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Abstract. An original 3D stochastic model, based on the truncated plurigaussian random fields, 

has been adapted to simulate the complex microstructure of SOC electrodes. The 

representativeness of the virtual microstructures has been checked on several synchrotron X-

ray and FIB-SEM tomographic reconstructions obtained on typical LSCF, LSC and Ni-YSZ 

electrodes. The validation step has been carried out by comparing numbers of electrode 

morphological properties as well as the phase effective diffusivities. This analysis has shown 

that the synthetic media mimic accurately the complex microstructure of typical SOC 

electrodes. The model capability to simulate different types of promising electrode architectures 

has also been investigated. It has been shown that the model is able to generate virtual electrode 

prepared by infiltration resulting in a uniform and continuous thin layer covering a scaffold.  

With a local thresholding depending on the position, continuous graded electrodes can be also 

produced. Finally, the model offers the possibility to introduce different correlation lengths for 

each phase in order to control the local topology of the interfaces. All these cases illustrate the 

model flexibility to generate various SOC microstructures.  This validated and flexible model 

can be used for further numerical microstructural optimizations to improve the SOC 

performances. 
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1. Introduction 

 

The climate change, the rarefaction of fossil fuels in conjunction with the growing worldwide 

demand for energy have drastically increased the need of clean and sustainable energy sources. 

However, the use of intermittent renewable technologies such as solar panels or wind turbines 

requires new solutions to match the fluctuations between the demand and the production. A new 

flexible energetic vector for storing energy is thus required to absorb the peaks of electricity 

production or consumption. The dihydrogen gas, which presents a high ratio of energy to mass, 

is considered as one of the most relevant choices for this vector. In this view, the high-

temperature electrochemical systems appear as a promising technology for the efficient and 

reversible gas to electricity conversion [1,2]. Indeed, thanks to their high flexibility, the same 

electrochemical device can be alternatively used in fuel cell mode for electrical power 

generation and steam electrolysis mode for dihydrogen production [3] (i.e. in Solid Oxide Fuel 

Cell – SOFC – mode or in Solid Oxide Electrolysis Cell – SOEC – mode). This type of high-

temperature electrolyser-fuel-cell is constituted by a stack of elementary Solid Oxide Cells 

(SOCs), each one being composed of a dense electrolyte sandwiched between two porous 

electrodes. State-of-the-art for SOC components are Yttria Stabilized Zirconia (YSZ) for the 

electrolyte and Ni-YSZ cermet for the H2 electrode [1,2]. The O2 electrode is currently made 

of Mixed Ionic Electronic Conductors (MIECs) such as Lanthanum Strontium Cobalt (LSC) or 

Lanthanum Strontium Cobalt Ferrite (LSCF). 

 

The manufacturing routes for Solid Oxide Cells (SOCs) are based on typical ceramic processing 

such as screen printing, tape casting or dip-coating [4]. Other original methods, based on 

catalyst infiltration [5] or Electrostatic Spray Deposition (ESD) [6], have been recently 

proposed to improve the SOCs efficiency. Thanks to the large variety of these methods, a wide 

range of electrode microstructures is liable to be produced and adapted to each SOC 

applications (i.e. fuel cell, steam electrolysis, reversible system, etc.). Indeed, the 

microstructure of the electrodes plays a major role in the global cell performances by controlling 

the rates of the electrochemical reactions which depend on each SOC application [7-10]. As a 

consequence, the electrode microstructure can be tuned to design more efficient SOC for each 

particular utilization. Nevertheless, the electrodes present a complex three dimensional 

microstructure for which the basic relationships between the three-dimensional characteristics 

of the microstructure and the electrode properties are not still precisely understood. Thus, 
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several studies [11-14] have been recently proposed  in an attempt to improve the knowledge 

of such relations, which are essential before optimizing the microstructure. 

 

During the last decades, advances in 3D characterization have been achieved to image the SOC 

electrode microstructure.  Different techniques based on Focused Ion Beam sectioning coupled 

with a Scanning Electron Microscope (FIB-SEM) [15-17], X-ray absorption tomography [18-

20] or holotomography [10,21-22] have been successfully employed to reconstruct the SOCs 

electrodes microstructures with a high spatial resolution (at the scale of few tens of nanometers). 

Some authors [14,17,23-26] have taken advantage of these techniques to study the links 

between the electrode microstructural parameters. However, this approach is time consuming 

as it needs the manufacturing and the characterization of several cells. For this reason, the 

number of reconstructed electrodes was limited. In general, the evolution of microstructural 

parameters such as the specific surface area, the tortuosity factor or the Triple Phase Boundaries 

lengths TPBls (defined as the lines where the electronic, ionic and gas phase meet) are plotted 

as function of the phase volume fractions with few points [23,24]. These data are thus 

insufficient to fully understand and validate the proposed complex relationships linking the 

electrode microstructure parameters [11,13]. In order to increase the amount of data required to 

fit accurately these relationships, an alternative method consists of generating representative 

synthetic microstructures by numerical means. 

 

For this purpose, a lot of attempts have been devoted to the development of relevant 3D 

geometrical models able to mimic the actual microstructure of both two-phase electrodes (i.e. 

porous LSCF for example) and three-phase composite electrodes (i.e. Ni-YSZ cermet for 

example). Most of the published methods are related to stochastic models based on random 

sphere packing algorithms [27,28]. In this frame, many authors have assumed a uniform particle 

size whereas only few studies have taken into account a more realistic distribution on the sphere 

radii [29-30]. As a general matter, the sphere packing algorithms are decomposed into 2 steps. 

The first one is related to the creation of “seeds” corresponding to the positioning of the spheres. 

The second step is dedicated to the simulation of the “sintering” process in order to densify the 

microstructure up to the desired porosity. The first step can be done by the so-called “drop & 

roll” algorithm [9,29,31,32] or by the random positioning of “seeds” on a lattice structure 

[27,33,34]. However, these methods are too much constrained, and hence, they are not able to 

account for the full stochastic nature of the actual SOCs electrodes. For example, the positioning 

of spheres on a lattice results in a structuration of the final microstructure that is not realistic 
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regarding the SOC microstructure. Furthermore, the Drop and Roll method yields an irrelevant 

anisotropy in the synthetic microstructures [37]. To overcome this issue, some authors have 

developed algorithms with a pure random positioning of spheres [35,36]. The second step of 

the sphere packing methods is based on basic geometrical operations to increase the surface 

contact between particles (i.e. sphere radius expansion [32,33,35,37] or overlapping [9,29,31] 

and creation of necks [34]). Aside from these pure geometrical approaches, the Discrete 

Element Method (DEM) has also been employed to simulate the initial sphere packing by 

computing the mechanical contact between the particles [12,38]; while the densification can be 

simulated by modelling the physical sintering process [12]. All these iterative methods need 

rather intensive CPU resources especially for the DEM computations. 

In addition to the sphere packing, other stochastic models based on geostatistical simulations 

can be used to generate synthetic microstructures [39]. Different iterative methods based on the 

minimization of correlation functions between the synthetic microstructure and a real 

segmented image have been used to generate three-phase Ni-YSZ electrodes [40,41]. It is worth 

mentioning that non-iterative methods can be useful to simulate a microstructure in a short time. 

For this purpose, Neumann et al. [42] have proposed a generalization of a multi-steps model 

decomposed in a homogeneous Poisson point process, a beta skeleton algorithm followed by 

the voxel phase labelling. With the same objective, Lanzini et al. [43] have applied the truncated 

Gaussian random field model to the SOC electrodes by considering a medium constituted of 

two phases (i.e. the pores with one solid phase). Abdallah et al. [44] have applied the Boolean 

random sets and the truncated plurigaussian random field model to generate a porous Ni-YSZ 

composite electrode. In the last case, the three sets related to the three electrode phases were 

obtained with set operations on the two underlying segmented independent Gaussian random 

fields.   

