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Abstract—A novel approach towards the spectral analysis of
stationary random bivariate signals is proposed. Unlike existing
approaches, the proposed framework exhibits a natural link
between well-defined statistical objects and physical parameters
for bivariate signals. Using the Quaternion Fourier Transform, we
introduce a quaternion-valued spectral representation of random
bivariate signals seen as complex-valued sequences. This makes
possible the definition of a scalar quaternion-valued spectral den-
sity and the corresponding autocovariance for bivariate signals.
This spectral density can be meaningfully interpreted in terms of
frequency-dependent polarization attributes. A natural decompo-
sition of the spectral density of any random bivariate signal in
terms of unpolarized and polarized components is introduced.
Nonparametric spectral density estimation is investigated, and
we introduce the polarization periodogram of a random bivariate
signal. Numerical experiments support our theoretical analysis,
illustrating the relevance of the approach on synthetic data.

Index Terms—stationary random bivariate signals, polariza-
tion, Stokes parameters, degree of polarization

I. INTRODUCTION

ANDOM bivariate signals are 2D vector timeseries. They

appear in a large variety of applications, ranging from
oceanography [0, [2], to optics [B], radar [4], geophysics [H]
or EEG analysis [6] to name but a few. A bivariate signal is
usually decomposed in two orthogonal components u[t] and
v[t]. Thus a bivariate signal x[t] can be either represented as
the vector signal z[t] = (u[t], v[t])T € R? or the complex-
valued signal z[t] = u[t] + iv[t].

The statistical analysis of signals with vector-valued sam-
ples can be carried out using standard multivariate time series
analysis techniques (see e.g [[, chap. 9] or [B, chap. 11]),
bivariate signals are no exception. However, in the signal pro-
cessing community, bivariate signals have often been described
using complex-valued models [9]-[T3]. Main advantages are
the simplification of algebraic manipulations and geometrical
insights offered by the complex representation. To account
for the full second-order statistical characterization of the
complex signal z[t] = wu[t] + %v[¢], a usual approach is to
define two quantities: the usual autocovariance function and
the complementary-covariance function (the relation function
in [9]). This leads to the definition of the augmented vector
(z[t], z[t])T € C? gathering the signal and its conjugate, and to
the related augmented covariance and spectral density matrices
[T2, chap. 8].
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The rotary spectrum analysis [I], [P] is a well-known
technique rooted in oceanographic studies. It is based on
the decomposition of the spectrum of a complex-valued sig-
nal into counter-rotating components. This seminal approach
has stimulated many theoretical developments [T4]-[T9]. The
rotary components method is also related to polarization
analysis [[2], [T4]. Both methods provide an equivalent spec-
tral description of the underlying elliptical motion structure
of the bivariate signal. The focus on polarization or rotary
components usually depends on the field of application: rotary
components are more common in oceanography, while optics
and radar scientists usually deal with polarization [2Z0]-[24].

In physical sciences, ellipse parameters such as orientation
or shape convey fundamental information about the physics
that generated the data. An ideal spectral description of
bivariate signals should thus provide a natural link between
statistical objects and physical parameters.

Existing approaches all rely on the same spectral repre-
sentation of stationary bivariate processes, which is based on
the standard Fourier Transform (FT). For complex signals, it
means that negative frequencies must be taken into account,
as they provide information about the process. Usually, one
considers spectral matrices rather than a scalar spectral density.
As a consequence, meaningful physical parameters are not
directly “readable” in the state-of-the-art formulations.

We propose a new approach to analyze the spectral content
of stationary random bivariate signals. It is based on recent
results from [23], [26] and extended to the case of stationary
bivariate signals seen as complex-valued signals. This paper
provides a well-suited framework for the analysis of stationary
bivariate signals which naturally describes the spectral content
and the geometric or polarization content of bivariate signals.
Thanks to the definition of the dedicated Quaternion Fourier
Transform (QFT), it is possible to describe the spectral content
of such signals in terms of polarized and unpolarized parts,
which both encode meaningful information about the signal.

This paper structure is as follows. Section I reviews the
necessary material regarding quaternions and the QFT. Section
M gives the central results of this paper: we introduce the
scalar quaternion-valued spectral density of a bivariate signal
and its subsequent properties. Results are compared with state-
of-the art approaches. In particular the differences between
second-order circularity, also called properness, and polariza-
tion are stressed. Simple explicit examples are presented in
Section M. Section M deals with nonparametric spectral den-
sity estimation, and introduces the polarization periodogram.
Our theoretical analysis is supported by numerical experiments
in Section M. Section V11 gathers concluding remarks.



II. QUATERNION FOURIER TRANSFORM
A. Quaternion algebra

We review the basic material regarding quaternions and refer
to more detailed textbooks (e.g. [277]) for a complete overview.
Quaternions form a four dimensional noncommutative algebra.
Any quaternion ¢ € H can be written in its Cartesian form as

q=a+bi+cj+dk, (D
where a,b,c,d € R and ¢, 5, k are roots of —1 satisfying
i =342 =k?>=1ijk=—1. )

The canonical elements 2, 7, k, together with the identity of H
form the quaternion canonical basis given by {1,4,j,k}. We
will use the notation S(q) = a € R to define the scalar part
of the quaternion ¢, and V(q) = ¢ — S(q) € span {¢,j,k} to
denote its vector part. We can define the real and imaginary
parts of a quaternion ¢ as R(q) = a, J;(q) = b, J;(q) =
¢, Jk(q) = d. A quaternion is called pure if its real (or
scalar) part is equal to zero, that is a = 0, e.g. ¢, 7, k are pure
quaternions. The quaternion conjugate of q is § = S(q)—V(q).
The modulus of a quaternion ¢ € H is defined by |¢|*> =
q@ = qq = a®> + b?> + c® + d%. The inverse of a non-zero
quaternion is defined by ¢~! = q/|q|>. Importantly quater-
nion multiplication is noncommutative, that is in general for
p,q € H, one has pg # gp. Involutions with respect to ¢, 3, k
are defined as §° = —iqi, ¢ = —jqj, ¢ = —kqk. They
describe reflections with respect to planes in R* and extend
somehow the notion of complex conjugation. The combination
of quaternion conjugation and involution with respect to an
arbitrary pure quaternion g is denoted by ¢** := @” = @T)
and for instance (a +bi +cj 4+ dk)* = a+ bi — cj + dk. For
later use, we also introduce the notation |q|§ = qq*.

