

Solar proton events of October–November 2003: Ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat

A. Seppälä, P. T. Verronen, E. Kyrölä, S. Hassinen, L. Backman, Alain Hauchecorne, Jean-Loup Bertaux, D. Fussen

► To cite this version:

A. Seppälä, P. T. Verronen, E. Kyrölä, S. Hassinen, L. Backman, et al.. Solar proton events of October–November 2003: Ozone depletion in the Northern Hemisphere polar winter as seen by GO-MOS/Envisat. Geophysical Research Letters, 2004, 31 (19), pp.L19107. 10.1029/2004GL021042 . hal-01654628

HAL Id: hal-01654628 https://hal.science/hal-01654628

Submitted on 4 Dec 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Solar proton events of October–November 2003: Ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat

A. Seppälä, P. T. Verronen, E. Kyrölä, S. Hassinen, and L. Backman Finnish Meteorological Institute, Earth Observation, Helsinki, Finland

A. Hauchecorne and J. L. Bertaux

Service d'Aeronomie du CNRS, Verrieres-le-Buisson, France

D. Fussen

Institut d'Aeronomie Spatiale de Belgique, Brussels, Belgium

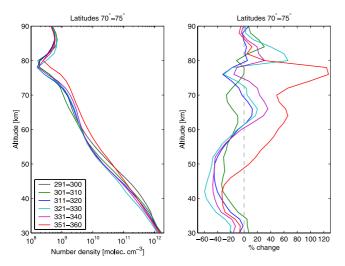
Received 19 July 2004; revised 3 September 2004; accepted 21 September 2004; published 13 October 2004.

[1] Observations of O_3 and NO_2 made by the GOMOS instrument on board European Space Agency's Envisat satellite have been used to monitor the increase of NO₂ and depletion of ozone due to the solar proton events of October-November 2003. For the first time this phenomenon was measured in polar winter conditions by a satellite instrument. Results show NO₂ enhancement of several hundred per cent and tens of per cent ozone depletion between 36 and 60 km, an effect which lasts several months after the events. A comparison of the afterevent concentrations of NO₂ and ozone reveals a strong negative correlation. INDEX TERMS: 0341 Atmospheric Composition and Structure: Middle atmosphere-constituent transport and chemistry (3334); 2455 Ionosphere: Particle precipitation; 3360 Meteorology and Atmospheric Dynamics: Remote sensing. Citation: Seppälä, A., P. T. Verronen, E. Kyrölä, S. Hassinen, L. Backman, A. Hauchecorne, J. L. Bertaux, and D. Fussen (2004), Solar proton events of October-November 2003: Ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat, Geophys. Res. Lett., 31, L19107, doi:10.1029/2004GL021042.

1. Introduction

[2] Solar proton events (SPE) correspond to solar coronal mass ejections (CME) during which a large amount of protons and heavier ions are emitted, sometimes toward the Earth. Solar protons entering the Earth's magnetosphere are guided by the Earth's magnetic field and precipitate into the polar cap areas. Since the protons can have very high energy, up to tens of MeVs, they deposit their energy in the mesosphere and stratosphere. Thus they provide a direct connection between the Sun and the Earth's middle atmosphere. SPEs are sporadic although more probable during solar maxima. But when occurring they provide extreme forcing on the middle atmosphere.

[3] The precipitating particles produce 1) odd hydrogen HO_x (H + OH + HO₂) through chemistry associated with ion pair production, water cluster ion formation, and subsequent neutralization, and 2) odd nitrogen NO_x (N + NO + NO₂) through dissociation of molecular nitrogen via charged particle impact [*Crutzen et al.*, 1975; *Solomon et*


Copyright 2004 by the American Geophysical Union. 0094-8276/04/2004GL021042

al., 1981; Rusch et al., 1981]. HO_x and NO_x play a key role in ozone balance of the middle atmosphere because they destroy odd oxygen through catalytic reactions [see, e.g., *Brasseur and Solomon*, 1986, pp. 291–299]. The produced HO_x has a relatively short lifetime, but without solar radiation NO_x chemical loss is inefficient. Therefore the NO_x produced during polar night has a long chemical lifetime and is transported to lower altitudes and latitudes [*Siskind et al.*, 1997; *Callis and Lambeth*, 1998]. Significant depletions of ozone concentrations after large solar proton events have been predicted by atmospheric modelling [*Rusch et al.*, 1981; *Solomon et al.*, 1983; *Reid et al.*, 1991; *Jackman et al.*, 2000] and this phenomenon has been captured in the dayside middle atmosphere using satellite measurements [*Thomas et al.*, 2001; *Randall et al.*, 2001].

