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On the use of the energy norm in trust-region and adaptive cubic

regularization subproblems

E. Bergou ∗ Y. Diouane† S. Gratton‡

March 6, 2017

Abstract

We consider solving unconstrained optimization problems by means of two popular glob-
alization techniques: trust-region (TR) algorithms and adaptive regularized framework using
cubics (ARC). Both techniques require the solution of a so-called “subproblem” in which a
trial step is computed by solving an optimization problem involving an approximation of the
objective function, called “the model”. The latter is supposed to be adequate in a neigh-
borhood of the current iterate. In this paper, we address an important practical question
related with the choice of the norm for defining the neighborhood. More precisely, assuming
here that the Hessian B of the model is symmetric positive definite, we propose the use of
the so-called “energy norm” – defined by ‖x‖B =

√
xTBx for all x ∈ Rn – in both TR and

ARC techniques. We show that the use of this norm induces remarkable relations between
the trial step of both methods that can be used to obtain efficient practical algorithms. We
furthermore consider the use of truncated Krylov subspace methods to obtain an approxi-
mate trial step for large scale optimization. Within the energy norm, we obtain line search
algorithms along the Newton direction, with a special backtracking strategy and an accept-
ability condition in the spirit of TR/ARC methods. The new line search algorithm, derived
by ARC, enjoys a worst-case iteration complexity of O(ε−3/2). We show the good potential
of the energy norm on a set of numerical experiments.

Keywords: Nonlinear optimization, unconstrained optimization, trust-region algorithm, adaptive
regularized framework using cubics, line search algorithm, energy norm, Krylov subspace methods,

conjugate gradient.

1 Introduction

In this paper, we consider the following unconstrained optimization problem:

min
x∈Rn

f(x), (1)

where f : Rn → R is a given smooth function. We propose to solve (1) by means of trust-region
(TR) methods [7] or an adaptive regularized framework using cubics (ARC) [6]. In recent years,
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there has been a constant interest in the TR techniques [7, 11, 9], while ARC algorithms for
unconstrained optimization enjoy a growing interest [3, 6, 5, 16, 14, 4]. The key principle of
these two approaches is the (possibly iterative) minimization of objective function models (often,
but not always, quadratic or cubic). During such minimization process, a control of the step
length is used either trough an explicit constraint formulation or through a specific penalization
term; that minimization stage is known as the “subproblem”. Both TR and ARC frameworks
can also be seen as regularization techniques as they control and impose restrictions on a certain
parameter (a TR radius or a regularization parameter). TR algorithms are well established and
studied, see [7] and references therein, whereas ARC methods are relatively newer and exhibit
good performance in terms of global and local convergence properties as we briefly describe now.
Numerical experiments indicate that ARC algorithms can be competitive with TR approaches
when solving small-scale problems [6]. ARC algorithms are also famous since they improve
substantially the worst-case iteration and gradient evaluation complexity over the classical TR
methods [5]. Such improvement has been recently extended to modified TR methods [9] where
a specific step update mechanism is proposed. The proposed TR algorithm exhibits the same
worst-case complexity bound as ARC algorithms and enjoys the same convergence properties
(fast local and global convergence) as the classical TR methods.

For both frameworks, the trial step from one iterate to the next is approximated by min-
imizing a given model of the objective function while the next iterate is maintained in a pre-
specified neighborhood of the current iterate. An important practical aspect of TR and ARC
techniques is on the use of an appropriate description of the neighborhood. In this paper,
we focus on the neighborhoods defined as spheres for some scaled versions of the Euclidean
norm, i.e. ‖x‖M =

√
xTMx where M is a symmetric positive definite (SPD) matrix. Under

such consideration, approximating the subproblem solution requires (approximately) solving a
non-linear system, derived from the optimality conditions, by applying a zero-finding solver to
the so-called “secular equation” [7]. Practical approaches to get an approximate solution are
proposed in [7, 4, 6, 11], where the solution of the secular equation is typically approximated
over specific evolving subspaces using Krylov methods. The main drawback of such approaches
is there expensive computational cost as they may require solving multiple linear systems in
sequence.

Our approach for choosingM is related to ideas developed, for instance, when solving infinite-
dimensional linear problems arising in elliptic partial differential equations. In fact, it is common
to recourse to iterative techniques for solving the corresponding linear systems after discretiza-
tion. In this setting, finding a sound stopping criterion is essential to overcome both over- and
under- solving the regarded problem, i.e. appropriately balance the error due to the truncation
of the iterative solver and the discretization error. It can be shown that it is theoretically nat-
ural and practically relevant to work with the scaled Euclidean norm where M is chosen as the
matrix of the linear system itself [2, 1]. For optimization problems, the use of the absolute-value
of the Hessian (that corresponds to the energy norm in the case of a positive definite Hessian)
to define the trust region in the TR algorithms was proposed in [7, Section 7.7.1] as “the ideal
trust region” that reflects the proper scaling of the underlying problem. For a large scale indef-
inite Hessian, computing the absolute-value is certainly a computationally expensive task. This
means that for large scale optimization problems the use of the absolute-value energy norm can
be seen as out of reach, and was not further considered in [7]. In this paper, we investigate the
use of the energy norm instead of a general scaled norm for both the TR and ARC algorithms in
the situation where the Hessian of the model is SPD, which we believe is common. To mention
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only one widespread application, it occurs when a Gauss-Newton approach is used for solving
nonlinear least-squares problems.

