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Abstract 18 

Soil respiration tests and abundance of particulate organic matter (POM) are considered as 19 

classical indicators of the labile soil organic carbon (SOC) pool. However, there is still no 20 

widely accepted standard method to assess SOC lability and the pertinence of these two time-21 

consuming methods to characterize SOC turnover can be questioned. Alternate ways of 22 

determining the labile SOC fraction are thus much needed. Thermal analyses, in particular 23 

Rock-Eval 6 (RE6) analysis has shown promising results in the determination of SOC 24 

biogeochemical stability. 25 

Using a large set of samples (n = 99) of French forest soils representing contrasted 26 

pedoclimatic conditions, including deep samples (up to 0.8 m depth), we compared three 27 

different methods used for SOC lability assessment. We explored whether respired-C isolated 28 

by a 10-week laboratory soil respiration test, POM-C isolated by a physical SOC fractionation 29 

scheme (particle-size > 50 µm and d < 1.6 g·cm−3) and several RE6 parameters were 30 

comparable and how they correlated.  31 

As expected, respired-C (mg CO2-C·g−1 SOC) and POM-C (% of total SOC) fractions 32 

strongly decreased with depth. RE6 parameters showed that SOC from deeper soil layers was 33 

also thermally less labile, more oxidized and H-depleted. Indeed, SOC from deeper soil layers 34 

had lower proportion of thermally labile SOC, higher T50_HC_PYR (temperature at which 50% 35 

of the pyrolysable hydrocarbons were effectively pyrolyzed) and T50_CO2_OX (temperature at 36 

which 50% of the CO2 gas had evolved during the oxidation phase), larger oxygen index, and 37 

smaller hydrogen index. Surprisingly, the two classical indicators of the labile SOC pool 38 

(respired-C and POM-C) were only marginally correlated (p = 0.051) and showed layer-39 

specific correlations. Similarly, respired-C was poorly correlated to RE6 parameters. 40 

Conversely, the POM-C fraction showed a strong negative correlation with T50_HC_PYR (ρ = 41 

−0.73) and good correlations with other RE6 parameters.  42 
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Our study showed that RE6 parameters were good estimates of the POM-C fraction, which 43 

represents a labile SOC pool with a residence time of ca. a couple decades that is meaningful 44 

regarding SOC stock changes upon modifications in land management. RE6 thermal analysis 45 

could therefore be a fast and cost-effective alternative to more time-consuming methods used 46 

in SOC pool determination, and may be integrated into soil monitoring networks to provide 47 

high-throughput information on SOC dynamics. 48 

 49 

Keywords: soil organic carbon kinetic pools; Rock-Eval 6; particulate organic matter; soil 50 

basal respiration; deep soil organic carbon; French forest soils; 51 

 52 

  53 
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1. Introduction 54 

Soil organic matter (SOM) degradation has multiple consequences on major soil functions 55 

like nutrients cycling, soil emissions of greenhouse gases and affects soil carbon sequestration 56 

potential. In particular, the labile part of SOM (turnover < 20 years) is associated with 57 

biological (microbial) activity and nutrient cycling (Haynes, 2005) and is very relevant to 58 

these issues.  59 

In that context, information on the temporal trajectories of SOC storage at a fine spatial 60 

resolution, in the form of detailed mapping of SOC stock evolutions with time for different 61 

land management scenarios, are required. SOC dynamics models are the logical candidates to 62 

provide such information, but their predictive performance is not yet satisfying, and they 63 

would benefit from an improved initialization using fine-scale information on SOC kinetic 64 

pools (Luo et al., 2016). Soil monitoring networks have become more prominent in the last 65 

twenty years. However, currently they can only provide information relative to the recent 66 

temporal (decadal) evolution of total SOC stocks. To use the full potential of these networks 67 

and measure the effects of climate and land-use changes on SOC stocks will require indicators 68 

of the size of the different SOC pools.  69 

Respiration measurements and particulate organic matter (POM) quantification obtained by 70 

various methods of fractionation (particle size only / density only / density + particle-size) 71 