 

It is worth noting that few studies have been devoted to validate the morphological 

representativeness of the numerical SOC microstructures compared to the real ones. As a 

general matter, the sphere packing methods yield a final microstructure that keeps the geometry 

of the initial spheres. Therefore, as pointed out in [28], the relevance of this morphology can be 

questionable if compared to the real SOC electrode microstructure in which the phases exhibit 

a complex and continuous shape. Nevertheless, as discussed in Neumann et al. [42], these 

approaches allow qualitative conclusions for the microstructural relationships even if ‘their 

applicability to real materials are still unclear’. For instance, Nishida et al. [27] have succeeded 

with a random sphere packing model to reproduce the experimental dependence of TPBs 
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density with the solid phase volume faction. However, Choi et al. [45] have compared a FIB-

SEM reconstruction to a numerical microstructure generated by sphere packing. They obtained 

significant differences in the resulting structures. 

  

For the other approaches based on geostatistical simulations, Neumann et al. [42] have validated 

their model on a 3D reconstruction of a real Ni-YSZ electrodes. The virtual microstructure fitted 

on the reconstruction presents a good agreement not only visually but also quantitatively in 

terms of morphological parameters (geometrical tortuosity factors, constrictivities, density of 

TPBs after smoothing) and phase effective conductivities. Nevertheless, they found a 

significant mismatch for the interfacial specific surface area. Abdallah et al. [44] have fitted 

their 3D synthetic microstructures on the covariance function measured on 2D SEM 

micrographs of a Ni-YSZ cermet. They have shown that the Boolean sets is not a relevant 

method for SOC electrode modelling. However, the microstructure generated with the 

plurigaussian model was found ‘to be visually very close to the materials’. Moreover, in 

addition to the fitted covariance functions, they also found a good agreement in terms of phase 

size distributions and the linear erosion functions (measured on the 2D SEM images). 

 

In the present study, the truncated plurigaussian random field model has been employed to 

generate synthetic microstructures of SOC electrodes. A specific attention has been paid to fully 

validate the method on several X-ray holotomography and FIB-SEM 3D reconstructions 

obtained for both O2 and H2 electrodes. The model validation step has been carried through a 

set of morphological parameters and by computing phase effective diffusivities. It is worth 

noting that the present model includes a generalization, which was initially proposed in Galli et 

al. [46] and detailed in Armstrong et al. [47], for the combination and thresholding of 

independent random fields. This method was adapted here to the SOCs electrodes in order to 

improve the relevance and the representativeness of the synthetic microstructure. The method 

also offers the possibility to have a more flexible numerical tool. Two correlation lengths have 

been thus introduced for the electrode solid phases. The capacity of the approach to mimic 

different kind of electrode microstructures and architectures is illustrated and discussed on 

several examples.   
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2. Random Field Model description for SOC electrodes 

 

2.1 Two-phase materials for O2 electrode 

 

The truncated Gaussian random field model has been used to generate 3D microstructures of 

typical O2 electrodes made of porous LSCF or LSC. For a two-phase material, a general 

description of the method can be found in [39,48,49]. Only the main steps of the procedure are 

thus reminded hereafter by underlying the specificities that were adopted to model the SOC 

electrode microstructures.  

 

Main model assumptions  A statistically stationary, isotropic and homogeneous porous 

microstructure has been considered in the model. Such assumption is well verified on ‘typical’ 

commercial SOCs electrodes obtained by screen printing or tape casting [21,50]. Moreover, it 

is generally considered that the covariance function contains the most relevant morphological 

information required to reconstruct a microstructure [51]. As a consequence, it has been 

assumed that the microstructure of a two-phase electrode (X and X , where X refers to one 

phase and X the other) can be characterized through the covariance function )(hCX
 which is 

used as the only input data for the simulations. From a mathematical point of view, )(hCX
 is 

expressed as the probability that two points separated by a distance h belong to the same phase 

X: 

),()( XhzXzPhCX       for z     (1) 

Where  denotes the 3D domain. The covariance function provides information on the phase 

volume fraction X : 

)0()(0 XXX ChC             (2) 

It is also linked to the phase specific surface area 
X

pS , which is simply defined as the total 

surface area of the interface between this phase X and its complementary X  normalized by the 

domain volume V [51]: 

0

4




h

XX

p
dh

dC

V
S  (3) 

In a general point of view, the covariance function describes how the phase is distributed in the 

3D space. It tends to an asymptotic value corresponding to the square of the volume fraction: 
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2)(lim XX
h

hC 


. The distance to reach this asymptotic bound is defined as the range of the 

covariance and can be ascribed to the phase characteristic length [51]. 

Description of the model steps  Basically, the model consists in the generation of a stationary 

and normal centered random Gaussian field )(zGX  that exhibits the same spatial correlation 

than the real homogenous microstructure (described with the covariance function). The two 

phases, X and X , of the synthetic microstructure are thus obtained by thresholding )(zGX : 

 XX zGzX  )(;      (4) 

Where X denotes the threshold.  

 

(i) In order to determine X, it is reminded that )(zGX  follows the law of a standard normal 

distribution (of mean value =0 and variance ²=1):  )(zGX  )1,0(N . Therefore, the threshold 

can be related to the phase volume fraction with the following relation: 

  dxxpzGP

X

XXX 





 )()(      (5) 

Where p(x) is the continuous probability density function of the normal distribution )1,0(N . 

The threshold can be easily deduced from (5) as illustrated in Fig. 1: 

dxx
X

X 







 



2

2

1
exp

2

1
1




      (6) 

 (ii) As described for the first time by Alder et al. [52] and further developed by Liang et al. 

[53], the field )(zGX  can be generated by the convolution of an uncorrelated Gaussian random 

noise U(z) with a normalized and symmetric weight function ω(h): 





h

X dhhhzUhzUzG )()()()()(   

with :   


1)(2 h     and   hhh  )()(   

(7) 

This operation can be interpreted as the filtering of the uncorrelated random noise U(z) with the 

weight function ω(h). The objective of this operation is to introduce the requested spatial 

correlation in )(zGX . Therefore, ω(h) is linked to the correlation function )(hX  of the 

Gaussian random field defined as follows: 
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 )(),(cov)( hzGzGh XXX   (8) 

 (iii) To determine the weight function, it can be shown that the auto-convolution of ω(h) is 

equal to )(hX  (cf. appendix): 

   )(hh X   (9) 

(iv) The correlation function )(hX  of the random field is associated to the covariance function 

of the real microstructure )(hCX
 through the following relation (cf. demonstration in 

appendix): 

dr
rr

hC
h

X
XX

X

















)(

1

2

2 1
exp

1

1

2

1
)(

 


  (10) 

 

To summarize, the method is decomposed into a sequence of successive steps consisting of: 

(1) The determination of the threshold X with the phase volume fraction (eq. (6)),  

(2) The computation of the correlation function )(hX  with the covariance )(hCX
 of the real 

microstructure (eq. 10), 

(3) The generation of the random field )(zGX   by combining eqs. (7) and (9),  

(4) The segmentation of )(zGX  with the threshold X to obtain the final synthetic 

microstructure. 

 

Fig. 1. Distribution and definition of the threshold for a two-phase electrode: the 

Gaussian field is proportion to a normal distribution segmented with a constant 

threshold. 
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Numerical implementations  The model steps have been implemented in Matlab® software. 

Instead of directly calculating computationally expensive convolutions, the use of Fast Fourier 

Transform (FFT) must allow to drastically reduce the time for generating the microstructure. 