In this paper we show that, for locally convex model in TR/ARC framework, the compu-
tational cost of the associated subproblem is nearly the same as solving a linear system (i.e.,
approximating a minimizer of the associated quadratic model), and does not involve nonlinear
iterations. We also consider a large-scale variant for the case where matrix factorizations are not
affordable, implying that only iterative methods for computing a trial step can be used. In this
case, we propose a truncated Krylov subspace method for the subproblem. Using our subprob-
lem solvers, we also consider the performance of the overall unconstrained optimization solver
and show that the energy norm may produce much better results than a standard Euclidean
norm based algorithm. Most notably, our approach is very economical because the dominant
computational cost of our TR/ARC algorithms is mainly the cost of successful iterations in the
TR/ARC algorithms, solving the subproblem for unsuccessful iterations being straight-forward
and inexpensive. The proposed approaches are in practice line search algorithms along the New-
ton direction, with a special backtracking strategy and an acceptability condition in the spirit
of TR/ARC methods. We show that the proposed line search approach, derived by the ARC
framework, enjoys a worst-case iteration complexity of O(ε−3/2).

The outline of this paper is as follows. In Section 2 we recall a unified framework for uncon-
strained optimization gathering both TR algorithms and the ARC approaches and assuming a
general scaled norm is used for the step size control. In Section 3, we present closed formulas for
the solution of the subproblem when the energy norm is considered, and propose both direct and
iterative scheme for computing it. In Section 4 we derive the overall unconstrained optimization
algorithm and discuss possible stopping criteria to maintain the complexity of TR and ARC
when the subproblem is solved iteratively. In Section 5, preliminary numerical experiments with
basic implementations are presented that show the good behavior of our energy norm algorithm.
Finally, in Section 6 we draw some perspectives and conclusions.

2 TR/ARC algorithms

In this section, we describe the subproblem that occurs in the kth iteration when solving the
optimization problem (1) in both the TR algorithms (e.g., [7]) and ARC algorithms (e.g., [6]).
Formally in a basic TR algorithm, one computes a trial step sTR

k by approximately solving

min
s∈Rn

f(xk) + sT gk + 1
2s
TBks = mQ

k (s) (2)

s. t. ‖s‖Mk
≤ ∆k,

where ∆k > 0 is known as the TR radius, gk = ∇f(xk) is the gradient of f at the current iterate
xk, and Bk is a symmetric approximation to the local Hessian of f at the point xk. The scaled
norm ‖.‖Mk

may vary along the iterations and Mk is a symmetric positive definite matrix.
Once the trial step sTR

k is determined, the objective function is computed at xk + sTR
k and

compared with the value predicted by the model at this point. If the model value predicts
sufficiently well the objective function, the trial point xk + sTR

k will be accepted and the TR is
eventually expanded. If the model turns out to predict poorly the objective function, the trial
point is rejected and the TR is contracted. For a basic ARC algorithm, the trial step sARC

k is
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computed as an approximate minimizer of a cubic model mC
k :

sARC
k = arg min

s∈Rn
mC
k (s) = mQ

k (s) +
1

3
σk‖s‖3Mk

, (3)

where σk > 0 is a dynamic positive parameter that more or less plays the same role as the
inverse of the TR radius (see [6]). Similarly to TR algorithms, the update of the parameter
σk takes into account the agreement between the objective function f and the model mC

k . The
parameter σk and the current iterate are updated following similar principles as those used for
∆k and xk in the TR methods. More formally, for both frameworks, a ratio between the actual
reduction and the predicted reduction plays an important role to decide whether the trial step
is acceptable or not. In the TR case, the ratio is of the following form:

ρTR
k =

f(xk)− f(xk + sTR
k )

f(xk)−mQ
k (sTR

k )
, (4)

and in the adaptive cubic regularization case is of the form

ρARC
k =

f(xk)− f(xk + sARC
k )

f(xk)−mC
k (sARC

k )
. (5)

To keep the notation simple, and unless it introduces some ambiguity, we will use ρk for both
ρTR
k and ρARC

k . For a given scalars 0 < η1 ≤ η2 < 1, the kth iteration will be said very successful
if ρk ≥ η2, successful if ρk ∈ [η1, η2), and unsuccessful otherwise. In all successful iterations we
set xk+1 = xk + sk; otherwise the current iterate is kept unchanged xk+1 = xk. Algorithm 1
gives a detailed description of both algorithms (TR and ARC frameworks). The generic name
‘ALGO’ stands either for ‘TR’ or ‘ARC’ in the sequel.

For the purpose of this paper, we will assume that the approximate Hessian matrix Bk is
positive definite for all iterations.

Assumption 2.1 For all k, the approximate Hessian matrix Bk of the model is symmetric
positive definite.

To ensure the global convergence of Algorithm 1, the trial step is required to provide a decrease
greater than or equal to the reduction attained by the so-called Cauchy step which, in the TR
case, is defined as follows:

sTR
k,Cauchy = −αTR

k,Cauchygk, where αTR
k,Cauchy = arg min

t>0;‖xk−tgk‖Mk
≤∆k

mQ
k (−tgk), (6)

and in the adaptive cubic regularization case:

sARC
k,Cauchy = −αARC

k,Cauchygk, where αARC
k,Cauchy = arg min

t>0
mC
k (−tgk). (7)

The Cauchy step associated to the minimization of the unconstrained quadratic model mQ(s)
is of the following form:

sQk,Cauchy = −αQk,Cauchygk, where αQk,Cauchy = arg min
t>0

mQ
k (−tgk) =

‖gk‖2

‖gk‖2Bk

. (8)

Under classical assumptions, convergence results of Algorithm 1 can be found in [6, 7]. In
the rest of the paper, we will mostly focus on the subproblem minimization for a given iteration
k. The iteration subscript k will therefore be dropped to keep the notations simple.
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Algorithm 1: A generic TR/ARC algorithm.