[4] The GOMOS (Global Ozone Monitoring by Occultation of Stars) instrument measures vertical profiles of several middle atmospheric gases, including O_3 and NO_2 . GOMOS makes several hundred occultations per day with good global coverage, including the polar areas. It can measure in both day and night conditions because the stellar occultation technique does not require solar radiation. Therefore, GOMOS has a unique capability of observing the effects of SPEs during polar winter. In this paper, we use GOMOS measurements from the northern hemisphere during and after the October–November 2003 SPEs to confirm the increase/persistence of NO_2 and depletion of O_3 due to the events.

2. Solar Storms on October-November 2003

[5] Late October 2003 the Sun released two powerful X-class solar flares both associated with a CME directed almost straight at the Earth. Consequently the flux of particles entering the Earth's atmosphere was greatly enhanced. During October–November 2003 there were four occasions of noticeable increase in the proton flux (NOAA NGDC–Solar Terrestrial Physics, 2004, see http://www. ngdc.noaa.gov/stp/stp.html). First on October 26th and second on the 28th, then again on November 2nd and 4th. The first event was caused by a solar X1-class flare and associated CME. This event lasted only few hours, but only a day later a second flare, this time even larger X17 followed by a halo-type CME led to measured maximum

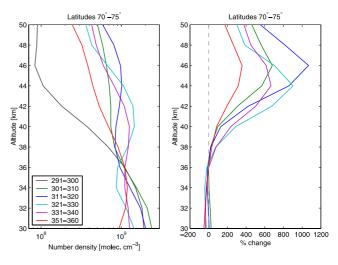
Figure 1. Left: Zonal average GOMOS ozone densities for latitudes $70^{\circ}-75^{\circ}$. Averaging is done in 10-day periods and the measurements have been weighted with the measurement errors. Day of year 301 = 28.10.2003. Right: Relative change [%] from the zonal average profile before the SPE (291–300 in the left panel).

flux of 3×10^4 protons cm⁻²s⁻¹sr⁻¹ (E > 10 MeV). The following two events were much smaller than this although the November 4th event was preceded by a record setting X28-class flare. After the four events the quiet time level of the GOES measured proton flux was not reached until mid November.

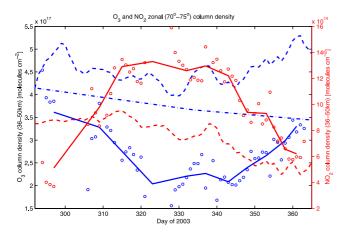
3. GOMOS Observations

[6] GOMOS is a stellar occultation instrument on board the European Space Agency's Envisat satellite [*Bertaux et al.*, 1991, 2004; *Kyrölä et al.*, 2004]. Envisat, launched on March 1st, 2002, from French Guiana, is an environmental satellite carrying a total of 10 instruments including three atmospheric chemistry instruments GOMOS, MIPAS and SCIAMACHY.

[7] GOMOS measures light of a star as it appears to descend through the Earth's atmosphere. The incoming light travels through the atmosphere and is absorbed and scattered by various molecules along its path. Knowing the absorption features of the different atmospheric gases their altitude profiles can be calculated using advanced inversion methods [Kyrölä et al., 1993]. The GOMOS spectral range is 250–950 nm and it measures vertical profiles of O₃, NO₂, NO₃, H₂O, O₂, neutral density, and aerosols. Also, high resolution temperature profiles are measured with two fast photometers. The altitude range of the measurements is 10-100 km for ozone and 10-50 km for the other gases. Altitude sampling frequency is better than 1.7 km. By using stars as a source of light, information about the abundance of different gases in the atmosphere can be attained from the dark side of the atmosphere as well as from the bright side.


[8] For this study we used nighttime GOMOS measurements from the northern hemisphere polar region (GOMOS processing prototype version 6.0a, geographic latitude $\geq 45^{\circ}$, solar zenith angle $\geq 107^{\circ}$, and solar zenith angle at satellite location $>90^{\circ}$ to avoid straylight conditions). In addition, to ensure good accuracy of the measurements we selected stars with temperature \geq 7000 K [*Bertaux et al.*, 2004; *Kyrölä et al.*, 2004]. Finally, before analyzing the data all the selected measurement profiles were interpolated into a constant altitude grid with 2 km spacing.