Quaternions encompass complex numbers. One can con-
struct complex subfields of H, e.g C; = span{l,j} or
C; = span{1,4} which are isomorphic to C. Any quaternion
can be seen as a pair of complex numbers: let us mention the
symplectic decomposition ¢ = ¢1 +1%¢2, g1, g2 € C;, where the
quaternion q is splitted into two C;-valued complex numbers.
This form is particularly suited for computations performed
later on with the quaternion Fourier transform.

Polar forms of quaternions exist. For an arbitrary pure unit
quaternion g and 0 € R, we have exp(uf) = cos 6 + psin 6.
It generalizes the notion of complex exponentials and the
following polar form was proposed in [Z8]:

q = |q| exp[i6] exp[—kx] exp[j¢], 3)

with (0,x,¢) € [-7/2,7/2] x [-n/4,7/4] x [—m,7]. This
form is particularly useful for quaternion embedding of com-
plex signals, see [5], and in the spectral description of
stationary monochromatic signals in Section I[M.

B. Quaternion Fourier Transform

We review here briefly the Quaternion Fourier Transform
(QFT) introduced in [29] and studied in detail recently in [25].
We refer the reader to these articles for proofs and a detailed
presentation. A striking benefit of the QFT is that it provides a

well-suited framework for bivariate signals. A key contribution
of this paper, the spectral representation Theorem [ relies on
the use of the QFT.

Here we consider only discrete-time (DT) signals: ¢ is a
time index such that z(tA) = x[t], where A is the sampling
step. We assume A = 1 in the rest of this paper.

A bivariate signal can be written as a C;-valued signal
x[t] = u[t]+iv[t], with u, v real signals. We define its Discrete
Time Quaternion Fourier Transform (hereafter denoted QFT)
of axis j by
+o00o
Z x[t] exp(—j2nvt), X (v) € H. 4)

t=—o0

X(v) £
The inverse QFT is given by

+1/2
x[t] = / X (v) exp(j2mvt)dv. (5)
—1/2

The above relations are directly obtained by discretizing the
continuous-time QFT presented in [25], [2Y] using similar
arguments as for the usual FT.

In terms of w,v components, the QFT writes

H>X()=UW)+iV(v), Uw),V(v)eC;, (6)

where U(v),V (v) are the standard FTs of w,v: the QFT is
performing two standard FT. This may explain why this QFT
shares most properties of the classical FT, see [23].

The QFT of C;-valued signals exhibits an ¢-Hermitian
symmetry [29]:

X(-v)=X({)". 7
Eq. (@) shows that, when using the QFT with z[t] € C;, neg-
ative frequencies carry no additional information to positive
frequencies about the signal.

The 2-Hermitian symmetry () permits the construction of
the quaternion embedding of a complex signal, by canceling
out negative frequencies of the spectrum. The quaternion
embedding of a complex signal is a direct bivariate counterpart
of the usual analytic signal and permits to identify both
instantaneous phase and polarization (i.e. geometric) properties
of a complex signal, as discussed in [23].

III. SPECTRAL REPRESENTATION OF BIVARIATE
STATIONARY RANDOM PROCESSES

Any bivariate discrete-time random process x[t] can be
decomposed as z[t] = u[t] + iv[t], where u[t],v[t] are real-
valued discrete-time random processes. The process x[t] is
said to be second-order stationary if u[t] and v[t] are jointly
second-order stationary, that is [, p. 655]:

E {z[t]} = E{ult]} +E{v[t]} =m € C;, (8)
Ryult, 7] = E{ult]ult — 7]} = Ruu[7], Ruul0] <00, (9)
Ry[t, 7] = E{v[t]v]t — 7]} = Ryo[7], Ruw[0] < 00, (10)
Ru[t, 7] = E{ult]v[t — 7]} = Ryo|[7]- (1D

Here E{-} denotes the mathematical expectation and
Ry, Ry, and Ry, denote usual autocovariance sequences
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(ACVS) and crosscovariance sequences (CCVS) between real-
valued sequences. Second-order stationarity ensures that first
and second-order moments are finite and do not depend on ¢; it
is simply referred to as stationarity in the sequel. All processes
are assumed to be zero-mean, i.e. m = 0, and covariance
sequences satisfy sufficient conditions ensuring that their usual
Fourier transform exist.