Initialization: Select an initial point x0 and constants 0 < η1 < η2 < 1. If ALGO=‘TR’, set
the initial radius ∆0 and the constants 0 ≤ τ1 ≤ τ2 ≤ 1. Else set the initial regularization
σ0 > 0 and the constants 1 < ν1 ≤ ν2. Set k = 0.

Until convergence:

1. Model definition :

Compute the model gradient gk and its Hessian Bk.

2. Compute the step :

If ALGO=‘TR’, compute the step sk as an approximate solution of (2). Else compute the
step sk as an approximate solution of (3).

3. Accept the trial point :

If ALGO=‘TR’, compute ρk = ρTR
k as in (4). Else, compute ρk = ρARC

k as in (5).

If ρk ≥ η1, set xk+1 = xk + sk; otherwise xk+1 = xk.

4. Parameter update:

If ALGO=‘TR’ set

∆k+1 ∈


[∆k,+∞) if ρk ≥ η2, [very successful ]

[τ2∆k,∆k] if η1 ≤ ρk < η2, [successful ]

[τ1∆k, τ2∆k] Otherwise. [unsuccessful ]

Else set

σk+1 ∈


(0, σk] if ρk ≥ η2, [very successful ]

[σk, ν1σk] if η1 ≤ ρk < η2, [successful ]

[ν1σk, ν2σk] Otherwise. [unsuccessful ]

Increment k by one.

3 TR/ARC subproblems with the energy norm

In the following, we suppose that Assumption 2.1 holds and that the matrix M in the scaled
norm is equal to the model Hessian matrix B. In this section we derive the formula for computing
the subproblem solution of the TR/ARC algorithms when the energy norm is used.

Each iteration of Algorithm 1 requires mainly to solve (possibly inexactly) a subproblem of
type (2)-(3). Finding an efficient solver to the subproblem is obviously essential to keep the
work-per-iteration low. We prove that in the energy norm setting, approximating the solutions
of (2)-(3) is as expensive as approximating the solution of a single unconstrained quadratic
optimization problem.
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3.1 Exact solution of the TR/ARC subproblem

In what follows, we will denote by sQ∗ the exact solution of the unconstrained quadratic opti-
mization problem:

sQ∗ = arg min
s∈Rn

mQ(s) = −B−1g. (9)

Theorem 3.1 The exact solutions sTR
∗ and sARC

∗ of the subproblems (2)-(3) are respectively of
the following form:

sTR
∗ = δTR

∗ sQ∗ , where δTR
∗ = min

(
1,

∆

‖sQ∗ ‖B

)
, (10)

and

sARC
∗ = δARC

∗ sQ∗ , where δARC
∗ =

2

1 +

√
1 + 4σ‖sQ∗ ‖B

. (11)

Proof. Let sTR
∗ be a solution of (2). The matrix B is positive definite, thus if ‖sQ∗ ‖B ≤ ∆,

then the optimization problem (2) has a unique solution sTR
∗ = sQ∗ . The case where ‖sQ∗ ‖B > ∆

implies that the solution sTR
∗ lies on the boundary of the TR (i.e. ‖sTR

∗ ‖B = ∆). It follows
from the first and second-order necessary and sufficient (as B is positive definite) optimality
conditions on the subproblem (2), that sTR

∗ is unique and satisfies

g +BsTR
∗ + λTR

∗ BsTR
∗ = 0,

with λTR
∗ ≥ 0 is the so-called Lagrange multiplier. Which implies that

sTR
∗ =

1

1 + λTR
∗
sQ∗ .

Since ‖sTR
∗ ‖B = ∆, one concludes that

λTR
∗ =

‖sQ∗ ‖B
∆

− 1 and sTR
∗ =

∆

‖sQ∗ ‖B
sQ∗ .

On the other hand, let sARC
∗ be a solution of (3). It follows from the first and second-order

necessary optimality conditions at sARC
∗ :

∇smC(sARC
∗ ) = g + (1 + λARC

∗ )BsARC
∗ = 0,

and for all vectors w ∈ Rn,

wT
(
∇ssmC(sARC

∗ )
)
w = wT

(
(1 + λARC

∗ )B + λARC
∗

(
BsARC
∗

‖sARC
∗ ‖B

)(
BsARC
∗

‖sARC
∗ ‖B

)T)
w ≥ 0.

where λARC
∗ = σ‖sARC

∗ ‖B.
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The matrix B is definite positive, hence for all w 6= 0

wT

(
(1 + λARC

∗ )B + λARC
∗

(
BsARC
∗

‖sARC
∗ ‖B

)(
BsARC
∗

‖sARC
∗ ‖B

)T)
w ≥ wT

(
(1 + λARC

∗ )B
)
w > 0,

thus sARC
∗ is the unique minimizer of (3) and of the following form

sARC
∗ =

1

1 + λARC
∗

sQ∗ where λARC
∗ = σ‖sARC

∗ ‖B =
σ

1 + λARC
∗
‖sQ∗ ‖B.

Then λ∗ is solution of the following equation(
λARC
∗

)2
+ λARC

∗ − σ‖sQ∗ ‖B = 0.