For this purpose, the convolution products (7) and (9) have been carried out in the Fourier space 

by using FFT transforms:  

    )()()( 1 hFFTzUFFTFFTzGX  
 (11) 

Thanks of the symmetry of )(zU  and )(h , it is worth mentioning that their FFT transforms 

in eq. (11) lead to positive and real numbers (the imaginary part is nil). Moreover, it has been 

shown by Lang et al. [54] that the error induced by the FFT approximation is negligible for a 

sufficiently fine discretization of the domain. Thanks to this model implementation, the 

simulations are very fast and allow the generation of virtual microstructures in a very short time 

compared to other iterative methods. For example, considering a volume of 9x9x9 µm3 with a 

voxel size of 25 nm, the virtual microstructure of the studied two-phase electrode (for Cell-A: 

cf. Section 4.1) is created in 8 seconds by using only one CPU (Intel© Xenon©). In the 

objective to quantitatively compare the iterative and non-iterative methods, the same 

microstructure has been generated by using an in-house overlapping sphere packing algorithm 

[81]. With the same computational resources, a time of 90 minutes is needed to obtain the 

synthetic microstructure. This result highlights the low computational expense requested by the 

random field methods in comparison to other iterative techniques. It can be noticed in both 

cases, the memory usage is about 756 Megabytes. Moreover, the time and the memory linearly 

increase with the number of voxels.   

 

It can be noticed that a least square method is used to solve eq. (10) and to compute the discrete 

correlation function )(hX  by minimization on )(hCX
. However, it has been found that the 

direct use of the numerical expression of )(hX  to generate the microstructure yields an 

irrelevant noise at the interface between the phases (Fig. 2). To overcome this issue, Abdallah 

et al. [44] have applied a low pass Gaussian filter on the random field )(zGX  to remove the 

small-length artifacts. Alternatively, an analytical model for the correlation function [39,48,55] 

can be fitted on the discrete values of )(hX  and used in the procedure. Different noise-free 

models and their combinations [39,48] have been tested. It has been found that the exponential 
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correlation of second order (Gaussian) is the most suitable function to obtain a good fit of 

)(hX : 










2

2

2
exp)(



h
h  (12) 

Where   is the fitted correlation length. As illustrated in Fig. 2, the resulting microstructure 

does not present noise at the phase interface.  

 

  

Fig. 2. 2D slice extracted from the 3D virtual microstructure for the LSCF electrode of 

Cell-A (cf. Section 3.1). (a) Image obtained with the discrete correlation function )(hX  

after minimization on )(hCX
 (without fitting).   (b) Image obtained by fitting the Gaussian 

exponential function on the discrete values of )(hX  after minimization on )(hCX
.         

 

The virtual microstructure for the two-phase electrode can be built either by generating the solid 

or the gas phase. In practice, no significant differences have been found for the typical tested 

electrodes. Besides, taking into account the stochastic nature of the method, different 

realizations result in different microstructures. Nevertheless, it has been found that the 

microstructures exhibit the same characteristics if considering a volume large enough to be 

statistically representative. 

 

2.2 Three-phase materials for H2 electrode 

 

Description of the model steps  In the present article, a method [46,47] allowing the 

combination and thresholding of two independent Gaussian random fields has been used to 

simulate typical three-phase SOC electrode microstructures. The method is based on the 

(a) 2 µm Solid phase (LSCF)

Gas phase
(b)
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generation of two fields )(zGX  and )(zGY  with the covariance functions )(hCX
 and )(hCY

 

related to the phases X and Y of the real microstructure (i.e. for instance X=Ni, Y=YSZ and 

porosity= YX  ).  

The process to compute )(zGX  or )(zGY  is the same than the one depicted in the previous 

section. The two fields are then combined to form a bigaussian random field 

 )();( zGzGG YXXY   that follows a standard normal bivariate distribution )(zGXY 

































10

01
,

0

0
N  whose the probability density function p(x,y) is (Fig. 3a):  

 






 


2

exp
2

1
),(

22 yx
yxp


 (13) 

 

 
 

Fig. 3. Distribution and definition of the thresholds for a three-phase electrode: the 

Gaussian field follows a normal bivariate distribution with probability density function 

p(x,y) (a) segmented with a domain partitioning shown in (b).         

 

In order to get the synthetic microstructure, the bigaussian random field )(zGXY
 has to be 

segmented.  The attribution of each voxel of )(zGXY
 to one of the three phases is carried out by 

the partitioning of the bivariate distribution ),( yxp . As illustrated in Fig. 3b, the distribution is 

divided in three cells or domains DX, DY and DZ associated to the three electrode phases. The 

sets X, Y and Z of the synthetic microstructure are thus obtained by thresholding )(zGXY
 as 

follows: 

 XXY DzGzX  )(;  ;   YXY DzGzY  )(;  ;  YXZ   (14) 

The integrals of ),( yxp on DX and DY are equal to the volume fractions of X and Y: 

(a)

p
(

,
)
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dxdyyxp
XD

X  ),(  and dxdyyxp
YD

Y  ),(  (15) 

While the volume faction of the complementary phase Z is simply given by 
YXZ  1 . 

As detailed in Lantuéjoul [39], the shape of the partitioning domains controls the contact surface 

between the phases. For example, angles of 120° at the triple point, defined as the intersection 

between the three domains, lead to an equal interfacial specific surface area between the phases 

(i.e. 
ZY

p

ZX

p

YX

p SSS ,,,  ). 

 

To summarize, the model consists in the generation of two random fields )(zGX  and )(zGY  

corresponding to two of the three electrode phases. Then, the fields are combined and jointly 

thresholded on the basis of the domain partitioning of ),( yxp . This step is carried out in such 

way that the properties of the synthetic microstructure satisfy the volume fraction and the 

interfacial specific surface area measured on the real reconstruction.  However, since the 

threshold cannot be constant for both phases, a bias is introduced in the model so that the 

covariance functions of the resulting microstructure are liable to not match perfectly the real 

ones. This error is minimized during the segmentation step by using a third constraint on the 

covariance functions. 

 

Numerical implementations  The random fields )(zGX  and )(zGY  are generated with the 

same procedure detailed in the previous section. In this case, two distinct Gaussian exponential 

correlation functions are used to fit the discrete values of )(hX  and )(hY  with two different 

correlation lengths. The partitioning of ),( yxp  and the thresholding of )(zGXY
 are carried out 

by minimizing the errors E on the interfacial specific surface area 
ji

pS ,
 and the covariance 

functions )(zCi  between the synthetic and real microstructures:  

  
  

  







jiZYXji zz ZYXi reali

realii

ji

realp

ji

realp

ji

p

zC

zCzC

S

SS
E

;,,, 0 ,, _

_

,

_

,

_

,

max
)(

)()(
  (16) 

This minimization is conducted by respecting the phase volume fractions. This sequence of the 

method is realized into an iterative loop that does not require the generation of a new random 

field. Indeed, the loop is only carried out after the generation of )(zGXY
and only concerns the 

partitioning and thresholding of the random field.  As a consequence, the time necessary to 

simulate a virtual three-phase material remains very short. Considering a volume of 15x15x15 
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µm3 with a voxel size of 25 nm, the virtual microstructure of the studied three-phase electrode 

(for Cell-A: cf. Section 4.1) is created in 230 seconds by using only one CPU (Intel© Xenon©), 

while, a time of several hours is needed to obtain the same microstructure with our sphere 

packing algorithm.  For both cases, the memory usage is about 3.5 Gigabytes. 