A. Main result

Using the QFT, we derive a spectral representation theorem
for any bivariate stationary process x[t] = u[t] + v[t]. The
existence of the spectral increments d X (v) follows from the
existence of the (usual) spectral increments of w[t] and vl[t],
see for instance [BU, p. 36], [[Z, p. 246] or [B1, p. 344]. Namely,
we can write z[t] as the (quaternion) Fourier-Stieltjes integral

+1/2
x[t] = / dX (v) exp(§2mvt),
~1/2

(12)

where the spectral increments dX (v) = X (v + dv) — X (v)
are quaternion-valued and X (v) is an independent additive
random measure. The existence roots in two main properties.
The QFT restricted to C;-valued processes is isomorphic to the
standard FT so that the spectral increments dU (v),dV (v) of
u[t], v[t] are C;-valued. Moreover the QFT is left-quaternion-
linear, that is VA € H, the QFT of Az[t] is AX (v) so that

dX(v) =dU(v) +idV (v). (13)

Theorem 1 (Spectral representation of bivariate stationary
random processes). Ler x[t] = wu[t] + @v[t] be a bivariate
stationary process. Suppose that u[t] and v[t] are both har-
monizable. Then there exists a quaternion-valued orthogonal
process X (v) such that

+1/2
x[t] = / dX (v) exp(§2nvt), (14)
—-1/2
the integral being defined in the mean-square sense. The
process X (v) has the following properties:

1) Vv, E{dX(v)} =0,

2) Vo, E{|dX(»)[?} + E {|dX(y)|§}j = Tu(v)dv,
where T, (v) is the spectral density of ,

3) For any v # V', we have

E {dX(z/)dX(z/)} =E{dX(»)dX ()9} =0,

which shows that the spectral increments dX (v) are two
times orthogonal.

Appendix @A proves this theorem that follows the derivation
given by Priestley [[Z], adapted to the QFT setting. Properties
1), 2) and 3) essentially come from the self and joint properties
of the spectral increments dU(v) and dV(v). Property 2)
introduces the quaternion-valued spectral density of x. This
is in fact a power spectral density since (see Appendix [Al)
one has

+1/2
/ Poa(v)dv = E{Jzlt)?} + B {|all;} j € H (15)
~1/2

where the right-hand side contains all the power information
of the process x[t].

Note that four (real) power-related quantities are necessary
to describe the second-order properties of a bivariate signal,
see Section IMI=0. This argues in favor of the definition of
relevant scalar quaternion-valued quantities such as 'y, ().

Note also that our definition of I, () stands in a general-
ized function sense, allowing to manipulate Dirac distributions.

Since z[t] = u[t] + v[t] € C;, the spectral increments
additionally satisfy the same ¢-Hermitian symmetry as the
QFT of deterministic C;-valued signals, i.e.

—_—

dX(—v) = dX(v) (16)
As a result, the spectral density ', () has symmetry
Lo (—v) = D (v)* (17)

This result shows again that the study of C;-valued (bivariate)
signals can be performed using only positive frequencies of
its quaternion-valued spectral representation. At each (posi-
tive) frequency, a quaternion-valued quantity summarizes both
power and polarization properties of x. This will be detailed
in Sections =0 and [I-D.

Remark. The spectral increments dX (v) are quaternion-
valued random variables (RV). It is usual to describe the full
second-order statistical structure of a quaternion RV ¢ by the
four covariances E {qq**}, u = i,7,k. These covariances
often obey some symmetries characterized by the notion of
properness. Properness levels of quaternion RV have been in-
vestigated by several authors [32]-[34] and reviewed recently
in [B5]. The spectral increments of a C;-valued process x[t]
satisfy the symmetry (I8) and thus property 3) of Theorem [
with v/ = —v yields

E {dX()dX(v)*} = E{dX(v)dX(v)**} =0. (18)
Eq. (IX) shows that the spectral increments dX(v) are
(1,7)-proper in the classification of [B5], also denoted as
Cj-properness in [33]. This can be seen as a generalization
of the properness (in the usual complex sense) of the spectral
increments of a real stationary process.

B. Covariances, Wiener-Khintchine theorem

Thanks to Theorem [, we are able to describe the spectral
content of random bivariate signals by their spectral density.
Usually, this spectral density is introduced by using Wiener-
Khintchine theorem once the autocorrelation of the process
has been defined. This is not the case here due to the non-
commutativity of H: the notion of (auto-)covariance must be
carefully defined if one wants to recover a Wiener-Khintchine
theorem for quaternion valued processes. To this aim, a natural
approach can be to define the autocovariance of x by inverse
QFT of Ty, (v):

+1/2
Ve [T] = / Lo (v) exp(g2mvT)dy,
~1/2

19)



so that v, [7] is explicitly given by (see Appendix &)

Yo |T] = Ruyu[T] + Ryp[T]
+ (Ruu[7] = Row[7])J + 2Ruu[T]k.

The autocovariance function ~,.[r] takes its values in
span {1, 7, k}. It is not symmetric in 7, as the term Ry, [7] is
not symmetric in general. More generally one can define the
cross-spectral density between two bivariate stationary random
processes x[t] = ug[t]+1v,[t] and y[t] = u,[t]+iv,[t], where
ug[t], vk[t] € R, k = z,y. Let us denote by dX (v) and dY (v)
their spectral increments. The cross-spectral density between
x and y is (from adaptation of Eq. (ZR) in Appendix @A)

Y ()7}
(21)
so that their cross-covariance defined as its inverse QFT reads:

Ruzuy [T] + Rvyvz [T] + (Ruyvz [T] - Ruzvy [T])Z
— Ry, 0, [T])J + (Ruyv, [T] + Ru,v,[T])k. (22)

This quaternion-valued cross-covariance encodes the full
statistical information about x and y. Eq. (Z0) and (P2)
may sound disappointing at first glance, but there is no
simple expression of those equations in terms of usual
covariance E {)x[t]y[t - T]}
E {z[t]y[t — 7]}. However the following Wiener-Khintchine
like theorem directly connects z[t] and y[t] to the cross-
spectral density (ZI).