Since λARC
∗ ≥ 0, one has

λARC
∗ =

−1 +

√
1 + 4σ‖sQ∗ ‖B

2
,

and hence, sARC
∗ = δARC

∗ sQ∗ , where δARC
∗ = 1

1+λARC
∗

= 2

1+
√

1+4σ‖sQ∗ ‖B
.

A direct consequence of this result is that solving exactly the TR or ARC subproblem (in the
energy norm setting) is as expensive as minimizing the model mQ without constraints. It simply
amounts to scaling the solution of the linear system Bs = −g by a scalar that is easy to evaluate.
This means that solving the subproblem for any values of ∆ or σ is inexpensive once the solution
of Bs = −g is found. This remark will be essential when considering unsuccessful steps in the
overall optimization algorithm. Another consequence is that the subproblem solution can be
obtained by using a direct method based on the Cholesky factorization provided that B is not
too large for such an approach. In the next section we consider the case where Bs = −g is
solved iteratively.

3.2 Approximate solution of the subproblem using Krylov subspace methods

Theorem 3.1 shows that the dominant computational cost to get the exact solution of the
subproblem is that of the computation of sQ∗ . For large scale optimization problems, computing
sQ∗ can be prohibitively computationally expensive. We relax this requirement by letting the
step sQ∗ be an approximation of the exact solution.

As far as the global convergence of Algorithm 1 is concerned, all what we need is that the
solution of the subproblems (2)-(3) yields a decrease in the model (quadratic or cubic) that is
as good as a fraction of the Cauchy decrease. The latter is obtained by minimizing the model
along the negative gradient direction [6, 7]. In practice, a version of Algorithm 1 solely based
on the Cauchy step would suffer from the same drawbacks as the steepest descent algorithm
on ill-conditioned problems and faster convergence can be expected if the matrix B influences
also the computation. This idea is, for instance, implemented in the standard Steihaug-Toint
conjugate gradient algorithm for the TR method [7], in which a Cauchy step is computed and
the model is further decreased by projection onto a sequence embedded Krylov subspaces. We
now show how to use a similar idea to compute a solution of the subproblem in the energy norm
that is cheap to compute and yields a global convergence of the minimization algorithm.
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The truncated CG method belongs to the class of methods relying on Krylov subspaces,
which are spanned by the current gradient g and by vectors formed by repeated multiplication
of g by the system matrix B. Formally, the ith Krylov subspace defined by B and g is defined
by:

Ki(B, g) = span{g,Bg, . . . , Bi−1g}.

The short-hand notation Ki will be used in the sequel since the dependence on B and g is clear
from the context. Note that these subspaces are nested, i.e., Ki ⊂ Ki+1.

Let Ai denote any matrix whose columns form a basis of Ki. We will denote by sQi the exact
solution of the unconstrained quadratic optimization problem over the subspace Ki:

sQi = arg min
s∈Ki

mQ(s) = −Ai(ATi BAi)−1ATi g. (12)

The Cauchy step can be regarded as the first iteration of a Krylov subspace method when
applied to the unconstrained quadratic model mQ. Since the Krylov subspaces are nested, the
decrease attained on the quadratic model at the first iteration of the subspace method (i.e., the
Cauchy step) is kept along the iterations [17]:

mQ(sQi+1) ≤ mQ(sQi ) ≤ mQ(sQCauchy), i = 1, . . . . (13)

In Theorem 3.1, we showed that the exact solutions of the subproblems (2)-(3) are collinear
to the step of the unconstrained quadratic subproblem. We now show that explicit formula can
also be derived when using projection on Krylov subspace and that the TR and ARC projected
solutions enjoy similar collinearity properties as in Theorem 3.1.

Theorem 3.2 The exact solutions sTR
i and sARC

i of the subproblems (2)-(3) over the i − th
Krylov subspace Ki are respectively of the following form:

sTR
i = δTR

i sQi , where δTR
i = min

(
1,

∆

‖sQi ‖B

)
, (14)

and

sARC
i = δARC

i sQi , where δARC
i =

2

1 +
√

1 + 4σ‖sQi ‖B
. (15)

Proof. Let l denote the dimension of the subspace Ki and Ai be an n× l matrix whose columns
form a basis of Ki. Thus for all s ∈ Ki, we have s = Aiz, for some z ∈ Rl.

For the TR algorithm, let sTR
i be the exact solution of the subproblem (2) over the subspace

Ki, and letting

sTR
i = Aiz

TR
∗ , (16)

we have that zTR
∗ is the exact solution of the following optimization problem

min
‖z‖

AT
i
MAi
≤∆

f(x) + zTATi g +
1

2
zTATi BAiz. (17)
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Hence, applying Theorem 3.1 to the reduced minimization problem (17), it follows that

arg min
‖z‖

AT
i
BAi
≤∆

f(x) + zTATi g +
1

2
zTATi BAiz = min

(
1,

∆

‖zQ∗ ‖AT
i BAi

)
zQ∗

where zQ∗ is the exact solution of the following unconstrained quadratic optimization problem :

zQ∗ = arg min
z∈Rl

f(x) + zTATi g +
1

2
zTATi BAiz = −(ATi BAi)

−1ATi g. (18)

Thus, from equation (16), one concludes that

sTR
i = Ai

(
min

(
1,

∆

‖zQ∗ ‖AT
i BAi

)
zQ∗

)

= min

(
1,

∆

‖AizQ∗ ‖B

)
Aiz

Q
∗

= min

(
1,

∆

‖sQi ‖B

)
sQi .