(von Lützow et al., 2007) have been used for decades and are now classical estimates of the 72 

labile SOC pool.  73 

Laboratory incubations are run under optimum temperature and moisture conditions and use 74 

the indigenous microflora. They thus represent a maximum potential rate of C mineralization 75 

and an index of C availability in the system, integrating the physical, chemical, and 76 

microbiological properties of the soil (Haynes, 2005). Incubations are fairly simple to set-up 77 
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but they require space and are time-consuming. Sieving and rewetting also tend to artificially 78 

increase the mineralizable pool (Haynes, 1986).  79 

Physical fractionation schemes are easy to implement and do not require expensive equipment 80 

although they can become costly when density fractionation is involved. Moreover they are 81 

very time-consuming, often requiring multiple and relatively long periods of agitation/settling 82 

and drying. The most important limitation is the ability of the fractionation scheme to isolate 83 

physical fractions that have homogeneous turnover and thus represent functional non-84 

composite SOC pools (von Lützow et al., 2007). 85 

While respired-C and POM-C fractions both represent a labile SOC pool, the former 86 

corresponds to a smaller SOC pool with a shorter mean residence time (usually < 1 year for 87 

temperate in-situ conditions) (Feng et al., 2016) while the latter corresponds to a larger SOC 88 

pool with a longer mean residence time (usually < 20 year for temperate in-situ conditions) 89 

(e.g., Trumbore et al., 1996; Balesdent, 1996). Because these two methods are both very time-90 

consuming, they cannot address the needs of soil monitoring, i.e., a methodology that is 91 

informative, high-yield and relatively cheap to implement, to allow for the analysis of 92 

numerous samples.  93 

Among thermal analyses used to characterize SOM, Rock-Eval 6 (RE6) analysis has shown 94 

promising results in the determination of SOM biogeochemical stability (e.g., Barré et al., 95 

2016) and thus appears like a good candidate to fill this methodological gap. Originally 96 

developed for oil and gas exploration in sedimentary basins, the method was first applied to 97 

study soils with hydrocarbons contamination (Lafargue et al., 1998). RE was also shown to 98 

provide useful information on SOM originating from soil profiles worldwide (Disnar et al., 99 

2003) and many studies on SOM characterization have been conducted, sometimes using RE 100 

analysis in conjunction with other methods like nuclear magnetic resonance (Albrecht et al., 101 

2015), hydrocarbon analysis by gas chromatography (Di-Giovanni et al., 1998), infrared 102 
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spectroscopy (Hetényi et al., 2006) or biochemical oxygen demand (Copard et al., 2006) to 103 

determine the origin and/or decomposition stage of the organic matter (Hetényi et al., 2005; 104 

Sebag et al., 2006). 105 

More recently, RE6 results have been compared with respiration test or SOM fractions at the 106 

plot (Gregorich et al., 2015) and the small landscape scale (Saenger et al., 2015) but in both 107 

cases the analyses were restricted to superficial soil layers. Gillespie et al. (2014) have also 108 

related thermal stability assessed by RE6 to respiration test and X-ray absorption near-edge 109 

structure spectroscopy for cryosolic soil profiles (up to 75 cm) in Northern Canada but only in 110 

four hummocks. Finally, RE6 thermal analysis has been used to look at SOM dynamics in a 111 

sample set with a large soil type variability and some deeper horizons (Sebag et al., 2016), but 112 

without comparison to other methodologies. 113 

The objective of this study was to properly “benchmark” RE6 thermal analysis with two 114 

classical yet time-consuming methods for labile SOC pool estimation: a soil respiration test 115 

isolating a respired-C fraction under controlled laboratory conditions and a physical SOC 116 

fractionation scheme isolating a POM-C fraction. We selected soil samples from the French 117 

forests monitoring network RENECOFOR at various depths. To our knowledge, this is the 118 

first study considering such a large set of samples (covering a wide pedoclimatic variability), 119 

including deep soil layers up to 0.8 m. Our sample set thus included soil samples that 120 

presumably contained very different proportions of the labile SOC pool. Because the 121 

difference in size of the C pool estimated by the respiration test and the POM fractionation 122 