 

Finally, without any constraints on the partitioning, the permutation of X and Y does not change 

the final synthetic microstructure. Therefore, only three combinations are possible to produce 

the synthetic microstructure depending on the choice of the complementary phase (i.e. Z=Ni, 

YSZ or Gas). As for the two-phase electrodes, no significant difference has been found 

whatever the selected combination.  

 

 

3. Three-dimensional electrodes reconstructions and characterizations 

 

3.1 Cells and materials 

 

Two typical commercial SOCs have been investigated in the present work. The first cell, so-

called Cell-A thereafter, consists of a dense 8%mol Y2O3-ZrO2 (YSZ) electrolyte of 5 µm 

supported by a thick porous Ni-YSZ H2 electrode of 260 µm. The active part of the O2 electrode 

is a porous LSCF layer of 30 µm associated to a LSC current collector of 20 µm. A thin barrier 

layer of Ceria doped Gadolinium Oxide (CGO) is also added between the electrolyte and the 

O2 electrode (3-4 µm). The H2 electrode of the second cell, referenced as Cell-B in the following 

of the article, is also a Ni-YSZ cermet. It is composed of a thick current collector of 500 µm 

and an active functional layer of 10 µm.  The Ni-YSZ bilayer is used as a structural support on 

which is layered the YSZ electrolyte (5 µm), the thin CGO barrier layer (2 µm) and the O2 

electrode in LSC (20 µm).  

    

 3.2 3D reconstructions by synchrotron X-ray nano-holotomography and FIB-SEM 

 

In the present study, the model is validated on the electrodes reconstructions of two typical 

SOCs (Cell-A and Cell-B) that exhibit different materials and microstructures (leading a 

significant difference in their electrochemical behavior as reported in [56]). For this purpose, 

the electrodes active layers of both cells, in which the electrochemical reactions take place, have 



14 

 

been reconstructed by synchrotron X-ray holotomography [21,22]. The method, which has been 

adapted for the highly absorbent ceramic materials, presents the advantage to get 3D volumes 

with a large field of view (50 µm) and the ability to resolve details in the microstructure of few 

tens of nanometers [10]. The samples for the tomographic experiments have been prepared by 

milling cylindrical pillars in the cells with a Plasma Focused Ions Beam (PFIB) working with 

Xenon ions (Fig. 4a) [10]. The samples have then been scanned at ID16A Nano-Imaging beam 

line (ESRF) with selected X-ray energies of 17.05 KeV and 33.6 KeV for the O2 and H2 

electrodes, respectively. The detailed protocol for data acquisitions and the procedure for the 

electrode reconstructions can be found in refs. [10,57,58]. The 3D images after reconstruction 

present a volume as large as 50 µm x 25² µm² x  = 98174 µm3 with a voxel size of 25 nm 

(with  3.1416 : cf. list of symbols) (Fig. 4b).  

In complementarity with the X-ray reconstructions, the microstructure of O2 electrode of Cell-

B has been also characterized by FIB-SEM tomography (with a FEI Versa 3D microscope) 

according to the procedure already detailed in [16,59]. The FIB-SEM reconstruction exhibits a 

volume limited to 173=4913 µm3 with a voxel size of 16.5 nm. Therefore, the FIB-SEM 

reconstruction presents a smaller volume but a higher resolution than its equivalent volume 

obtained by synchrotron X-ray tomography. This last characteristic of the FIB-SEM method is 

especially well adapted to describe the very fine microstructure of the O2 electrode of Cell-B 

(cf. next section).  

To complete the processing and obtain the final 3D microstructures, the raw images in gray 

levels have been filtered and segmented according to the methods detailed in [22]. The electrode 

reconstructions for Cell-A have been already presented in [57] while the electrode 

reconstructions for Cell-B have been especially acquired for the present study. The 3D 

rendering volumes after segmentation for both cells are displayed in Fig. 5 for the O2 electrodes 

and Fig. 6 for the H2 electrodes. It can be noticed that the O2 electrode microstructure of Cell-

A is significantly coarser than the one of Cell-B. 
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Fig. 4. Cell-B reconstruction: (a) Sample prepared by Xe PFIB for the tomographic 

experiment (Scanning Electron Image taken in secondary electron mode at 15 kV). (b) 2D 

cross section taken in the 3D reconstruction (image in grey levels with porosities in dark 

grey, Ni in bright grey and YSZ for the intermediate grey levels)  

 

 

3.3 Microstructural properties measurements 

 

The electrodes microstructure is assumed to be ‘fully’ characterized by a set of properties that 

can be measured on the 3D volumes. The procedures to compute these microstructural 

parameters have been already described in references [21,60]. Only the properties and the main 

steps of the procedures are listed and recalled hereafter: 

(i) The phase volume fractions i are directly given by the percentage of voxels belonging to 

the phase i while its contiguity i is calculated by analyzing the phase connectivity from one 

side of the volume to the other [21].  

(ii) The specific surface area 
i

pS  are deduced from the covariance functions as already presented 

in Section 2.1.  

(iii) The continuous Phase Size Distributions (PSD) [60], also called granulometry, are 

computed using morphological openings with homothetic spheres as structuring elements as 

detailed by Serra [51].  

(iv) The density of TPBls in the cermet, TPB, which is defined as the length of the Ni/YSZ/Gas 

intersections normalized by the domain volume, are calculated by identifying each voxel edges 

at the triple contacts. All the segments are then summed and a correction is introduced because 

of the domain cubic discretization [60]. In the present work, the density of ‘active’ TPBls is 

computed on the connected phases (cf. Table 2 and 3). 

Current collector
(Ni-YSZ)

H2 electrode 
(active layer in Ni-YSZ)

Electrolyte (YSZ)

Barrier layer 
(CGO)

O2 electrode 
(active layer in LSC)

10 µm

(b)

50 µm

(a)
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(v) The geometrical tortuosity 
geo

i  takes into account the fact that the mass or charge transport 

in one phase is hampered since the pathway for diffusion is not straight but sinuous and 

entangled [61,62]. This parameter is thus defined as the ratio of the effective pathway length 

eff  over the length of the sample   and can be seen as a measure of the deviation from the 

shortest possible pathway: 

 /effgeo

i   (17) 

This parameter is calculated by using ‘centroid’ path method [63-65]. For a given phase, the 

algorithm is based on the calculation of the center of mass within each 2D slices of the 

reconstruction along the in-plane direction of the flow. The effective length is then deduced by 

following the path from one centroid to the other.  

(vi) The transport can be also hindered by some constrictions in the microstructure since the 

cross sections area for diffusion is not constant. This bottleneck effect is described through the 

constrictivity parameter that can be defined as follows [66]: 

 2maxmin / rri   (18) 

By definition, the constrictivity i  ranges between 0 and 1 (lower the parameter is, higher the 

constriction in the microstructure is). As proposed by Holzer et al. [66] and Gaiselmann et al. 

[67], the statistically averaged value for rmin is calculated by the simulation of the Mercury 

Intrusion Porosimetry (MIP) while rmax, which is defined as the radius of the phase size median, 

is determined with the continuous PSD.  

 

This set of morphological parameters is finally complemented by the computation of the 

effective gas diffusivities or effective charge conductivities eff

i  for the percolated phases. 

Since the transport is limited by the complex microstructure, the effective conductivities eff

i  

are lower than the intrinsic value for the dense material bulk

i . The effect is taken into account 

through a microstructure-factor Mi defined as follows [66]: 

bulk

i

eff

iiM   (19) 

The ratio Mi is correlated to the electrode morphological parameters controlling the diffusional 

process. For instance, Stenzel et al. [14] have fitted on Ni-YSZ reconstructions a law which 

depends on the volume fraction, the geometrical tortuosity and constrictivity: 

  26.249.062.1
)(08.2 geo

iiiiM  . It can be noticed that the microstructural factor is also 

classically used to express an ‘apparent’ tortuosity i  that encompasses both the transport 
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pathway (geometrical tortuosity) and the bottleneck effect (constrictivity): 2

iiiM    [61,62]. 