(20)

Pay()dv = E{dX(n)dY (1) } + B {dX (v)

Yay[T] =
+(Rumuy [T]

and complementary covariance

Theorem 2. Let x and y be two jointly stationary random

bivariate signals taking values in C;. Then
+oo
E {dX(u)dY(y)} - Y E {x[t]e‘j%”y[t - T]} (23)
. +O_o_ . .
E{dX()dY ()Y} = > E{aftle P>yt - 77} 24)

where dX,dY are the H-valued spectral increments of x,y of
Theorem . In the special case y[t] = x[t] one has

io E {x[t}e*jg’rwm}

T=—00

V(T Z E {zt]

T=—00

S(Tea(v)) (25)

__7271'1/7' T]*j }J (26)
Sketch of proof. We start by developing both sides using ex-
pressions of dX (v) and dY (v) in terms of dUy(v),dVi(v),
k = z,y and z[t],y[t] in terms of ug[t],vk[t], k = x,v.
Then usual rules of quaternion calculus (e.g. 1q2 = G2 @1
for 1,92 € H; iq = gt if ¢ € C;) permit to simplify both
sides. Standard Wiener-Khintchine theorems for real signals
lead to the result. O

Let us note finally the following property.

Proposition 1 (Autocorrelation of a sum of independent
signals). If x and y are independent, C;-valued, stationary
processes then

Yoty z+y [T] = ’Yzz[ﬂ + Vyy [T] 27

Proof. By direct calculation. O

Proposition 1 is a desirable result, which permits to manipu-
late quaternion valued autocovariance functions like standard
autocovariance functions. Note that this result applies with
spectral densities of independent signals x and y as well: the
spectral density of x 4y is the sum of their spectral densities.

C. Spectral density and Stokes parameters

The spectral density I'y,(v) is directly related to Stokes
parameters, which are fundamental quantities used to describe
the polarization state of electromagnetic waves [Bf], [B7].
Indeed they correspond to physical quantities that are exper-
imentally measurable. Stokes parameters are given by [I7],

[B4]

So(¥) = Puu(v) + Pou(v), (28)
S1(v) = Puu(v) = Pou(v), (29)
Sa(v) = 2R{ Py ()}, (30)
S3(v) = 23 {Puu ()}, 3D

where we have introduced the usual spectral densities of u and
v, Py, and P,,, as well as the usual cross-spectral density P,,,.

Theorem 3. Let I, (v) be defined by Theorem W. It can be
re-expressed like

Lo (V) = So(v) +1S5(v) + 551 (v) + kSa(v).

where S, (v), « =0,1,2,3 are the Stokes parameters of .

(32)

Proof. The two terms appearing in expression 2) of Theorem
[ can be expressed in terms of the spectral increments dU (v)
and dV (v) thanks to (I3):

E{|dX(v)]*} =E{|dUW)*} + E{|dV (v)]*} 33)
= (Rtu( ) + Pm;(V))dVa
and
E{|dX(v)[;} = E{laU(@)P"} - E {Jav()]*}
+ 2B {aU(n)aV (V) } i (34)
= (Puu(v) — Pyp(v) + 2P, (v)1)d.
Then (B2) follows from (EZX) — (B). O

Eq. (B2) has a powerful geometric interpretation. Stokes
parameters permit to separate the contribution of polarized and
unpolarized components, as discussed next in Section II=E.
The scalar part So(v) of I';,(v) is the total power at frequency
v, i.e. the sum of the power of the polarized and unpolarized
parts. The vector part describes only the polarized part of x
at frequency v.

D. Poincaré sphere and degree of polarization

Fig. [ depicts the Poincaré sphere of polarization states [20,
p. 125] [37], [BR]. At frequency v, the vector part of I';,, (V) —
normalized by its scalar part Sy(v) — identifies a point on this
Poincaré sphere. The angular coordinates (26, 2 ) are directly
related to the mean ellipse properties of the signal, i.e. 6 is
the mean orientation and Y is the mean ellipticity.
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Fig. 1. Poincaré sphere representation of polarization states. Frequency
dependence has been dropped for clarity. A point on the sphere corresponds to
a particular polarization state, given by its spherical coordinates (@, 26, 2x).

At each frequency, the radius of the Poincaré sphere is called
the degree of polarization ®(v). Namely,

_ VSiWw)

S8
So(v)

v) + S5(v)

)
" STy

where V(-) and S(-) denote the vector and scalar part, respec-
tively. It follows from the definition of ®(v) that 0 < ®(v) < 1
for all v. The degree of polarization ®(v) quantifies the
balance between polarized and unpolarized components. This
motivates the following vocabulary: the process z is said to
be

o fully polarized at frequency v if ®(v) =1,
o unpolarized at frequency v if ®(v) =0,
« partially polarized at frequency v if 0 < ®(v) < 1.

The degree of polarization is a quantity of fundamental interest
in many fields (see e.g. [BY], [20]). It is invariant to a change
of reference frame, making it a robust parameter of interest.

E. Decomposition into polarized and unpolarized parts

The Unpolarized/Polarized part decomposition (hereafter
termed UP decomposition) has been evoked in Section IMI=CI.
The spectral density of a stationary bivariate signal can be split
into two parts: an unpolarized part and a polarized part. Let
us rewrite the spectral density of Theorem [ as

Tpp(v)dy = [1 - @) E {|dX (v)[*}
[ (V)E {[dX (v |2}+E{IdX( )l }J}
=T% (v)dv + TP (v)dv, (36)

where the u and p superscripts stand for unpolarized and
polarized part, respectively. The decomposition (Bf) is unique.
Using Stokes parameters, we get

Pow(v) = [1 = @(¥)] So(v)

+ [@()So(v) +S3(v) + 3 51(v) + kS2(v)]
which corresponds to the usual decomposition given in stan-
dard optics textbooks, see e.g. [20, p. 127], [34, p. 551], using
quaternions in place of vectors. Eq. (37) highlights how the

degree of polarization rules the power repartition between the
polarized and unpolarized parts of the spectral density.