(e.g., Haynes, 2005) and the previously observed correlations between stock of labile SOC 123 

estimated by RE6 parameters and the POM fraction (Saenger et al., 2015) on one hand and 124 

between cumulative C mineralized and a RE6 parameter (Gregorich et al., 2015) on the other 125 

hand, we were expecting that: 1/ the results provided by the two classical methods would 126 

differ quantitatively while the results from the three methods would be qualitatively 127 
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comparable and correlated; 2/ we would be able to derive a significant quantitative 128 

relationship between RE6 parameters and the two classical indicators of the labile SOC pool. 129 

 130 

2. Material and methods 131 

2.1. Sampling 132 

We considered forest soils samples from 53 permanent forest sites of the French national 133 

network for the long term monitoring of forest ecosystems (‘‘RENECOFOR’’), established in 134 

1992 (Ulrich, 1995) by the National Forest Service (ONF; http://www.onf.fr/renecofor) as a 135 

part of the European ICP-FORESTS (http://icp-forests.net/) level 2 network (Fig. 1a). They 136 

were representative of a good portion the national variability in terms of climate (with MAP 137 

and MAT ranging between 703–1894 mm and 4.8–12.3 °C respectively for the 1971–2000 138 

period), soil type (entic Podzol; eutric Cambisol/Calcisol; dystric Cambisol) (IUSS Working 139 

Group, 2015) and forest vegetation (coniferous—silver fir; Norway spruce; European larch; 140 

Scots pine—and deciduous—beech; oaks spp—stands). At each site, samples representing 141 

two soil layers were obtained (0–10 cm and 40–80 cm; Fig. 1b). Samples of the top soil layer 142 

were composite, at each depth, of 5 × 5 sampling points located over a 5000 m2 plot, collected 143 

between 2007 and 2012 by digging a 50 cm wide soil profile (Ponette et al., 1997; Jonard et 144 

al., 2017). Samples of the deeper soil layer were composite from two soil pits located just 145 

outside the central plot and collected in 1994–1995 (Brêthes et al., 1997). The surface and 146 

deep samples thus originate from two different sampling campaigns. The deep samples were 147 

only collected once, during the first campaign, to limit perturbation on the monitoring plots. 148 

Basic soil parameters (pH and texture) were determined by Ponette et al. (1997) and are 149 

reported as supplementary information (Table SI-A1). 150 

Bulk soils were air-dried and stored in plastic buckets right after sampling. One liter of soil of 151 

each layer was retrieved for this study and sieved at 2 mm before analysis. 152 
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 153 

2.2. Elemental analysis 154 

Bulk < 2 mm-sieved soil samples were ground (< 250 µm; ultra-centrifugal mill ZM 200, 155 

Retsch Gmbh) and organic carbon and total nitrogen concentrations were determined by dry 156 

combustion with an elemental analyzer (CHN NA 1500, Carlo Elba). Samples with 157 

carbonates (total CaCO3 = 3.5–835 g·kg−1) were first decarbonated following the same 158 

protocol as Harris et al. (2001). Briefly, 30 mg of ground samples were weighed in 5 mm × 9 159 

mm silver boats followed by the addition of 50 μL of distilled water. The boats were put in a 160 

glass bell jar, next to a beaker containing 100 mL of concentrated HCl (12 mol·L−1). The air 161 

in the jar was evacuated and samples let to sit in this HCl-saturated atmosphere to allow the 162 

acid to dissolve water and hydrolyze the carbonates for 8 h. Then, the decarbonated samples 163 

were dried at 60 °C in the silver boats for at least 48 h. Silver boats were further placed in 10 164 

mm × 10 mm tin boats and analyzed for C and N. 165 

POM fractions (see section 2.4.) were ground with a ball mill (mixer mill MM 200, Retsch 166 