In the present work, the effective conductivities have been determined by using a classical 

homogenization technique [21]. For each conducting phase, the equation for diffusion are 

solved in the digitized domain with the Finite Element Method (FEM). The effective 

conductivity is then deduced from the numerical analysis by equating the macro homogeneous 

flux to the average value computed from the FEM simulation.       

 

In order to obtain good statistics, it is worth noting that the microstructural properties have to 

be quantified on the electrode Representative Volume Element (RVE), or if it is not possible, 

on several independent Stochastic Volume Elements (SVEs) extracted from the whole 

reconstructions [60,68,69]. In the present study, the RVE has been evaluated for each electrode 

with the method detailed in [21]. The density of TPBs, the volume fraction and the M-factors 

for each phase have been computed on several sub-volumes taken from the whole 

reconstructions. The RVE is reached when the standard deviation for each investigated 

parameter becomes negligible. Correspondingly, the requested number of SVE has been 

estimated in such a way that the standard deviation is very low after averaging on these 

independent volumes. Therefore, the microstructural parameters of the O2 electrodes have been 

computed on a RVE estimated to 9x9x9 µm3 for both cells [57] whereas the ones of the H2 

electrode of Cell-A have been calculated on a RVE evaluated to 15x15x15 µm3 [57]. Since 

the H2 electrode active layer of Cell-B has a thickness limited to 10 µm (Fig. 4), the computation 

of its microstructural properties have been carried out by averaging the data computed on 16 

independent SVEs of 8.5x8.5x8.5 µm3 (for which the standard deviation becomes negligible).  

All the properties including the effective conductivities have been calculated by keeping a voxel 

size (or element size for the FEM mesh) of 25 nm. As already discussed in [10], this 

discretization of the structure is adequate to describe correctly the morphological details in the 

microstructure and then to compute accurately its properties. Nevertheless, because of its very 

fine microstructure, it has been chosen to compute the properties of the O2 electrode of Cell-B 

on the FIB-SEM volume by keeping a voxel size of 16.5 nm.  

Moreover, both the covariance functions and the M-factors for each phase have been calculated 

in the three spatial directions. They have been found to be very close to each other meaning that 

the electrodes can be considered as an isotropic medium. As a consequence, all the electrodes 

properties have been averaged on the three spatial directions. All the parameters for both Cell-

A and Cell-B are given in Table 1, 2 and 3 for the O2 and H2 electrodes.  
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4. Validation of the random field model on 3D reconstructions 

 

4.1 Validation for the two-phase O2 electrodes  

 

The model for the two-phase materials has been validated on the LSCF and LSC O2 electrodes 

of Cell-A and Cell-B. The 3D rendering volumes of the real and synthetic microstructures are 

compared in Fig. 5. As a first approach, the visual inspection of the 3D volumes for both 

electrodes reveals that the virtual microstructures seem to mimic quite perfectly the real ones. 

Therefore, it seems that the model would be able to describe accurately the coarse 

microstructure of Cell-A as well as the finer microstructure of Cell-B. As illustrated in Fig. 6a, 

this first statement is confirmed by the very good agreements between the covariance functions 

calculated on the synthetic volumes and the tomographic reconstructions. As it was expected, 

this result highlights in one hand the possibility to compute accurately the correlation )(hX  

with eq. (10), and in the other hand, to have a good fit of )(hX with the exponential correlation 

function.  

 

To go further in the model validation, the cumulative PSD and all the key electrode 

microstructural parameters of the virtual electrodes have been determined in the same 

conditions than the data computed with the tomographic reconstructions (i.e. for the same RVE 

and voxel size). As shown in Table 1, a very good agreement is achieved for all the parameters 

calculated for both electrodes. Indeed, the relative errors listed in Table 1 remain restricted in a 

range of few percent. For instance, the disagreement in respect of the electrode specific surface 

area, which is a crucial parameter controlling the electrode kinetic rate for the oxygen 

incorporation [70], does not exceed 5% for both cells. Actually, the highest mismatch is found 

for the geometrical tortuosity and the constrictivity factor related to the pore phase of Cell-B. 

In this case, the error on these two parameter reaches values of around +/-10%. It can be noticed 

that the mismatch between the virtual and real volumes arises for the phase that exhibits the 

finest microstructure characterized by the lowest mean particle size diameter and phase volume 

fraction. Therefore, for the two-phase electrode, the model yields the highest discrepancies on 

the geometrical tortuosity and constrictivity factor for the finest electrode microstructure.   

It can be also remarked that the M-factor presents an error ranging between +/-5% and +/-10%   

whatever the investigated electrode phase (Table 1). Indeed, this parameter combines the errors 
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on the phase volume fraction, the geometrical tortuosity and constrictivity as discussed 

previously. Nevertheless, despite this discussion on its limitation, it worth underlining that the 

model is able to statistically reproduce the main O2 electrode microstructural properties with a 

high level of confidence.  

 

 

Fig. 5. Visual comparison between the synthetic microstructures and the reconstructed 

volumes for the O2 electrodes of (a) Cell-A and (b) Cell-B.          

 

Table 1 

Microstructural properties for the O2 electrodes of Cell-A and Cell-B computed on the 

tomographic reconstructions and the synthetic volumes.  
O2 electrode of Cell-A 

  Gas phase Solid phase (LSCF) 

Properties 
Sp 

µm-1 

 
(%) 

 
(%) 

dp
(*)

 

(µm) 
geo 

 (-) 
 
(-) 

M-factor 

(-) 
 

(%) 
 

(%) 

dp
(*)

 

(µm) 
geo 

 (-) 
 
(-) 

M-factor 

(-) 

Real 
µ-structure 

3.80 99.96 43.64 0.26 1.22 0.10 0.194 99.99 56.36 0.32 1.34 0.11 0.289 

Virtual 

µ-structure 
3.78 99.94 43.61 0.27 1.23 0.11 0.185 99.98 56.39 0.32 1.46 0.12 0.319 

Error 0% 0% 0% +4% 0% +4% -5% 0% 0% 0% +9% +6% +10% 

O2 electrode of Cell-B 
  Gas phase Solid phase (LSC) 

Properties 
Sp 

µm-1 

 
(%) 

 
(%) 

dp
(*)

 

(µm) 
geo 

 (-) 
 
(-) 

M-factor 
(-) 

 
(%) 

 
(%) 

dp 

(µm) 
geo 

 (-) 
 
(-) 

M-factor 
(-) 

Real 

µ-structure 
6.28 99.76 28.83 0.12 2.27 0.23 0.078 100 71.17 0.22 1.31 0.31 0.474 

Virtual 
µ-structure 

5.97 99.47 28.85 0.13 2.03 0.26 0.084 100 71.15 0.24 1.22 0.33 0.497 

Error -5% 0% 0% +8% -11% +13% +7% 0% 0% +9% -7% +6% +5% 

(*) mean phase diameter taken from the PSD. 

 

Finally, as shown in Fig. 6c and 6d for both cells, a good agreement is also observed between 

the cumulative PSDs of the virtual and real electrodes. It is worth mentioning that these curves 

characterize all the morphological details of the microstructure at different length scales. From 

that point of view, they integrate all the errors for the morphological parameters listed in Table 

1. Therefore, the PSD plots can be seen as the toughest criteria to validate the model. Since the 

mismatch with the real electrodes is rather limited for both cells, it is claimed that the 
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Virtual µ-structure

9
 µ

m

(a) O2 electrode of Cell-A

Virtual µ-structureReconstruction
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microstructure generated with truncated Gaussian random field is fully representative of the 

two-phase electrode materials.  