In the other hand, for the ARC algorithm, let sARC
i be the exact solution of the subproblem (3)

over the subspace Ki, and letting

sARC
i = Aiz

ARC
∗ , (19)

we have that zARC
∗ is the exact solution of the following optimization problem

min
z∈Rl

f(x) + zTATi g +
1

2
zTATi BAiz +

1

3
σ‖z‖3

AT
i BAi

(20)

Hence, applying Theorem 3.1 to the reduced minimization problem (20), it follows that

arg min
z∈Rl

f(x) + zTATi g +
1

2
zTATi BAiz +

1

3
σ‖z‖3

AT
i BAi

=
2

1 +
√

1 + 4σ‖zQ∗ ‖AT
i BAi

zQ∗

Thus, from equation (19), one concludes that

sARC
i = Ai

 2

1 +
√

1 + 4σ‖zQ∗ ‖AT
i BAi

zQ∗


=

2

1 +

√
1 + 4σ‖AizQ∗ ‖B

Aiz
Q
∗

=
2

1 +
√

1 + 4σ‖sQi ‖B
sQi .

Since the first iteration of the Krylov subspace method when applied to the unconstrained
quadratic mQ(s) corresponds exactly to the Cauchy point (i.e., sQ1 = sQCauchy). Theorem 3.2

implies that sTR
1 and sARC

1 correspond respectively to the Cauchy steps sTR
Cauchy and sARC

Cauchy.
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Corollary 3.1 The Cauchy steps sTR
Cauchy and sARC

Cauchy can be obtained from sQCauchy = − ‖g‖
2

‖g‖2B
g

as follows:

sTR
Cauchy = δTR

Cauchys
Q
Cauchy, where δTR

Cauchy = min

(
1,

∆

‖sQCauchy‖B

)
, (21)

and

sARC
Cauchy = δARC

Cauchys
Q
Cauchy, where δARC

Cauchy =
2

1 +
√

1 + 4σ‖sQCauchy‖B
. (22)

4 TR/ARC algorithms using the energy norm

In [7, 6], the convergence of the TR/ARC algorithms is established in the case where the norms
that are used to control the step size are iteration dependent and uniformly equivalent. In
practice, the most common choices for these norms are the l1, l2, or l∞ norms or scaled variant
of those. For a general scaled norm (different from the energy norm) Newton or secant methods
are used to solve the subproblem which require to solve iteratively many linear systems [6, 7].

When using the energy norm, notice that unsuccessful iterations of Algorithm 1 require
only a parameter update (∆ if the TR method is used and σ otherwise) and the current step
direction is kept unchanged. In this case, the approximate solutions of the subproblems are
obtained only by updating the step-sizes δTR and δARC, which just involve one additional energy
norm computation. This means that the computational cost of unsuccessful iterations is getting
limited (see Theorems 3.1-3.2) compared to solving linear system as required in, say, the l2 norm
approach. As a consequence, the use of the energy norm in Algorithm 1 leads to a new algorithm
where the dominant computational cost is mainly the cost of successful iterations. Algorithm 2
details the adaptation of the classical algorithms ARC and TR when the energy norm is used.
The obtained algorithms are in practice line search algorithms along the direction sQk with a
special backtracking strategy and an acceptability condition of the form ρk ≥ η1, instead of the
standard Armijo rule. We denote the new TR/ARC algorithm by TR-EN/ARC-EN algorithm,
where EN is standing for the Energy Norm. Again the string ALGO denotes the name of the
algorithm, i.e., it is either ‘TR-EN’ or ‘ARC-EN’.

Based on the references [5, 6], the TR-EN/ARC-EN algorithm ensures convergence to first-
order critical points and with steepest descent like function evaluation complexity bound of
order ε−2 to guarantee

‖g‖M ≤ ε (23)

where ε > 0 is pre-specified constant and M is a given symmetric positive definite matrix.
By imposing a more stringent termination condition on the solution of the trial step sARC,

one can improve function-evaluation complexity to be of the order of ε−3/2 to ensure (23) for
the ARC-EN algorithm (see [5]). Such termination condition, known as the “s-rule”, is of the
type

‖∇mC(sARC)‖M ≤ κs‖sARC‖2M (24)
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Algorithm 2: A generic TR-EN/ARC-EN algorithm.

Initialization: Select an initial point x0 as well as constants 0 < η1 < η2 < 1. If
ALGO=‘TR-EN’, set the initial radius ∆0 and the constants 0 ≤ τ1 ≤ τ2 ≤ 1. Else set the
initial regularization σ0 > 0 and the constants 01 < ν1 ≤ ν2. Set k = 0.

Until convergence:

1. Model definition :

Compute the gradient model gk and its Hessian Bk.

2. Compute an approximated quadratic step :

Compute a step sQk for which

mQ
k (sQk ) ≤ mQ

k (sQk,Cauchy),

where the Cauchy point

sQk,Cauchy = −αQk,Cauchygk, and αQk,Cauchy = arg min
t>0

mQ
k (−tgk) =

‖gk‖2

‖gk‖2Bk

.

3. Until the iteration is successful

(i) Compute TR-EN/ARC-EN step:

If ALGO=‘TR-EN’, set δk = min(1, ∆k

‖sQk ‖Bk

). Else δk = 2

1+
√

1+4σk‖sQk ‖Bk

. Set sk = δks
Q
k .

(ii) Accept the trial point:

If ALGO=‘TR-EN’, compute ρk = ρTR
k as in (4). Else, compute ρk = ρARC

k as in (5). If
ρk ≥ η1, set xk+1 = xk + sk and the iteration is successful; otherwise xk+1 = xk,
Bk+1 = Bk, gk+1 = gk and sQk+1 = sQk .