(37)

FE. Comparison with previous work

1) Proper and improper signals: The notion of
(im)properness of complex signals, also called second-
order circularity, has attracted much interest in the signal
processing community over the last two decades, see [U],
[T2], [3] and references therein. To account for the full
second-order statistical structure of a stationary complex
signal, one has to consider both the usual autocovariance
R[] and the complementary covariance R,.[r] such that:

Ra,lr] = E{alelt =]}
Ryo[7] = E {z[t]z]t — 7]}

Proper signals are characterized by a zero complementary co-
variance sequence, meaning that a signal z[t] is not correlated
with its complex conjugate x[t — 7], for all 7. It follows that

V7, Ruu|[T] = Ryo[7] and Ry, [—7] + Ruu[7] = 0. (40)

(38)
(39)

A direct consequence is that the spectral density (B2) of a
proper signal x[t] reads

Lyw(v) = So(v) +4S3(v) (41)

as conditions (E0) are equivalent to S7(v) = S2(v) = 0 for all
v. Eq. (E) shows that a proper signal is in general partially
circularly polarized. This highlights that polarization and
properness of complex random signals are distinct concepts
and therefore shall not be confused.

2) Relation to the rotary spectrum approach: To illustrate
the relevance of the quaternion-valued spectral density I';,. (V)
defined in Theorem [, we compare it to the well-known
rotary spectrum approach [[II], [2], [I5]. This later method
decomposes a bivariate signal into a sum of clockwise (CW)
and counterclockwise phasors (CCW) — the so-called rotary
components [[5]. The determination of the rotary components
relies on the usual spectral density P, (v) and complementary
spectral density P, (1) defined by standard FTs of R, [r] and
Ry |7, respectively [I72].

For v > 0, the CW rotary power spectrum is given
by P..(v), while P,,(—v) gives the CCW rotary power
spectrum. The rotary coherence (i.e. correlation between CW
and CCW components) is controlled by P, (v), which is in
general complex-valued.

The rotary spectra can be expressed in terms of Stokes
parameters like [12, p. 213]

Pur(v) = So(v) + S3(v),  Prp(v) = S1(v) +iS2(v). (42)



Since Sy(v) is even and Ss(v) is odd, P..(v) shows no
particular symmetry. Moreover, we see that P, () combines
in one real scalar two very different quantities: Sy(v) is related
to the total power, and Ss(v) gives the (signed) power of the
circularly polarized part. This is not surprising since the pair
(Pyo(v), Pee(v)) was introduced to account for improperness
properties of complex-valued signals, not polarization prop-
erties. In contrast, ', (v) naturally separates the total power
from the polarization information.

The rotary spectrum and the quaternion-valued approach
provide equivalent representations. However, the quaternion-
valued spectral density I';, provides a direct interpretation of
physical quantities, the Stokes parameters. These parameters
appear naturally in the components of I',.,.. The use of the QFT
to study bivariate signals provides a well-suited framework
for a meaningful and rooted in physics “geometric spectral
analysis”. This approach demonstrates that the use of higher
dimensional algebra in the definition of the FT permits a direct
connection between well-defined mathematical objects and
relevant physical quantities without introducing any a priori
structural model, e.g. as in [IZ2], [I5].

IV. EXAMPLES

A. Bivariate monochromatic signals

Let the bivariate monochromatic signal x[t] be defined by

z[t] = 2ae (cos x cos[2mvot + ¢ 43)
+i sin x sin[27vot + ¢]),

where a, x, 0 are the parameters of the elliptical polarization
and ¢ is a random phase term uniformly distributed on [0, 27).
The autocovariance of z[t] (see (Z0)) now reads:

Yaz|T] = 250 cos[2mvyT] 4+ j2.57 cos[2mvgT] 44)
+ 2k (S2 cos[2mvyT] + Ss sin[271o7]) .
where Sy = a%, S; = a®cos(20)cos(2y), S2 =
a”?sin(20) cos(2x) and S3 = a?sin(2y) are the Stokes param-
eters. The autocovariance is not symmetric. The value of S5
controls the odd contribution, whereas the remaining terms are
all even. It therefore follows that the autocovariance function
of a monochromatic signal is even if and only if the signal is
linearly polarized, i.e. S5 = 0. The spectral density I',.(v) is
obtained by the QFT of ~,.[7] given in (Z4):
Loo(v) = T8 — 1) + T 6 (v + 1),  (45)
where [0 = Sy 41535+ 351 + kS2. From Stokes parameters
above, the degree of polarization is at frequency v

V(s \/S?% + 82+ 52
o) = gy — R 1 o

which highlights the fact that a bivariate monochromatic
signal is always fully polarized.

B. Bivariate white noise

Consider the process w[t] = u[t] +iv[t] where u, v are both
real, i.i.d. and jointly second-order stationary with properties:

E{u} =E{v} =0,

4
E{UQ} = 0121,’ E {02} = 012)7 E{U’U} = PuvOuOyp. ( 7)

Since u, v are i.i.d., the corresponding covariances are

Ruu [T] - 0—557,07 va[T] = 0357,0, Ruv [7—] - puvguo—v5770~
(48)
which yields the autocorrelation of w using (20)

Y [T] = [UZ + 024 4(02 —02)+ Qkpuvauav} 0r0. (49)

The spectral density is obtained by QFT:

Cpw(v) = 03 + 012, + j(oi — 012,) + 2kpup0u0y. (50)

This spectral density is constant. It has no z-component, so that
S3(v) = 0 for all v. As a consequence, an arbitrary second-
order stationary bivariate or complex white noise shows no
ellipticity. It is always either unpolarized, or linearly polarized
(fully or partially). The polarization properties are identical
at all frequencies.