4. Results


[9] Figure 1 shows zonal average vertical profiles for latitudes $70^{\circ}-75^{\circ}$ for ozone. This particular latitude band was chosen for our study because it is well covered by the measurements throughout Oct–Dec (see Figure 4 for measurement locations), and because of its vicinity to the magnetic polar cap. The profiles are ten-day means between Oct 18 and the end of the year 2003. In the first 10-day period after Oct 28, when the largest SPE took place, ozone depletion of 20-30% from the initial values (18-27 Oct) is seen at altitudes 40-58 km and near 70 km. The ozone depletion further increases at altitudes below 58 km until the end of November, when the depletion maximum near 40 km reaches 60%. At the end of December the change from the initial values is still nearly -30% between 36 and 46 km. [10] Figure 2 shows NO₂ densities from altitudes 30-

[10] Figure 2 shows NO₂ densities from altitudes 30-50 km. Before Oct 28 the amount of NO₂ is less than 4×10^8 molecules cm⁻³ above 40 km. After the SPEs an increase of several hundred per cent above 40 km is observed. The NO₂ enhancement peak in the upper stratosphere appears to be transported downward. At the end of November the increase of NO₂ is still more than 100% at several altitudes.

[11] We calculated daily and 5-day mean O_3 and NO_2 columns for altitudes 36–50 km where the NO_2 enhancement is greatest. The results are shown in Figure 3 together with ozone and NO_2 columns from the FinRose-CTM model (based on the Rose model by *Rose and Brasseur* [1989], no SPE forcing included) and ozone climatology [*Fortuin and Kelder*, 1998]. Before the 28th the ozone column from GOMOS agrees with those from the model and climatology (~4 × 10¹⁷ molecules cm⁻²). After the event the ozone values decreases to almost 1.5×10^{17} molecules cm⁻² at the lowest. At the end of December the ozone column values are again close to those of the climatology. The NO₂ values increase by over 200% after

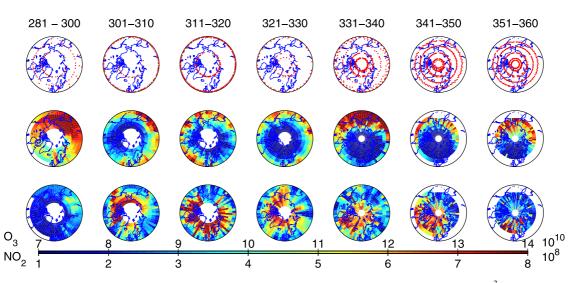
Figure 2. Like Figure 1 but for NO_2 at altitudes 30-50 km.

Figure 3. O₃ (blue) and NO₂ (red) column densities. Daily (circle) and 5-day mean (solid line) calculated from GOMOS daily zonal average profiles for latitudes 70° – 75° and altitudes 36-50 km. The dash-dot line is [*Fortuin and Kelder*, 1998] O₃ column (36–50 km) for latitude 72.5° and the dashed lines are O₃ and NO₂ columns (37–47 km) from the FinRose-CTM model. The FinRose-CTM model includes no SPE forcing.

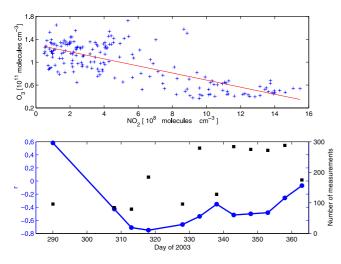
the event and exceed the modelled values. At the end of December the values are still over 50% larger than before the October 28. The observed ozone column decrease coincides with the NO₂ column enhancement and the correlation coefficient *r* for the Oct–Dec daily O₃ and NO₂ columns is -0.77 indicating a strong negative correlation.

[12] The temporal evolution of O_3 and NO_2 at 46 km (latitudes $\geq 45^{\circ}$) is shown in Figure 4 together with the measurement locations. Before Oct 28 the ozone values are in agreement with the climatology values. After the 28th the density decreases particularly near the magnetic polar area. The ozone depletion area near the end of December is restricted between longitudes $\sim \pm 80^{\circ}$. Comparing the O_3 and NO_2 maps we notice that the areas of largest ozone depletion coincide with the areas where NO_2 enhancement

is most significant. To verify this we calculated correlation coefficients for the NO₂ and O₃ measurements at 46 km for 5-day periods. Figure 5 shows the measured values for one time period and variation of the correlation coefficient during Oct–Dec and the number of measurements used to calculate each correlation. Before the SPEs NO₂ and O₃ are positively correlated. However, after the SPEs they become strongly negatively correlated with *r* approaching a value of -0.8.


5. Discussion

[13] GOMOS observations show significant changes in NO_2 and ozone due to the October–November 2003 solar proton events. An order-of-magnitude increase in NO_2 results in up to 60% ozone depletion in the upper stratosphere. Even two months after the SPEs the effect can still be seen. This is the first time that SPE effects have been observed in the polar winter middle atmosphere with a good spatial and temporal coverage.