(iii) Parameter update:

If ALGO=‘TR-EN’ set

∆k+1 ∈


[∆k,+∞) if ρk ≥ η2,

[τ2∆k,∆k] if η1 ≤ ρk < η2,

[τ1∆k, τ2∆k] Otherwise.

Else set

σk+1 ∈


(0, σk] if ρk ≥ η2,

[σk, ν1σk] if η1 ≤ ρk < η2,

[ν1σk, ν2σk] Otherwise.

Increment k by one.
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for some constant κs > 0 chosen at the start of the algorithm.
Using the energy norm, in the next proposition, we show that the “s-rule” condition (24)

can be expressed only in terms of sQ and ∇mQ.

Proposition 4.1 For ARC-EN algorithm, imposing the “s-rule” condition (24) is equivalent to
the following condition

‖∇mQ(sQ)‖M ≤ κsδ
2‖sQ‖2M = 4κs

(
‖sQ‖M

1 +
√

1 + 4σ‖sQ‖B

)2

(25)

Proof. Indeed, one has sARC = δARCsQ thus

∇mC(sARC) = g +BsARC + σ‖sARC‖BBsARC

= g +
(
δARC + σ(δARC)2‖sQ‖B

)
BsQ

By definition of δARC, one has σ‖sQ‖B(δARC)2 + δARC = 1, which implies

∇mC(sARC) = g +BsQ = ∇mQ(sQ).

Hence, the “s-rule” condition (24) is being equivalent to the termination condition (25).

First order optimality conditions imply that ‖∇mQ(sQ∗ )‖M = 0; the termination condition
(25) is therefore satisfied when sQ is the exact solution of the quadratic minimization problem.
One hopes of course that the termination condition will occur well before convergence to the
exact solution. Algorithm 3 summarized a second-order variant of ARC-EN which is guaranteed
to have improved function-evaluation worst-case complexity of order ε−3/2 to ensure (23). Using
Proposition 4.1, the proof is exactly the same as in [5]. In other words, we showed a possible way
to derive a line search approach (i.e., ARC-EN(s) ) enjoying a worst-case iteration complexity

of O(ε−3/2).
Finally and most importantly, using the energy norm still leaves the important freedom to

add an additional preconditioner to the problem. In this case, one would solve the quadratic
problem with preconditioning until the criterion (24) is met. This is expected to happen early
along the Krylov iterations when the preconditioner for the linear system Bs = −g is good
enough. The next section investigates how TR-EN/ARC-EN algorithms perform in practice.

5 Numerical results

In this section we report the results of some preliminary experiments performed in order to
assess the efficiency and the robustness of the proposed algorithms (TR-EN and ARC-EN). At
the end of this section we report results of our proposed algorithms when different methods for
approximating the solution of the subproblem are used. We implement all the algorithms as
Matlab m-files.

5.1 Implementation details and test strategy

For the numerical experiments in this section, we solve exactly the subproblem (9) using the
backslash operator (which uses the LAPACK Fortran library).
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Algorithm 3: ARC-EN(s) Algorithm.

In each iteration k of Algorithm 2, compute sQk in Step 2 as an approximate solution of

Bks = −gk,

such that the termination condition

‖BksQk + gk‖M ≤ κsδ
2
k‖s

Q
k ‖

2
M (26)

is satisfied, where δk = 2

1+
√

1+4σk‖sQk ‖Bk

and κs > 0 is a contant chosen at the beginning

of the algorithm.

Since our proposed approach behaves in practice as line search procedures, in all our tests,
we add a comparison with Newton method using a line search strategy (standard Armijo rule).
The trial step is of the form sk = αks

Q
k where sQk is the solution of the the the subproblem (9),

and the step length αk > 0 is chosen such as

f(xk + sk) ≤ f(xk) + 10−3gTk sk,

The appropriate value of αk is estimated using a backtracking approach with a contraction factor
set to 0.9 and where the step length is initially chosen to be 1. The Newton method with the
line search will be called NEWTON-LS.

The solvers TR-EN/ARC-EN and NEWTON-LS are compared with TR/ARC using the Lanczos-
based solver GLTR/GLRT implemented in GALAHAD [12]. The two subproblem solvers are coded in
Fortran and interfaced with Matlab using the default parameters. The matrix Mk in the scaled
norms is fixed to identity matrix. The other parameters defining the original TR-GLTR/ARC-GLRT
method (Algorithm 1) and the proposed TR-EN/ARC-EN algorithm (Algorithm 2) are chosen as
described in [6]. We add also in our TR comparison the TR-DOGLEG method of Powell [18] as its
computational cost for solving the subproblem is comparable with that of TR-EN.

For all algorithms the maximum number of “outer iterations”, that are iterations in the un-
constrained minimizer, is set to 100000. Similarly to NEWTON-LS, only successful outer iterations
of TR-EN/ARC-EN algorithm will be counted as outer iterations. In fact, unsuccessful iterations
in Algorithm 2 can be seen as a specific backtracking strategy to satisfy the acceptance criterion
ρk ≥ η1. All the algorithms stop when

‖gk‖ ≤ ε with ε = 10−5.

