in liver

Abstract : Despite the increasing number of clinical trials in gene therapy, no ideal methods still allow non-viral gene transfer in deep tissues such as the liver. We were interested in ultrasound (US)-mediated gene delivery to provide long term liver expression. For this purpose, new positively charged microbubbles were designed and complexed with pFAR4, a highly efficient small length miniplasmid DNA devoid of antibiotic resistance sequence. Sonoporation parameters, such as insonation time, acoustic pressure and duration of plasmid injection were controlled under ultrasound imaging guidance. The optimization of these various parameters was performed by bioluminescence optical imaging of luciferase reporter gene expression in the liver. Mice were injected with 50 μg pFAR4-LUC either alone, or complexed with positively charged microbubbles, or co-injected with neutral MicroMarker™ microbubbles, followed by low ultrasound energy application to the liver. Injection of the pFAR4 encoding luciferase alone led to a transient transgene expression that lasted only for two days. The significant luciferase signal obtained with neutral microbubbles decreased over 2 days and reached a plateau with a level around 1 log above the signal obtained with pFAR4 alone. With the newly designed positively charged microbubbles, we obtained a much stronger bioluminescence signal which increased over 2 days. The 12-fold difference (p < 0.05) between MicroMarker™ and our positively charged microbubbles was maintained over a period of 6 months. Noteworthy, the positively charged microbubbles led to an improvement of 180-fold (p < 0.001) as regard to free pDNA using unfocused ultrasound performed at clinically tolerated ultrasound amplitude. Transient liver damage was observed when using the cationic microbubble-pFAR4 complexes and the optimized sonoporation parameters. Immunohistochemistry analyses were performed to determine the nature of cells transfected. The pFAR4 miniplasmid complexed with cationic microbubbles allowed to transfect mostly hepatocytes compared to its co-injection with MicroMarker™ which transfected more preferentially endothelial cells.
Document type :
Journal articles
Complete list of metadatas

Cited literature [36 references]  Display  Hide  Download
Contributor : Isabelle Frapart <>
Submitted on : Sunday, January 21, 2018 - 10:44:22 PM
Last modification on : Friday, May 24, 2019 - 11:36:07 AM
Long-term archiving on : Thursday, May 24, 2018 - 8:07:51 AM


Files produced by the author(s)



Simona Manta, Gilles Renault, Anthony Delalande, Olivier Couture, Isabelle Lagoutte, et al.. Cationic microbubbles and antibiotic-free miniplasmid for sustained ultrasound–mediated transgene expression in liver. Journal of Controlled Release, Elsevier, 2017, 262, pp.170 - 181. ⟨10.1016/j.jconrel.2017.07.015⟩. ⟨hal-01656574⟩



Record views


Files downloads