 

  

  

Fig. 6. Comparison between the synthetic and real O2 electrode microstructures in respect 

of (a,b) the covariance functions and (c,d) the cumulative PSDs for both Cell-A and Cell-B.  

 

 

4.2 Validation for the three-phase H2 electrodes 

 

The Ni-YSZ synthetic microstructures has been generated with the two independent random 

fields GX and GY related to the two solid phases and the porosity as the complementary set. As 

already mentioned, no large difference in terms of representativeness has been found whatever 

the considered combination. The 3D rendering volumes of the synthetic microstructures are 

compared to the Ni-YSZ cermet reconstructions in Fig. 7. As for the LSCF or LSC electrode, 

the visual inspection indicates that the model would be able to describe correctly the more 

complex microstructure of the three-phase electrodes. This preliminary observation is also 
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supported by the good agreement found between the covariance functions of the real and 

synthetic microstructures (Fig. 8a and 8b).   

 

 

Fig. 7. Visual comparison between the synthetic microstructures and the reconstructed 

volumes for the H2 electrodes of (a) Cell-A and (b) Cell-B.          

 

To check more precisely the model representativeness, the microstructural properties of the 

synthetic volume have been compared to the real values in Table 2 and 3. As a general matter, 

a rather good accordance is found for all the parameters. More specifically, it can remarked that 

the model is able to reproduce accurately the density of TPBs which is of central importance as 

it controls the efficiency of the Ni-YSZ electrode [8]. Indeed, the error on the density of TPBs 

is less than +/-2.5% for the two studied cells. Moreover, the model is also able to capture 

correctly the electrodes specific surface areas for both electrodes with a mismatch that does not 

exceed +/-2%. Actually, the highest discrepancy arises for the transport properties of the pore 

and Ni phases of Cell-A and Cell-B. In this case, the errors on the M-factor ranges between 20-

25% while the one for the YSZ phase of both electrodes remains negligible (1%). This 

noticeable discrepancy on the microstructural factor for the Ni and pore phases is clearly related 

to the error on the constrictivity parameter (cf. Table II). This mismatch on the constrictivity 

seems to be correlated with the phases that exhibit the lowest volume fraction (<30% for the Ni 

and pores and >45% for the YSZ). In other words, it appears that the model is able to reproduce 

accurately the metric properties (i.e. volume fractions, specific surface areas, mean phase 

diameters and density of TPBs), whereas a higher discrepancy on the topological parameters 

(i.e. constrictivity and tortuosity) is detected for the phases with a low volume fraction (cf. Ni 

phase in Table 2 and 3). As the topological properties are related to the connectivity [82], a 

large variation in their values can be expected when the volume fractions get closer to the 

percolation threshold. This remark could explain the apparent correlation between the error on 
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tortuosity and constrictivity for low phase volume fractions. However, some authors [83] have 

proved, for some random spatial structures, that there does not exit any direct link between the 

percolation threshold and its topology described by the Euler-Poincaré characteristic. From this 

point of view, it appears that further investigations are still needed to better understand the 

evolution of the electrode topology close to the percolation limit. Nevertheless, as a general 

comment for the three-phase electrode, it turns out that the model exhibits a limitation to 

reproduce with a high level of confidence a microstructure composed of very high constrictive 

phases associated with low volume fraction.  

 

The cumulative PSDs are plotted in Fig. 8c and 8d for Cell-A and Cell-B. There is a relatively 

good agreement between the curves. As expected, the highest discrepancies arise for the Ni and 

pore phases of Cell-A and Cell-B. In this case, the curves for the real microstructure are more 

widespread than the ones for the synthetic volume. It means that the Ni and pore phases present 

a large distribution of particle lengths which is well correlated with their low constrictivity 

parameters. This results highlight the model limitation to model perfectly the high constriction 

effect associated with a large distribution of particle size. Nevertheless, it is worth mentioning 

that this limitation of the model remains acceptable for the investigated SOCs electrodes (in the 

worst case, the error on the microstructural factor does not exceed 25% for Cell A and 24% for 

Cell-B: cf. Table 2 and 3). As a consequence, despite the limitation on the constrictivity factor, 

it can be then concluded that the adapted plurigaussian random field model is able to simulate 

accurately the main electrode properties, and then to provide a realistic and representative Ni-

YSZ synthetic microstructure. 

 

Table 2 

Microstructural properties for the H2 electrodes of Cell-A computed on the tomographic 

reconstruction and the synthetic volume.  
H2 electrode of Cell-A 

 Gas phase Electronic conducting phase (Ni) 

Properties 
Sp 

µm-1 

 
(%) 

 
(%) 

dp 
(*) 

(µm) 
geo 

(-) 
 
(-) 

M-factor 

(-) 
Sp 

µm-1 
 

(%) 
 

(%) 

dp
(*)

 

(µm) 
geo 

 (-) 
 
(-) 

M-factor 

(-) 

Real 

µ-structure 
2.67 94.74 28.04 0.28 1.67 0.09 0.030 2.30 97.45 27.88 0.33 1.75 0.08 0.041 

Virtual 

µ-structure 
2.64 99.43 28.14 0.28 1.62 0.11 0.036 2.32 99.21 27.78 0.34 1.70 0.10 0.051 

Error -1% +4% 0% 0% -3% +22% +21% +1% +2% 0% +3% -3% +25% +25% 

 Ionic conducting phase (YSZ) Density of TPBls (Ni/YSZ/gas contact lengths) 

Properties 
Sp 

µm-1 

 
(%) 

 
(%) 

dp
(*)

 

(µm) 
geo 

 (-) 
 
(-) 

M-factor 

(-) 
TPBls 

(**) 

(µm-2) 
Real 

µ-structure 
3.68 99.78 44.08 0.28 1.43 0.13 0.189 4.78 

Virtual 
µ-structure 

3.65 99.94 44.08 0.29 1.43 0.13 0.190 4.73 

Error -1% 0% 0% +3% 0% 0% 0% -1% 

(*) mean phase diameter taken from the PSD. (**) density of ‘active’ TPBls computed on the connected phases. 
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Table 3 

Microstructural properties for the H2 electrodes of Cell-B computed on the tomographic 

reconstruction and the synthetic volume.  
H2 electrode of Cell-B 

 Gas phase Electronic conducting phase (Ni) 

Properties 
Sp 

µm-1 

 
(%) 

 
(%) 

dp
(*)

 

(µm) 
geo 

(-) 
 
(-) 

M-

factor 

(-) 

Sp 

µm-1 
 

(%) 
 

(%) 

dp
(*)

 

(µm) 
geo 

 (-) 
 
(-) 

M-factor 
(-) 

Real 

µ-structure 
2.94 94.23 26.55 0.24 1.74 0.39 0.021 2.46 92.81 24.13 0.28 1.81 0.34 0.018 

Virtual 
µ-structure 

2.87 98.65 26.80 0.25 1.66 0.45 0.026 2.41 97.75 24.82 0.28 1.74 0.41 0.021 

Error -2% +4% +1% +4% -4% +15% +24% -2% +5% +2% 0% -4% +21% +17% 

 Ionic conducting phase (YSZ) Density of TPBls (Ni/YSZ/gas contact lengths) 

Properties 
Sp 

µm-1 

 
(%) 

 
(%) 

dp
(*)

 

(µm) 
geo 

 (-) 
 
(-) 

M-

factor 

(-) 

TPBls 
(**) 

(µm-2) 

Real 

µ-structure 
3.42 99.92 49.55 0.31 1.14 0.44 0.243 6.20 

Virtual 
µ-structure 

3.45 99.98 48.38 0.31 1.13 0.47 0.246 6.07 

Error +1% 0% -2% 0% -1% +7% +1% -2% 

(*) mean phase diameter taken from the PSD. (**) density of ‘active’ TPBls computed on the connected phases. 