We use the Moré/Garbow/Hillstrom test problems [15] which are implemented in Matlab.
All the test problems are smooth and have a least-squares structure (meaning that the objective
function is of the form f(x) = 1

2‖F (x)‖2 where F : Rn 7→ Rm). Unlike the CUTEr test problems,
the Jacobian matrix of the residual function F for all the test problems [15] is available in Matlab.
Thus, one can obtain locally convex models (i.e., symmetric positive definite approximation of
the local Hessian) using a Gauss-Newton approximation of the type:

B(x) = JF (x)TJF (x) + εBIn,
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where JF (x) is the Jacobian matrix of the residual vector function F at the point x, In is the
identity matrix. εB is a regularization parameter used to avoid a possible singularity of the
matrix B, in our experiments we fixed εB = 10−5.

The problems description is reported in Table 1. We use the standard starting points sug-
gested in [15] for all the problems. To have a large bed-test, we create additional problems by
varying the problem dimension n when it is possible (typically n = 10, 50, 100, 200 and 300).

Dimension n of problems 2 ≤ n ≤ 9 10 ≤ n ≤ 20 21 ≤ n ≤ 50 51 ≤ n ≤ 300
# of problems 22 13 8 19

Table 1: The distribution of the number of variables of the problems in the test set.

To compare the performance of the algorithms we use performance profiles proposed by
Dolan and Moré [10] over a variety of problems. Given a set of problems P (of cardinality |P|)
and a set of solvers S, the performance profile ρ(τ) of a solver s is defined as the fraction of
problems where the performance ratio rp,s is at most τ

ρ(τ) =
1

|P|
size{p ∈ P : rp,s ≤ τ}.

The performance ratio rp,s is in turn defined by

rp,s =
tp,s

min{tp,s : s ∈ S}
,

where tp,s > 0 measures the performance of the solver s when solving problem p (seen here as
the function evaluation and the outer iteration number). Better performance of the solver s,
relatively to the other solvers on the set of problems, is indicated by higher values of ρ(τ). In
particular, efficiency is measured by ρ(1) (the fraction of problems for which solver s performs
the best) and robustness is measured by ρ(τ) for τ sufficiently large (the fraction of problems
solved by s). Following what is suggested in [10] for a better visualization, we will plot the
performance profiles in a log2-scale (for which τ = 1 will correspond to τ = 0).

5.2 Results

We consider first the TR algorithms. In Figure 1 the performance profiles show that TR-EN

improves the efficiency of the TR algorithms on the tested problems. In fact, the outer iteration
performance profiles (see Figure 1(b)) show that the use of the energy norm leads to a significant
improvement on terms of the efficiency (for τ = 0, on 70% of the tested problems TR-EN performs
the best, 23% for TR-GLTR, and around 10% for TR-DOGLEG). The use of the l2 norm leads to
a better robustness (i.e., TR-GLTR and TR-DOGLEG are solving a large percentage of the tested
problem for large τ values). The same analysis applies in terms of function evaluation (see
Figure 1(a)) where the efficiency of TR-GLTR and TR-DOGLEG is slightly improved compared
to the out iterations performance profiles (but not as good as TR-EN). NEWTON-LS method is
performing the worst on the tested problems, both in terms of efficiency and robustness.

For the ARC algorithms, see Figure 2, the performance profiles show that the use of the
energy norm (i.e., ARC-EN) improves the efficiency of the ARC algorithms over the tested prob-
lems. Unlike the TR performance profiles, NEWTON-LS is the most efficient method in terms of the
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Figure 1: TR performance profiles for the 62 optimization problems under consideration.

outer iteration number, see Figure 2(b). In fact, on over 50% of the tested problems NEWTON-LS
performs the best, while ARC-EN solves 28% and ARC-GLTR around 20%. Regarding the function
evaluation performance profile, see Figure 2(a), NEWTON-LS method looses its efficiency due to
the backtracking strategy employed for each outer iteration. ARC-EN outperforms (by far) both
solvers on terms of efficiency (in over 76% of the tested problems ARC-EN performs the best,
and around 24% for ARC-GLTR). In terms of robustness, ARC-GLTR and ARC-EN exhibit similar
performance. Again, as for TR algorithms, NEWTON-LS is performing the worst on the tested
problems regarding the robustness.
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Figure 2: ARC performance profiles for the 62 optimization problems under consideration.
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5.3 Test problems with many degrees of freedom

In this section we solve three large scale convex optimization problems from [13]. The first
one is called MINSURF and consists of finding the surface with minimal area that lies above
an obstacle with given boundary conditions. The second optimization problem, called IP, is an
inverse problem from image processing. The third test case, called IGNISC, is an optimal-control
problem related to a solide-ignition model. MINSURF and IGNISC are tested with n = 10000, for
the IP optimization our tests are performed using n = 3969. The initial iterate for all the tested
algorithms and problems is set to zero.

In our previous numerical experiments we solved exactly the subproblem (9). However, for
large scale optimization problems finding the exact solution may be out of reach. In this section
for TR-EN, ARC-EN and NEWTON-LS, such case is geared by mean of the truncated CG method.
The solvers TR-EN/ARC-EN and NEWTON-LS will be compared to TR-GLTR/ARC-GLRT. For the TR
comparison, the TR-dogleg approach will be replaced by TR-ST which denotes a TR method that
uses the Steihaug-Toint approach [7] to approximate the solution of TR subproblems. The TR-ST
is the most commonly used in TR methods for approximating the solution of large scale TR
sub-problems. The subproblem solvers GLTR and GLRT are tested using the default parameters
(as in GALAHAD [12]). The NEWTON-LS and TR-ST subproblems are declared to be solved when
the relative residual error is getting less than 10−4.