Gmbh) or a mortar and pestle when the sample mass was less than 0.05 g. Carbon 167 

concentration was determined as for the bulk soil. 168 

 169 

2.3. Respiration test 170 

For each sample, 20 g of 2 mm-sieved soil were transferred in a 120 mL glass-flask and re-171 

wetted at pF 2.5 (−0.033 MPa), which had been previously determined using a 5 Bar pressure 172 

plate extractor (#1600, Soilmoisture Equipment Corp.). The flasks were fitted with aluminum 173 

seals with PTFE-faced silicone septa to allow for headspace gas sampling and placed inside 174 

an incubator (AE240 BIO EXPERT, Froilabo SAS) kept at 20 °C for 10 weeks following a 175 

two-week period pre-incubation to allow the samples microbial activity to stabilize (data not 176 

included). 177 
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Headspace gases were sampled at 1 to 2-week intervals during the 10-week incubation period 178 

and CO2 concentrations were determined using an Agilent 490 micro-gas chromatograph 179 

equipped with the OpenLAB Chromatography Data System EZChrom software.  180 

When CO2 concentrations had reached 2.5–3% or was expecting to do so before the next 181 

measurement, and/or when the cap had been pierced with the needle four times, flasks were 182 

opened and flushed with fresh and moist air to return CO2 concentrations to ambient levels to 183 

avoid anoxia (while maintaining the moisture content), before returning them to the incubator. 184 

The CO2 concentrations measured by the GC were converted in µ CO2-C·using equation 1: 185 

µg C-CO2 = mmol air × ppm CO2 (µmol C/ mol air) × 10−3 (mol/mmol) × 12 (µg C / µmol C) 186 

(equation 1) 187 

where “mmol air” corresponds to the millimoles of air present in the flask and was calculated 188 

with the ideal gas law (equation 2): 189 

n = PV / RT = (1 × 100) / (82.05 × 293)  (equation 2) 190 

As a result, we multiplied our concentrations of CO2 expressed in percent by 499.16 to 191 

convert them in µg C-CO2.  192 

Finally, the 10-week mineralizable SOC (respired-C) was expressed in mg CO2-C·g−1 SOC to 193 

account for differences in the C content of the various layers and sites. 194 

 195 

2.4. Particle size and density SOC fractionation 196 

To isolate the particulate organic matter (POM) fraction, samples were first dried at 50 °C for 197 

24 h before weighing 25 g and transferred them in polyethylene (PE) 250 mL flasks. We then 198 

added 180 mL of 0.5% sodium hexametaphosphate solution and ten 5 mm-diameter glass 199 

beads before shaking the samples overnight (50 rpm; 16 h) on an overhead shaker (Reax 2, 200 

Heidolph), in order to breakdown soil aggregates. Samples were thoroughly rinsed over a 50-201 

µm mesh with deionized water. The > 50 µm fraction was then transferred back to a dry PE 202 
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flask with a sodium polytungstate (SPT) solution of density = 1.6  0.03 g·cm−3 (Golchin et 203 

al., 1994; Crow et al., 2007) and the solution was added up to circa 180 mL. The flasks were 204 

shaken overhead by hand 10 times and samples were left overnight to settle down after the 205 

cap of the flask was rinsed with the SPT solution. The floating material was collected with a 206 

spatula and placed over a 50-µm mesh sieve. If necessary some SPT solution was added back 207 

to the flask and the previous step was repeated. This time, samples were placed in a centrifuge 208 

for 30 minutes to accelerate the separation (2750 rpm or 1250 g, Six et al., 1998). The floating 209 

material was again collected with the spatula or pipetted depending on the amount left. This 210 

step was repeated if the light fraction was abundant. If not, samples were left to settle down 211 

overnight before one last collection. The POM fraction on the sieve was thoroughly rinsed 212 

with deionized water throughout the whole process. The sieves and fractions were then placed 213 

in the oven at 50 °C for 24 h before being weighed. To account for differences in the C 214 

content of the different samples, we calculated the proportion of OC in the POM fraction 215 

(POM-C), expressed in g POM-C·g−1 total SOC. 216 

 217 

2.5. Thermal analysis: Rock-Eval 6 218 

The thermal analysis of the samples was performed with a Rock-Eval 6 turbo device (Vinci 219 