The polarization degree defined by (B3) is:

V(02 —02)2 +4p2 0202
02+ 02

b =

. (S

where we see that x[t] is unpolarized at all frequencies iff
0. = 0y and py, = 0. This case is equivalent to proper white
noise. When ¢ # 0, the angle 0 of the linear polarization is
given by § = 0 if p,, = 0 and by

_ 1 2puvTu0y :
{0 = jatan2 [ 207y | if oy, # 0y

(52)
0 =mn/4,if o, = 0,

when p,, # 0 and where atan2 denotes the four-quadrant
inverse tangent.

The UP decomposition of bivariate white noise gives a
simple procedure to simulate bivariate white noise with desired
polarization properties. Let 0 < ® < 1 be the desired degree
of polarization, §# € [—n/2,7/2] the orientation angle and
So > 0 the total intensity. Let w"[t] be an unpolarized white
noise, C;-valued, such that R[] = dr0. Let wP[t] be
a real-valued white noise sequence of unit variance. Assume
further that w"[t] and wP[t] are independent. Then the white
noise w[t] constructed as

wlt] = V1 — ®+/Sow" [t] + V®+/Sp exp(i)w®|t]

has spectral density Iy, (v) = So+3jPSp cos 20+ kP Sy sin 26
where one recognizes a linear polarization state with spherical
coordinates (®,26,0), see Fig. [.

(53)

C. Bivariate monochromatic signal in white noise

Consider the signal y[t] = x[t] + w[t], where z[t] is a
bivariate monochromatic signal and wlt] is a bivariate white
noise. Assume moreover that z[t] and w[t] are independent.
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From Proposition [ the spectral density of y is directly given
by the sum of their spectral densities:

Lyy(v)

where Ty, (v) is given by (B0) and T2 = S, + 155, +
351,z + kS2 45 the S, denote the Stokes parameters of z.
At v = vy the spectral density writes I'}% = So, + 253, +
351,y + kS, where

=T 5(v — vy) + D0 6(v + 1) + D (V) (54)

2 2
Slay = Sl@ + Ou — 0y

SS,y = SB,:L’

2 2
SOJ/ = SO#D + O + )

(55)
SQ,y = 52,:1: + 2puv0uavu

First, we see that S;, and Sy, parameters are mixing po-
larization properties of x and w. Since S3, is not modified
in presence of white noise, only the direction of polarization
changes, not the ellipticity. The output degree of polarization
(at v = 1) takes a simple form when the noise is unpolarized
since 0,, = 0, and p,, = 0 in this case:

VSt + S8+ 83,

SNR
Son 102 102 P, <P,

TSNR+1 “ -

¢, = (56)
where SNR = Sy . /(02 + 02) is the signal-to-noise ratio
(SNR). The degree of polarization decreases with the SNR.

V. SPECTRAL DENSITY ESTIMATION

We propose two nonparametric spectral density estimation
methods, and derive their properties. In particular, we investi-
gate the problem of estimating the degree of polarization. In
the remainder of this paper, we consider a bivariate stationary
signal x[t] = u[t] + dv[t] consisting of N samples such that
t=0,1,...N — 1 and with sampling size A = 1.

A. A naive spectral estimator: the polarization periodogram

The first basic spectral density estimator is the polarization
periodogram f&’;} (v). The underlying rationale is very close
to the derivation of the usual periodogram. One starts by
computing an estimator %’2 [7] of the autocovariance sequence
Yz |T]- It is done by combining usual (biased) estimators of
auto- and cross-covariance sequences, e.g.:

N—1
1
R NZut—FT ], 7=0,1,...N -1 (57
t=1
where Rq(ﬁ,)[T] = Rl(f;)[fﬂ for r = —1,...,—(N — 1)
and Rq(ﬁ,)[ ] = 0 for |7| > N. Auto-covariance estimators

follow from (B2). Then taking the QFT of fy(p )[ ] given by
(L0) yields the polarization periodogram, which reads (after
simplification)

N
F) = N 3 afe e
=1
tN ) (58)
+N—1 Zm[t] —j2nvt J
t=1 j

Alike the classical periodogram, this estimator is a biased,
inconsistent estimator of the spectral density I';,(v). One has

+1/2

B{10 )} = / o

where Fy(v) = sin®(rNv)/[N sin®(rv)] is the Fejér kernel.
It follows that the polarization periodogram is only asymptoti-
cally unbiased. Note however that in the case of white noise, as
Tww(v) is constant, the polarization periodogram is unbiased
for any N. This is a bivariate counterpart of a classical result,
see e.g. [&1, p. 202].

Alike in standard spectral analysis [Z1], data tapers are to
be employed to produce a direct spectral estimator with better
bias properties than the naive polarization periodogram.

Fn(v — Ve (V)Y (59)

B. Multitapering

The multitaper method is a well established technique [B1]—
[43] which produces a spectral density estimate with reduced
variance, while maintaining good bias properties. The basic
idea is to compute a series of K direct estimators T _(v),
k=0,1,... K — 1 that are approximately uncorrelated [Z1].
The k-th spectral estimator reads
N 2
v) = Z By [t)[t]e =92t

t=1

2 (60)

t}eijTrut j,

J
where the hy’s are real-valued sequences of size V. They are
normalized ( i\; 61 hi[t]* = 1) and orthogonal

N—

)_l

h t]hk/ 61)

t=0

= Ok,

Functions satisfying these conditions together with good leak-
age properties are for instance the Slepian tapers [24]. Then
the multitaper estimate is obtained by averaging:

1 K
t _ Pk
V) - ?;sz(y)

Regarding the choice of K [B3], let denote the signal
duration by ' = NA (here A = 1) and the desired bandwidth
by 2B = 2W/(NA), where W € N*. 2W corresponds to the
number of frequency samples over which the spectral estimate
is smoothed out by multitapering. The number of Slepian
tapers is K = 2T'B — 1 = 2W — 1 which does not depend on
N. Moreover a good bias-variance tradeoff is guaranteed for
small values of W, typically W < 5 so that K < 10.