[14] NO₂ and NO participate in the catalytic reaction cycle which destroys ozone but neither creates nor destroys odd nitrogen. Therefore, in general it might be more beneficial to observe changes in the sum NO + NO₂. However, in the nighttime stratosphere and lower mesosphere practically all NO is converted to NO₂. Therefore we are confident that our nighttime NO₂ measurements are a good tracer for the total odd nitrogen changes.

[15] Ozone is also affected by HO_x production during the events. However, this effect should be present only for a few days after the events, i.e., between Oct 26 and Nov 5 (days 299–310), because of the relatively short lifetime of HO_x in the upper stratosphere. Therefore, after day 310 we can assume that the effect on ozone is solely due to the increase of NO_x.

[16] The correlation between the concentrations of NO_2 and ozone is positive before the SPEs (Figure 5). FinRose results, as well as GOMOS measurements (January, 2003, and early October, 2003) confirm that without the SPEs the correlation is positive, possibly reflecting the same latitudi-

Figure 4. GOMOS measurement locations (top) and O₃ (middle) and NO₂ (bottom) densities $[cm^{-3}]$ at 46 km for 10-day periods. The density maps are in 5° × 5° grid showing latitudes \geq 45°, filled using a Delaunay triangulation method from Qhull [*Barber et al.*, 1996].

Figure 5. Correlation of NO₂ and ozone at altitude 46 km (latitudes $\geq 45^{\circ}$). Upper panel: Measured NO₂ and O₃ number densities (days 316–320). The red line is a first degree polynomial fit to the data points. Lower panel: Correlation coefficient *r* for 5-day periods (blue circles) and the number of used measurements (black squares).

nal dependence of NO_2 and O_3 . The correlation becomes strongly negative after the SPEs indicating a large increase in NO_2 and resulting ozone depletion.

[17] An interesting feature in Figure 1 is the increase of O_3 at 60–75 km after the events (days 311–340). The reason for this increase is presumably the development of the tertiary ozone maximum, which is known to exists in the high-latitude mesosphere [*Marsh et al.*, 2001].

[18] The MIMOSA advection model [Hauchecorne et al., 2002] shows that when the SPEs occurred, the polar vortex was well formed in the upper stratosphere and almost coincident with the polar cap (not shown here). Most of the air with depleted ozone and enhanced NO₂ is located within the polar vortex as long as it is stable. The descent of NO_2 peak (Figure 2) is clearly related to the diabatic descent in the vortex which is very strong at the beginning of the winter. The rate of descent is few km/10 days, which is comparable to values reported by Eluszkiewicz et al. [1996] and Summers et al. [1997]. At the end of December, the dynamical situation changed and a sudden warming occurred in the upper stratosphere. As a result, the vortex was displaced from the pole and the latitude band $70^{\circ}-75^{\circ}$ no longer was fully inside the vortex. This explains the rapid increase of O₃ at this time between 40 and 60 km (Figure 1, days 351-360).

[19] It would be interesting to study the effects of these SPEs also in the southern hemisphere. There we would expect only a short-term decrease of ozone, mainly due to an increase of HO_x , because in summer the increase in NO_x is quickly balanced by photodissociation. When GOMOS data for 2004 becomes available, we will continue this study and follow the evolution of NO_2 and ozone throughout the polar night.

[20] **Acknowledgment.** The work of AS was supported by the Academy of Finland (MAIST: Middle Atmosphere Interactions with Sun and Troposphere).