Technologies, France). Details about the equipment have been previously published (Behar et 220 

al., 2001). We adapted the procedure developed for the analysis of soil organic matter by 221 

Disnar et al. (2003). Briefly, about 60 (20.7–62.1 depending on the sample’s C content) mg of 222 

ground sample were exposed to two consecutive thermal treatments, first in a pyrolysis oven 223 

(200–650 °C; thermal ramping rate of 30 °C·min−1; under N2 atmosphere) then in a 224 

combustion oven (300–850 °C; thermal ramping rate of 20 °C·min−1; under laboratory air 225 

atmosphere). At the beginning of the pyrolysis, there was an isothermal step (at 200 °C) 226 

during 180 seconds during which the free hydrocarbons (HC) were thermovaporized (S1 227 
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peak). The pyrolysis effluents (mostly HC) were detected and quantified with flame ionization 228 

detection, while CO and CO2 were quantified by infrared detection during both the pyrolysis 229 

and oxidation stages (Fig. SI-A1).  230 

Two standard RE6 parameters describing SOC bulk chemistry were determined: the hydrogen 231 

and oxygen index values (HI and OIRE6). The HI index corresponds to the amount of 232 

hydrocarbons formed during thermal pyrolysis of the sample (HC evolved between 200 and 233 

650 °C minus the S1 peak) divided by the total SOC content of the sample and is expressed in 234 

mg HC·g−1 SOC. It describes the relative enrichment/depletion of SOC in hydrogen-rich 235 

moieties. The OIRE6 index describes the relative oxidation status of SOC. It was calculated 236 

using the equation proposed by Lafargue et al. (1998): 237 

OIRE6 = 16 / 28 × OICO + 32 / 44 × OICO2   (equation 3) 238 

Where OICO2 corresponds to the CO2 yielded during thermal pyrolysis of the sample between 239 

200 and 400°C divided by the total SOC of the sample and OICO corresponds to the CO 240 

yielded during thermal pyrolysis between 200 and 400–650°C (wherever a minimum of CO 241 

production is observed; in the absence of a minimum, the default upper-limit temperature is 242 

set at 550 °C) divided by the total SOC of the sample. Thus OIRE6 is expressed in mg O2·g−1 243 

SOC. 244 

We derived four additional RE6 parameters describing the thermal stability of SOC: (i) 245 

T50_HC_PYR, the temperature at which 50% of the HC resulting from the SOM pyrolysis had 246 

evolved (ii) the T50_CO2_OX, the temperature at which 50% of the residual SOM was oxidized 247 

to CO2 during the oxidation phase. Because the signal was noisy at the beginning of the 248 

pyrolysis, we started the integration for T50_HC_PYR right after the S1 peak. For T50_CO2_OX, the 249 

upper limit temperature for signal integration was set at 611 °C to obtain a total CO2 signal 250 

evolved from pure OM without interference of carbonates. Both these T50 temperature 251 

parameters and the HI index have been previously shown as good thermal indicators of SOM 252 
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biogeochemical stability (Gregorich et al., 2015; Barré et al., 2016). We also included two 253 

thermal indices previously used in the literature: the (iii) R-index or (1 − R400), which 254 

correspond to the integrated area of the HC thermogram above 400 °C over the total area of 255 

the HC signal (Disnar et al., 2003; Sebag et al., 2016). The R-index estimates the proportion 256 

of thermally stable SOC pool and varies between 0 and 1. We hypothesized that the 257 

proportion (1 – R-index) would approximate a thermally labile/intermediate (turnover < 20 258 

years) SOC pool. Finally, using equation 4, we calculated the (iv) I-index, which is an 259 

indicator of the preservation of thermally labile immature SOM (Sebag et al., 2016): 260 

log10((A1 + A2) / A3)   (equation 4) 261 

where A1 + A2 corresponds to the integrated area of the HC thermogram below 400 °C and 262 

A3 the integrated area of the HC thermogram between 400 °C and 460 °C. 263 

Signal processing of the RE6 thermograms (signal integration and calculation of the 264 

T50_HC_PYR, T50_CO2_OX, R and I indices) was performed with the R environment software v.3.3 265 