(62)

C. Estimation of the degree of polarization

1) Theoretical properties: The estimation of the degree of
polarization (B3) has attracted interest in the signal processing
community [45], [A6] in relation to many fields [BY], [B0O].



A naive estimator (at frequencies where the polarization pe-
riodogram is nonzero) based on the polarization periodogram
would be trivial since:

_ aEE )]
S(CE ()

which is systematically biased, except for frequencies where
x[t] is fully polarized. In a situation where M approximately
uncorrelated estimates of the spectral density are available
(having multiple realizations of 2 or using a multitaper es-
timate (B2), in which case M = K) one can form a new
estimate of the degree of polarization as

- | V(I )]
M (y) = m=1 " , 64
) S ST () v

which is a better estimator of ® than (B3). Medkour and
Walden® [43] studied theoretically this estimator in a Gaussian
setting and showed that it is unbiased in the limit M — oco.

2) Numerical study: We propose to numerically study the
performances of the estimator (B4). To avoid spectral blurring
effects, we consider the (Gaussian) white noise case since in
that case the polarization periodogram is an unbiased estimator
of the spectral density:

E{L0,0)} = Tuu(v).

The spectral density I',,,, () is given by (B0) and is constant.
The UP decomposition (B3) of bivariate white noise permits to
generate white noise with prescribed polarization properties.
We fix Sy = 1,6 = 0 without loss of generality. We generate
M independent bivariate white Gaussian noise sequences of
length N = 10° samples for several values of ®. This leads to
M independent periodogram estimates of the spectral density
(BR). The degree of polarization is then estimated by averaging
in (b4) for each positive Fourier frequency vy, = k/N,
0 < k < N/2. These N/2 degree of polarization estimates
are independent?. Since bivariate white noise has a constant
spectral density, they can thus be averaged out to compute an
estimate of E{ &M |

Fig. O depicts the bias in the estimation of the degree of
polarization, for M = 1,2,5,10,20,50 and 500. Given M,
the bias increases as the true degree of polarization goes to
0. The bias decreases with larger values of M, and becomes
negligible for M — oo. Note that for typical values of M (2 to
10) used in multitaper estimation, the bias remains significant
up to & ~ 0.6. Our results agree with those of [&3].

It is worth noting that spectra of polarization attributes can
be more difficult to obtain than simple power spectra, as the
observation of many realizations may be required to reach a
good accuracy.

) (v) =1, (63)

(65)

I Their approach is based on spectral matrices rather than the quaternion-
valued spectral density introduced here. However this does not change the
nature of their results, since definitions of the degree of polarization are
identical.

2More precisely, recall that for a white Gaussian noise the N/2 samples
corresponding to the positive Fourier frequencies v = k/N, 0 < k < N/2
are independent [£1, p.222]. The same result holds here for the QFT and the
bivariate white noise.

1.0
0.8
’el‘ 0.6}
%
& 04l \//\
0
-_g \7/
02f N\,
QJ()
0.0} iz 500

0.0 0.2 0.4 0.6 0.8 1.0
degree of polarization &

Fig. 2. Estimation bias of the degree of polarization obtained by averaging
M independent polarization periodogram estimates. The bias is smaller for
large values of M and a degree of polarization close to unity.

VI. NUMERICAL VALIDATION

We consider the synthetic bivariate signal of Section [N=C]
y[t] = z[t]+w][t], where x is a bivariate monochromatic signal
defined by (BE3) and where w is a bivariate white Gaussian
noise given in (B3). All signals are of length N = 1024. We
consider positive frequencies only, as negative frequencies can
be obtained by symmetry (7).

The frequency of the monochromatic signal x is set to
vg = 128 /N = 0.125. At frequency vy, the signal x has Stokes
parameters: So (o) = 1, $1,2(r0) = S1,2(10)/S0,:(v0) =
—0.354, 527I(V0) = SQ,I(VO)/SO7$(VO) = —0.612, Sg,w(uo) =
S3 2 (10)/S0,2(v0) = 0.707 and ®,(vp) = 1 since x is
monochromatic. For v # 1y, all Stokes parameters .S, .,
a = 0,...,3 are zero. Equivalently,  is defined by a, = 1,
0, = —7/3 and x, = 7/8 using Eq. (E3).

The white noise signal w has constant-frequency Stokes
parameters (see Section IV=B) such that Sy, (v) = 1072,
&, (v) =0.2, 0,(v) = /8 or equivalently, s1,,(v) = 0.141
and s2 ,,(v) = 0.141. Since w is a white noise sequence (and
thus has no memory), s, () = 0 for any v.

The spectral description of y[t] = z[t] + wt] was derived
explicitly in Section IV=O. Using expressions (B4) and (B3) we
see that the resulting Stokes parameters at v # 1 are those
of w. At frequency 1y we have

So,4(10) = So,2(v0) + So.w (),
Sl,y(l/()) = Sl,z(l/()) + Sl,w(VO), (66)
Sy (10) = Sa2.2(0) + S2.w(v0),  S3.4(10) = S3.(10).-

For frequency 1y, the normalized Stokes parameters and
polarization degree are

Slyy(ljo) = 703497 827y(1/0) = *0605,
s3.5(v0) = 0.700, @, (19) = 0.989.

Due to the polarization properties of w, the polarization
properties at vy of y are not the same as those of x.

(67)
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To investigate the estimation of the spectral density of vy,
we have generated M = 20 realizations. For each realization,
we compute the polarization periodogram and the multitaper
estimate using K = 5 Slepian tapers corresponding to a
bandwidth-duration product 27'B = 6. To reduce the bias
of the degree of polarization estimate, those estimates are
averaged to produce a polarization periodogram estimate and
a multitaper estimate. This also reduces bias on normalized
Stokes parameters estimates, as one expects the estimates of
S1, 82,53 to be biased as they depend on the value of the
degree of polarization.