 

 

  

  

Fig. 8. Comparison between the synthetic and real H2 electrode microstructures in respect 

of (a,b) the covariance functions and (c,d) the cumulative PSDs for both Cell-A and Cell-B. 
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In ref. [71], the authors have investigated the representativeness of the model proposed by 

Abdallah et al. [44] who considered an alternative method based on two underlying independent 

Gaussian random fields with two constant thresholds for the segmentation. The validation was 

performed on the same Ni-YSZ electrode reconstruction of Cell-A. The deviation from the real 

microstructural properties was significantly higher than the one reported in Table 2. For 

instance, the error on the density of TPBs and the constrictivity for the Ni phase reaches 11% 

and 38%, respectively [71]. Therefore, the proposed model based on an adjusted partitioning of 

the bigaussian field GXY, is more accurate to simulate representative microstructures, and hence 

it can be seen as an improved method regarding the SOC application.                

 

5. Discussion: model flexibility to various electrode microstructures 

 

With the present validated numerical tool, different synthetic microstructures could be 

generated by changing the model input parameters. If considering the 3D reconstructions as the 

reference electrode, the set of synthetic volumes could be used to establish the microstructural 

relationships for the classical SOC electrodes. For instance, the effect of phase volume fractions 

can be easily investigated by changing the random field thresholding. Moreover, in order to 

investigate a finer or a coarser microstructure, the mean diameter of each phase can be tuned 

by changing its correlation length in the expression of )(hi  (cf. eq. (12)).  This kind of 

sensitivity analysis can be used for a numerical optimization of the SOC electrode 

microstructures in order to provide guidelines for the cell manufacturing. Nevertheless, aside 

from this classical optimization, the relevance of the 3D microstructure model must also stand 

in its capacity to generate a large variety of innovative electrode architectures. In the following, 

the model flexibility is illustrated and discussed on different examples of promising electrode 

designs. 

  

5.1 Impact of domain partitioning  

 

As mentioned in Section 2.2, the contact surface areas between the phases in the three-phase 

electrode depend on the domain partitioning of the bivariate distribution. This property of the 

model can be useful to control the ‘coverage rate’ of one phase to the other, and hence, to adapt 

the interfacial specific surface areas between the electrode phases. This model property is 
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illustrated on Fig. 9: by changing the domain partitioning, the specific surface areas can be 

easily tuned by keeping the same phase volume fractions and phase characteristic lengths. As 

expected, the density of TPBls is maximal when the three interfacial specific surface areas are 

equal (Fig. 9). Nevertheless, knowing that the volume fractions and characteristic lengths are 

not modified, it can be remarked that the density of TPBls is not strongly affected by changing 

the domain partitioning. Advantage could be taken of this model specificity regarding the 

microstructural optimization. Indeed, as an illustration for the LSCF/CGO composite, the 

maximization of the LSCF/gas interface by keeping a sufficiently high density of TPBls would 

be necessary to promote the oxygen adsorption and incorporation [10]. Correspondingly for the 

Ni/YSZ cermet operated in electrolysis mode, it could also be interesting to increase the Ni/gas 

interface area to favor the suspected limiting step of steam adsorption on the Ni surface [2]. 

         

 
Fig. 9. Impact of domain partitioning for a composite electrode. The ‘coverage rate’ 

between the phases can be tuned to control the specific surface areas and density of TPBs 

(simulated microstructure with the same volume fraction for each phase). 

   

Furthermore, the particular situation of constant parallel thresholds leads to divide the domain 

in three horizontal cells resulting in a microstructure with one intermediate phase that surrounds 

the other (Fig. 10). By taking advantage of this model specificity, it becomes possible to model 

the electrodes prepared by infiltration which have the potentiality to be the next generation of 

functional active layers replacing the classical composite [72]. Indeed, depending of the 

manufacturing process, the infiltration results in a continuous thin film deposited on an 

electrode scaffold [5,73]. As shown in Fig. 10, this particular materials architecture can be 

easily modeled by reducing the volume fraction of the intermediate phase with the partitioning 

in three parallel strips of the bivariate distribution.   
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Fig. 10. Simulation of a thin film coating impregnated onto the surface of the electrode 

backbone (simulated microstructure with: =0.41 for the ionic conducting scaffold, =0.19 

for the catalytic coating). 

 

 

5.2 Introduction of a local thresholding: illustration on the graded electrodes  

 

With the random field model, spatial heterogeneities can be introduced in the microstructure 

with a threshold that depends on the local position in the material. This model feature offers the 

possibility to generate specific architectures for optimizations by material design. In this frame, 

the Functionally Graded Materials (FGM), which exhibit a spatial distribution in the 

composition and/or in the structure, are nowadays widely studied as advanced engineering 

materials [74]. The concept of FGM has been applied to the SOC electrodes in an attempt to 

enhance the cell efficiency and reliability [75,76]. With a gradient in composition and/or 

particle size for both electronic and ionic conducting phases, it has been shown that the 

electrode performances may be improved by optimizing the ohmic losses in the active layer 

[77,78]. Besides, by mitigating the thermal expansion mismatch with the electrolyte, it has been 

shown that the graded electrodes present an enhanced mechanical stability [79]. Nevertheless, 

the best compromise between the mechanical robustness and electrochemical efficiency needs 

to be identified [78]. 

 

As an illustration of the local thresholding for the SOC application, the graded electrodes have 

been simulated with the model. For the two phase materials, a gradient in composition can be 

easily introduced in the microstructure by considering a threshold that evolves continuously 

along the thickness of the active layer (Fig. 11a). For the composite electrodes, the 

microstructure should exhibit two opposite compositional gradients for the electronic and ionic 

15 µm

Ionic or mixed ionic-electronic 
conducting backbone
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conducting phases in order to maximize the collection of both electronic and ionic currents [78]. 

This structure can be simulated by using a space dependent partitioning of the bivariate 

distribution in order to get the targeted local electrode composition. Moreover, this mapping 

can be done by controlling the angle around the triple point to optimize the interfacial specific 

surface areas (cf. previous section). For a sake of clarity, the evolution of domain partitioning 

is illustrated in Fig. 11b for two constant thresholds. As expected, the resulting microstructure 

presents two continuous and opposite gradients for the ionic and electronic conducting phases 

(Fig. 11c) that are assumed to be well representative of real graded electrodes. Thanks to the 

model flexibility, the compositional gradients in association with the local morphological 

characteristics such as interfacial surface area are liable to be optimized.   

 

         

 
Fig. 11. Graded electrodes simulated with the local thresholding: (a) 3D rendering volume 

for a two-phase electrode, (b) Evolution of the domain partitioning: illustration of the 

thresholding maps taken at three different locations along the electrode thickness and (c) 

3D rendering volume for a three-phase electrode. 

 

 

5.3 Introduction of a multi-correlation length: impact on interfacial roughness   

 

The morphology of the solid/solid or gas/solid interface plays a major role in the SOC electrode 

efficiency. Indeed, a high surface exchange between the phases is generally required to favor 

the reactions of mass and/or charge transfers. Aside from the classical ceramic manufacturing 

routes, various deposition techniques such as the Electrostatic Spray Deposition (ESD) [6] have 

been recently used to control the electrode surface morphology. For example, the ESD has 
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allowed to produce LSCF nanostructured porous coatings for the O2 electrode with a high 

surface area [80].  