(R Core Team, 2016) using the hyperSpec (Beleites and Sergo, 2015) and pracma (Borchers, 266 

2015) R packages.  267 

 268 

2.6. Calculations and statistical analyses 269 

For RE6 analysis and the respiration test, samples with very low C content (< 0.2%) were not 270 

considered as the carbon flux they produced during the incubation or the thermal analysis was 271 

too low/too close to the limit of detection for reliable determination. This resulted in the 272 

selection of n = 46 for the soil layer 40–80 cm (total n = 99).  273 

The mean values of the variables derived from the SOC respiration test, fractionation and RE6 274 

analysis for all layer depths were compared using standard non-parametric statistical methods 275 

such as Kruskal Wallis test one-way ANOVA by ranks and Wilcoxon signed-rank test. 276 

Relationships between the variables derived from the three methods were estimated using 277 
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Spearman rank correlation as the data did not meet the assumption of normality. Correlation 278 

tests were first performed on the whole dataset (n = 99) then within the 0–10 cm and the 40–279 

80 cm layers, the three soil types and the two vegetation types individually. All comparisons 280 

were considered significant at an alpha value () of 0.05. A principal component of analysis 281 

(PCA) was performed to detect linear relations between parameters derived from the 3 282 

methods. For that purpose, data were log-transformed, centered and scaled. Because the I-283 

index was negative in some instances, we added the equivalent of the smallest I-index value + 284 

0.2 to all the I-index values to run the PCA. To determine the number of principal 285 

components to select, we looked at the percentage of the total variance explained and used a 286 

scree plot and Kaiser’s criterion. To analyze the relationship between RE-based and the two 287 

classical indicators of the labile SOC pool, we used a simple linear regression model and 288 

relied on the Cook’s distance to identify potential outliers. All statistical analyses were 289 

performed using R 3.3 (R Core Team, 2016) using the factoextra (Kassambara and Mundt, 290 

2016) and Hmisc (Harrell et al., 2016) packages. 291 

 292 

3. Results 293 

3.1. Respiration test  294 

The 10-week mineralizable SOC (respired-C) was expressed in mg CO2-C·g−1 SOC to 295 

account for differences in the C content of the various layers and sites. Over the course of the 296 

10-week incubation, the surface layer (0–10 cm) samples cumulatively respired on average 17 297 

 7.2 mg CO2-C·g−1 SOC, while the deeper layer (40–80 cm) samples respired 13.4  6.9 mg 298 

CO2-C·g−1 SOC (Table 1). There was a significant decrease in respired-C with depth (p = 299 

0.003), indicating a smaller size of the labile C pool in the deeper layers of our forest soils. 300 

Within each soil layer, the large standard deviation (around 7.0 mg CO2-C·g−1 SOC) 301 

illustrates an important inter-site variability. 302 
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 303 

3.2. POM fractionation 304 

The POM-C fraction (% of total C) decreased by half between layers 0–10 cm and 40–80 cm 305 

with 22.6  7.3% and 11.0  6.1% respectively. This indicates a significantly (p < 0.001) 306 

smaller labile C pool in the deeper (40–80 cm) soil layer. POM-C ranged between 12.1–307 

43.0% and 2.5–33.6% in the 0–10 cm and 40–80 cm layers, respectively, illustrating again an 308 

important inter-site variability.  309 

 310 

3.3. RE6 thermal analysis 311 

There was a significant effect of depth on all RE6 parameters. Particularly, the two T50 312 

parameters increased significantly (p < 0.001) with depth: 421  9 °C to 448  10 °C and 399 313 

 9 °C to 431  18 °C (Table 1), for T50_HC_PYR and T50_CO2_OX respectively, corresponding to 314 

an increase in the thermal stability of total SOC (i.e. a relative decrease in the labile C pool 315 

and increase of the stable C pool). OIRE6 showed a similar increasing trend (p < 0.001) with 316 

depth (225  37–439  138 mg O2·g−1 total SOC; Table 1), reflecting a more oxidized SOC in 317 

the deeper layers. Conversely, HI decreased significantly (p < 0.001) with depth (276  77–318 