References

- Barber, C. B., D. P. Dobkin, and H. Huhdanpaa (1996), The Quickhull algorithm for convex hulls, ACM Trans. Math. Software, 22, 469–483.
- Bertaux, J. L., G. Megie, T. Widemann et al. (1991), Monitoring of ozone trend by stellar occultations: The GOMOS instrument, *Adv. Space Res.*, *11*, 237–242.
- Bertaux, J. L., et al. (2004), First results on GOMOS/Envisat, *Adv. Space Res.*, *33*, 1029–1035.
- Brasseur, G., and S. Solomon (1986), *Aeronomy of the Middle Atmosphere*, 2nd ed., D. Reidel, Norwell, Mass.
- Callis, L. B., and J. D. Lambeth (1998), NO_y formed by precipitating electron events in 1991 and 1992: Descent into the stratosphere as observed by ISAMS, *Geophys. Res. Lett.*, 25, 1875–1878.
- Crutzen, P. J., I. S. A. Isaksen, and G. C. Reid (1975), Solar proton events: Stratospheric sources of nitric oxide, *Science*, 189, 457–458.
- Eluszkiewicz, J., et al. (1996), Residual circulation in the stratosphere and lower mesosphere as diagnosed from microwave limb sounder data, *J. Atmos. Sci.*, 53, 217–240.
- Fortuin, J. P. F., and H. Kelder (1998), An ozone climatology based on ozonesonde and satellite measurements, J. Geophys. Res., 103, 31,709– 31,734.
- Hauchecorne, A., S. Godin, M. Marchand et al. (2002), Quantification of the transport of chemical constituents from the polar vortex to midlatitudes in the lower stratosphere using the high-resolution advection model MIMOSA and effective diffusivity, J. Geophys. Res., 107(D20), 8289, doi:10.1029/2001JD000491.
- Jackman, C. H., E. L. Fleming, and F. M. Vitt (2000), Influence of extremely large solar proton events in a changing stratosphere, J. Geophys. Res., 105, 11,659–11,670.
- Jackman, C. H., R. D. McPeters, G. J. Labow et al. (2001), Northern hemisphere atmospheric effects due to the July 2000 solar proton events, *Geophys. Res. Lett.*, 28, 2883–2886.
- Kyrölä, É., E. Sihvola, Y. Kotivuori et al. (1993), Inverse theory for occultation measurements: 1. Spectral inversion, J. Geophys. Res., 98, 7367– 7381.
- Kyrölä, E., et al. (2004), GOMOS on Envisat: An overview, *Adv. Space Res.*, *33*, 1020–1028.
- Marsh, D., A. Smith, G. Brasseur et al. (2001), The existence of a tertiary ozone maximum in the high latitude middle mesosphere, *Geophys. Res. Lett.*, 28, 4531–4534.
- McPeters, R. D., and C. H. Jackman (1985), The response of ozone to solar proton events during solar cycle 21: The observations, J. Geophys. Res., 90, 7945–7954.
- Randall, C. E., D. E. Siskind, and R. M. Bevilacqua (2001), Stratospheric NO_x enhancements in the southern hemisphere vortex in winter/spring of 2000, *Geophys. Res. Lett.*, 28, 2385–2388.
- Reid, G. C., S. Solomon, and R. R. Garcia (1991), Response of the middle atmosphere to the solar proton events of August–December, 1989, *Geo*phys. Res. Lett., 18, 1019–1022.
- Rose, K., and G. Brasseur (1989), A three-dimensional model of chemically active trace species in the middle atmosphere during disturbed winter conditions, J. Geophys. Res., 94, 16,387–16,403.
- Rusch, D. W., J.-C. Gérard, S. Solomon et al. (1981), The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere—I. Odd nitrogen, *Planet. Space Sci.*, 29, 767–774.
- Siskind, D. E., J. T. Bacmeister, M. E. Summers, and J. M. Russell (1997), Two-dimensional model calculations of nitric oxide transport in the middle atmosphere and comparison with Halogen Occultation Experiment data, J. Geophys. Res., 102, 3527–3545.
- Solomon, S., D. W. Rusch, J.-C. Gérard et al. (1981), The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen, *Planet. Space Sci.*, 8, 885–893.
- Solomon, S., G. C. Reid, D. W. Rusch, and R. J. Thomas (1983), Mesospheric ozone depletion during the solar proton event of July 13, 1982;
 2. Comparisons between theory and measurements, *Geophys. Res. Lett.*, 10, 257–260.
- Summers, M. E., D. E. Siskind, J. T. Bacmeister et al. (1997), Seasonal variation of middle atmospheric CH₄ and H₂O with a new chemicaldynamical model, *J. Geophys. Res.*, 102, 3503–3526.
- Thomas, R. J., C. A. Barth, G. J. Rottman et al. (1983), Mesospheric ozone depletion during the solar proton event of July 13, 1982: 1. Measurement, *Geophys. Res. Lett.*, 10, 253–255.

L. Backman, S. Hassinen, E. Kyrölä, A. Seppälä, and P. T. Verronen, Finnish Meteorological Institute, Earth Observation, P.O. Box 503, FIN-00101 Helsinki, Finland. (annika.seppala@fmi.fi)

J. L. Bertaux and A. Hauchecorne, Service d'Aeronomie du CNRS BP 3, F-91371 Verrieres-le-Buisson Cedex, France.

D. Fussen, Institut d'Aeronomie Spatiale de Belgique, Avenue Circulaire 3, B-1180 Brussels, Belgium.