Fig. B shows one realization of the process y and subsequent
simulation results. As expected the (averaged) multitaper esti-
mate has less variance and leakage bias than the (averaged) po-
larization periodogram. Theoretical values of the components
of the spectral density are indicated by arrows on the right for
noise level and horizontal thin lines at vg. One first observes
that the periodogram yields a better estimate of Sy (1), which
can be explained by the smoothing effect of multitapering.
However, multitapering yields a better bias-variance tradeoff
on estimates of all relative quantities such as s, (v) and ®(v).
In particular note that the standard deviation of the estimate
of s1(v) from the periodogram is of the order of magnitude of
s1(vp). This corresponds to the expected behaviour of these
estimators.

VII. CONCLUSION

This paper provides a powerful and relevant framework for
an interpretable and efficient spectral analysis of stationary
bivariate processes. The richness of the quaternion algebra
permits a fruitful interplay between mathematical tools and
physical features. Using the QFT, we have introduced the
quaternion-valued spectral representation of a bivariate sta-
tionary random signal. As a result, the quaternion-valued
spectral density is defined. Moreover it can be expressed
in terms of Stokes parameters. It permits a direct physical
interpretation of both power and polarization features of the
signal. By introducing the degree of polarization, the spectral
density can be written as the sum of unpolarized and polarized
components. Simple examples demonstrate the relevance of
the approach. Usual tools of standard spectral analysis can
be adapted to the nonparametric spectral density estimation
of bivariate signals. We emphasize the issue raised by the
estimation of the degree of polarization and of polarization
attributes. These key quantities are relevant to the analysis
of bivariate signals but require special care. Our approach is
very generic and easy to use thanks to the companion BiSPy
package®. It generalizes the standard toolbox of spectral anal-
ysis to bivariate stationary signals and paves the way to new
developments in the simulation, estimation and filtering of
bivariate signals.

APPENDIX A
PROOF OF THE SPECTRAL REPRESENTATION THEOREM [

The proof is divided in two parts, for clarity.

3 https:/7github.com/jflamant/bispy

a) Existence: Let z[t] = u[t] + iv[t], where ult], v[t]
are real-valued, zero-mean, harmonizable stationary processes.
These real processes admit a spectral representation, such that

+1/2
ult] = / dU (v) exp(j2nvt),
-1z (68)

+1/2
off] = / AV (1) exp(j2mt),
—1/2
where dU,dV are the Cj-valued spectral increments of w,v
respectively. Recall that the QFT applied to C;-valued signals
is equivalent to the usual Fourier transform. By linearity of
the QFT, the spectral increments of x are dX (v) = dU(v) +
1dV (v), so that

+1/2

x[t] :/ dX (v) exp(g2mvt) (69)
~1/2

holds for all ¢ in the mean-square sense.

b) Properties of the spectral increments: The properties
of the spectral increments dX (v) are a direct consequence
of the properties of the spectral increments of u and v,
respectively. If x is assumed zero-mean stationary,

+1/2

vt E{alt]} = [ o BlX@)espimn =0 o

= E{dX(v)} = E{z[t]} = 0.

Turning to the second-order properties of the spectral incre-
ments, let us consider the spectral representation of » and v.
Second-order stationarity implies that (see [[Z] for details)

Wt E{dU(v)dU (V')
E{dV(v)dV (V')

=0
=0

(71)

and autocorrelation functions of u, v read

+1/2 .
E{u[t}u[t—T]}:/_l/Q E{|dUW)12} 827, (72)

+1/2 '
E{v[t]v[t—r]}:/1/2 E{|dV())2} 927, (73)

The quantity E {|dU(v)[*} is interpreted as the spectral
density P,, of u times dv. The same result holds for v.

To fully characterize the spectral increments of =, we also
need the covariance between the spectral increments of u and
v. Since u and v are jointly second-order stationary,

Vv £ E {dU(V)dV(u’)} =0, (74)

and the cross-correlation function reads

+1/2 . .
E {uftv]t — 7]} = E {dU(u)dV(u)} A2 (75)

—1/2

As a result we have from ([ZI) and (IZ4):

Vv £V, E {dX(l/)dX(l/’) =0,
Vv # v E{dX(v)dX ()7} = 0.

(76)
(77)


https://github.com/jflamant/bispy

1000 0.3 .
1200 —— periodogram

10° )
— multitaper

Frequency [Hz]

Frequency [Hz]

Fig. 3. Spectral density estimation of the y = = + w signal, where x is a monochromatic bivariate signal and w is a bivariate white Gaussian noise. Two
estimates are presented, the averaged polarization periodogram and averaged multitaper estimate (computed with K = 5 Slepian tapers). They are constructed
by averaging single estimates obtained via M = 20 independent observations of the process y. Thin lines and arrows indicate the theoretical values of
intensity parameter Sy (), normalized Stokes parameters sqa () = Sa(v)/So(v), o = 1,2,3 and degree of polarization ®(v).

When v’ = v, the properties are summarized by the spectral
density 'y, (v)

E{|dX()]*} + E{dX()dX (1)} j = Tou(v)dv (78)

which separates in quaternion algebra the information con-
tained in the two moments of the spectral increments. This
theorem holds also for quaternion-valued stationary signals by
simply adapting the proof.

As a corollary, after developing dX (v) in (I¥) in terms
of dU,dV components and using (I2), (3), (&) yields the
general expression (Z0) of the autocovariance v, [7] by inverse
QFT. In particular for 7 = 0 one obtains (I3).
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