For TR-EN/ARC-EN, we use a stopping criterion of the form (26). To quantify the sensibility of
such termination condition (i.e., s-rule) two different values of κs (1 and 10−4 are tested). Each
iteration of the steps 1, 2 and 3 of TR-EN/ARC-EN (see Algorithm 2) formed an outer iteration.
Within each outer iteration, we must solve the minimization problem involving mQ

k (s) at step 2
by means of the aforementioned truncated CG method. This procedure will be called the inner
iteration minimization.

Figure 3 depicts the values of the objective function over outer iterations during the appli-
cation of TR/ARC algorithms on the three large scale optimization problems. For all the tested
algorithms the variation of the objective function value is more significant at the early stages
of the optimization process. The TR-EN/ARC-EN algorithms outperform the other methods on
the tested problems. In fact, for the three optimization problems, the use of the energy norm
ensures a better decrease on the objective function value with a faster convergence speed. For
the TR comparison, TR-ST and TR-EN (with κs = 10−4) give comparable performance in terms
of outer iterations and converge faster than the other methods on the tested problems (i.e., in
less than 10 outer iterations).

The TR-EN/ARC-EN algorithms are performing better using an accurate termination condi-
tion, i.e., κs = 10−4. A high accuracy on the termination conditions can be computationally very
demanding in terms of the inner iterations number. Table 2 outlines such a statement on the
tested problems, it shows the variation of the number of inner iterations during the application
of TR-EN/ARC-EN algorithms. As expected, for a large value of κs, the number of inner iterations
is by far less than the number required when using a tight termination condition. We note also
that, for the tested problems, the choice of κs is problem dependent. In fact, for MINSURF and
IP problems the obtained results with the two different accuracies κs = 1 and 10−4 are still very
close, meaning that the choice of κs does not affect significantly the number of outer iterations.
However, for IGNISC problem, the accuracy of the termination condition affects the speed of
convergence.
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Figure 3: Objective function values during the application of TR/ARC algorithms on large scale
optimization problems.
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Table 2: Objective function values and the number of inner iterations during the application of
TR-EN/ARC-EN algorithm on large scale optimization problems.

TR-EN ARC-EN
Outer κs = 1 κs = 10−4 κs = 1 κs = 10−4

iter.
f(xk)

# Inner
f(xk)

# Inner
f(xk)

# Inner
f(xk)

# Inner
iter. iter. iter. iter.

M
I
N
S
U
R
F

1 2.2865 11 2.2865 166 2.2865 16 2.2865 172
2 2.2297 17 2.2130 162 2.2277 19 2.2214 188
3 2.2033 31 2.2003 229 2.2034 30 2.2023 227
4 2.1979 50 2.1977 247 2.1980 48 2.1980 239
5 2.1972 70 2.1971 266 2.1972 67 2.1972 260
6 2.1971 126 2.1971 283 2.1971 85 2.1971 280

I
P

1 3050.32 6 3050.32 22 2199.5 1 2190.0 14
2 2833.97 3 283.388 19 1445.0 1 1421.8 60
3 2404.14 1 239.794 32 908.64 1 876.21 98
4 1614.05 1 15.7374 64 543.42 1 506.95 92
5 474.356 1 35.7950 51 307.75 1 271.33 99
6 52.9156 1 22.2981 40 165.85 1 132.55 108

I
G
N
I
S
C

1 29.790 18 23.085 141 22.560 1 16.164 121
2 23.456 1 1.6612 95 17.979 1 8.0594 138
3 14.514 1 0.2009 161 14.592 2 3.6155 161
4 13.152 2 0.0106 219 12.274 2 1.4081 189
5 11.446 1 0.0030 317 10.329 3 0.3685 208
6 10.869 2 0.0029 443 8.8495 3 0.3702 246

6 Conclusions and perspectives

In this paper we have investigated the use of the energy norm in the TR/ARC framework,
when the Hessian of the model is positive definite (Assumption 2.1). With this norm choice,
a significant reduction on the computational cost of the related subproblem is theoretically ex-
plained and numerically showed. In fact, for successful iterations occurring in the minimization,
finding the subproblem solution costs the same as solving a linear system. The unsuccessful
outer iterations are getting comparatively inexpensive, as they just require an additional energy
norm evaluation. For large scale problems, we propose to use a truncated-CG approximation to
compute an approximate solution for the subproblem.

The proposed approaches are in practice line search algorithms with a special backtracking
strategy and an acceptability condition in the spirit of TR/ARC methods. Moreover, we showed
that the proposed line search algorithm, when it is derived by the ARC algorithm, enjoys
a worst-case iteration complexity of O(ε−3/2). Preliminary numerical experiments with basic
implementations showed encouraging performance. An additional feature of the algorithm is
that it enables also the use of a preconditioner which can be necessary when dealing with an
ill-conditioned model Hessian.

For TR-EN/ARC-EN algorithms (Algorithm 2), we assumed that a positive definite local ap-
proximation of the model Hessian is available (Assumption 2.1). Such assumption is required
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to define the energy norm. The generalization of TR-EN/ARC-EN algorithms for all local approx-
imations of the Hessian as well as an extensive numerical experiments will be addressed in a
forthcoming work.

Our main motivation is to use TR-EN/ARC-EN algorithms to solve data assimilation problems
(e.g., ocean and meteorology data assimilation systems [8, 19]). Such problems are typically
extremely large and very costly but with a positive definite local approximation of the Hessian.
Applying the proposed approaches can be very convenient to define an efficient solver for this
kind of problems and will be the topic of a future work.
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