 

In order to reproduce such kind of electrodes, it can be interesting to produce virtual 

microstructures by controlling the local topology of the gas/solid interface. This can be achieved 

with the random field model by introducing a second correlation length 
* related to the 

electrode local roughness. This possibility has been investigated for the O2 electrode. The 

method is based on the generation of two random fields, )(, zGX   and )(** ,
zG

X 
, containing the 

information on the characteristics lengths at the ‘microscopic’ and ‘nanoscopic’ scales,  and 

* , respectively. Typically, the characteristic length   of the microstructure is around 0.25-0.75 

µm while the dimension of the local roughness 
*  could be in the range of few tens of 

nanometers [80]. In practice, )(, zGX   and )(** ,
zG

X 
 are combined in a bigaussian field and then 

segmented considering a specific diagonal domain partitioning defined by the threshold 

 *XX GG . This domain partitioning allows to give the same weight for the characteristics 

of )(, zGX   and )(** ,
zG

X 
 in the final synthetic microstructure. It is equivalent to add the two 

fields and used a constant threshold as follows:      

)()()( ** ,, zGzGzG
XXsolid      with  *

  and    )(zGP solidsolid   (20) 

As the method is based on the sum of two independent random fields )(, zGX   and )(** ,
zG

X 
 

associated to their correlation functions )(, zX   and )(** ,
z

X 
 , it is also equivalent to the 

generation of one single field )(** ,,
zG

XX 
 defined by the correlation 

)()()( **** ,,,,
zzz

XXXX 
  .  Note the procedure leads to add some few small disconnected 

inclusions in the phases that are removed by simple morphological operation [51].  

 

To illustrate the method, the O2 electrode microstructures obtained with one and two correlation 

lengths have been generated and compared in Fig. 12a and 12b. In order to make the comparison 

relevant, it is worth noting that the two microstructures have been generated in such a way that 

they present the same phase volume fraction and the same mean particle size. As expected, the 

microstructure which combines the two correlation lengths presents a much higher surface 

roughness than the one obtained with the classical method. Indeed, the electrode specific 

surface area is increased from 3.89 µm-1 for the classical microstructure to 5.12 µm-1 for the 
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second one. This evolution is in good agreement with the PSD of the solid phase plotted in Fig. 

12c: the microstructure obtained with two correlation lengths exhibits a dissymmetry in the 

distribution due to the appearance of small particles related to the surface roughness. This 

results highlight the flexibility of the method to control the morphology of the electrode 

interfaces.            

 

          
Fig. 12. 2D slices taken in the 3D synthetic volume for a two-phase electrode simulated 

with: (a) one correlation length and (b) two correlation lengths. (c) PSD plots for the two 

microstructures. Both electrodes have been simulated so that they have the same phase 

volume fraction (solide=0.5) and mean phase diameter (dp=0.2 µm).  

 

 

6. Conclusion  

 

An original 3D stochastic model, based on the truncated plurigaussian random fields, has been 

adapted to simulate the complex microstructure of SOC electrodes. To improve the relevance 

of the method regarding to the application, the model includes a generalization consisting in an 

Ad hoc partitioning of the combined random fields. A special attention has also been paid to the 

numerical implementation in order to generate the electrode virtual microstructure in a very 

short time. This criterion is of central importance for forthcoming studies devoted to the 

microstructural optimization or to the assessment of the complex relationships linking the 

morphological electrode properties.  

 

The representativeness of the virtual microstructures has been checked on several synchrotron 

X-ray and FIB-SEM tomographic reconstructions obtained on typical LSCF, LSC and Ni-YSZ 

electrodes. The validation step has been carried out by comparing a set of relevant electrode 

morphological properties as well as the phase effective conductivities or diffusivities. It has 
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been found that the model is able to reproduce accurately the density of TPBs and the specific 

surface areas which are the main parameters controlling the reaction kinetic rates in the 

electrodes. For both of this microstructural properties, the mismatch between the synthetic 

material and the real reconstruction do not exceed a few percent whatever the tested electrode. 

Although the model fails to reproduce perfectly very high constrictive phases, the characteristic 

parameters controlling the mass and charge transport in the virtual microstructures have been 

found to be in rather good agreement with the properties of the real electrodes. As a general 

matter, it was inferred from this analysis that the synthetic media mimic correctly the complex 

microstructure of typical SOC electrodes. 

 

Finally, the model flexibility to simulate different types of SOC microstructural architectures 

has also been illustrated on different examples. Aside from the classical properties such as the 

volume fractions or the characteristic lengths of the phases, a specific domain partitioning of 

the bigaussian random field allows controlling the coverage rate of one solid phase to the other. 

This characteristic of the model is particularly useful to generate SOC electrode prepared by 

infiltration resulting in a uniform and continuous thin layer covering a scaffold.  With a local 

thresholding depending on the position, continuous graded electrodes can be also produced. 

Finally, the model offers the possibility to introduce different correlation lengths for each phase 

in order to control the local topology of the interfaces. All these cases illustrate the model 

capability to be adapted to the different kind of promising electrode designs for further 

numerical microstructural optimizations.                   
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Appendix 

 

1. Expression of the correlation )(hX as a function of the weight function ω(h): 

 

By definition, the correlation function )(hX  is the covariance of the random field )(zGX : 

 )(),(cov)( hzGzGh XXX       (A1) 

Since XG is defined as the convolution of an uncorrelated Gaussian random noise U(z) with the 

weight function ω(h) (cf. eq. (7)), )(hX can be expressed as follows: 

   








 


)(),(cov)( 2211

21

hhhzUhhzUh
hh

X       (A2) 

Considering the basic linear property of the covariance, the previous equation can be re-written 

as follows: 

     
 


1 2

2121 ,cov)()()(
h h

X hhzUhzUhhh       (A3) 

The covariance of the random noise is equal to 1 if hhh  21 and 0 otherwise. Besides, 

considering the symmetry of the weight function ( )()( hh  ), Eq. (A4) becomes: 

  )()()()(
2

22 hhhhh
h

X   


     (A4) 

 

2. Relation between )(hCX , )(hX and X : 

 

The covariance )(hCX is defined as follows: 

 
 


X X

dxdxxxpXhzXzPhCX

 

2121 ),(),()(      (A5) 

Where ),( 21 xxp is the bivariate distribution or probability density function given by: 
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It can be easily demonstrated that 
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The integration of the previous equation,  drpdr
hC r

r
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X
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, leads to the relation 

used in the method: 
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List of Symbols 

ZYXi ,,  Phase name (–) 

i  Complementary phase of i (–) 

iC  The covariance function of i (–) 

i  The volume fraction of i (–) 
i

pS  The specific surface area of i (µm-1) 

ji

pS ,
 The interfacial specific surface area between i and j (µm-1) 

  3D domain (–) 

V  Domain volume (µm3) 

iG  Random Gaussian field of phase i (–) 

X  Threshold (–) 

)1,0(N  Standard Normal Distribution (–) 

U  Uncorrelated Gaussian random noise (–) 

  The weight function (–) 

i  The correlation function of i (–) 
p  Probability density function (–) 

FFT  Fast Fourier Transform (–) 

l  Correlation length (µm) 

ijG  Bi-Gaussian random field (–) 

iD  Domain or Cell related to the phase i (–) 

 Mathematical constant Pi  3.1416 (–) 

TPB Density of Triple Phase Boundaries lengths (µm-2) 
geo

i  Geometrical tortuosity (–) 

i  Constrictivity parameter  (–) 

iM  Microstructure-factor (–) 

pd  Mean phase diameter (µm) 

 Proportion of connected phase (–) 

 

 