133  34 mg HC·g−1 total SOC; Table 1), suggesting a relative depletion of total SOC in H-319 

rich moieties with increased soil depth. The proportion of thermally stable SOC R-index, also 320 

experienced a significant increase (p < 0.001) with depth (59–69%; Table 1), while the I-321 

index decreased slightly (0.17–0.11; Table 1). 322 

 323 

3.4. Correlations between methods 324 

3.4.1. For all samples  325 

There were mainly significant and strong correlations between POM-C and the RE6 326 

parameters (Table 2). Notably T50_HC_PYR, OIRE6 and R-index all had a strong negative 327 
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correlation with POM-C (Spearman ρ = −0.73, −0.76 and −0.69 respectively; Table 2; Fig. 3). 328 

T50_CO2_OX and HI moderately correlated with POM-C (ρ = −0.56 and 0.67) and the I-index 329 

had a weak positive relationship with POM-C (ρ = 0.35). I-index, T50_HC_PYR and R-index 330 

were the only parameters that were significantly related to respired-C, with a weak correlation 331 

(ρ = 0.32, ρ = −0.26 and −0.31 respectively; Table 2). The two classical methods of 332 

estimation of labile SOC (respired-C and POM-C) were weakly positively (ρ = 0.20; Table 2; 333 

Fig. SI-B1 a) and indeed only marginally (p = 0.051) related. 334 

To describe the similarity or dissimilarity in the different indicators of SOC lability, we 335 

conducted a principal components analysis (PCA). As shown by the correlation test, T50 336 

_HC_PYR and R-index on the one hand and OIRE6 and HI on the other hand were highly 337 

correlated (ρ = 0.93 and −0.92 respectively; Table 2). We thus decided to conduct the PCA 338 

using only the 6 following explanatory variables = respired-C; POM-C; HI; T50_CO2_OX; T50 339 

_HC_PYR; I-index). The first two principal components (PC) explained approximately 73% of 340 

the total variance, with 53% explained by the first and 20% explained by the second PC, 341 

respectively (Fig. 2). PC1 clearly separated surface (0–10 cm) from deeper (40–80 cm) soil 342 

samples. Along PC1, POM-C and HI showed moderate negative loadings (−0.47 and −0.46 343 

respectively; Table SI-B1) while T50_HC_PYR and T50_CO2_OX had moderate positive loadings 344 

(0.53 and 0.45; Table SI-B1). Respired-C and the I-index showed strong positive loadings 345 

along PC2 (0.55 and 0.69; Table SI-B1), while they showed very weak negative loadings 346 

along PC1. Samples from layers 0−10 and 40−80 cm did not significantly differ along the 347 

second PC. 348 

 349 

3.4.2. For the 0–10 cm and 40–80 cm layer separately 350 

These global correlations prompted us into looking at the influence of soil depth on the 351 

different parameters. The paired correlations between the 8 parameters differed in surface (0–352 
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10 cm) and deep (40–80 cm) layers (Table 2). Specifically, the respired-C in the surface 353 

layers was weakly and negatively related to POM-C (ρ = −0.29; Table 2). Conversely in the 354 

deep layers, respired-C and POM-C were moderately and positively correlated, as it would be 355 

expected (ρ = 0.47; Table 2; Fig. SI-B1 a). In the surface layers, HI and OIRE6 were also 356 

moderately (negatively and positively, respectively; Table 2) correlated to respired-C, while 357 

in the deep layers we observed again this negative and moderate correlation between 358 

T50_HC_PYR and respired-C. For POM-C, we found the same negative correlations with 359 

T50_HC_PYR and OIRE6 as in the “all samples” comparison but they were less strong (ρ = −0.35 360 

to −0.42; Table 2). In the surface layer, the C/N ratio, pH and clay content had all moderate 361 

and significant correlations with respired-C and T50_HC_PYR (Table 2). These correlations were 362 

absent in the 40–80 cm layer. 363 

We also looked at the evolutions of the correlations as a function of vegetation and soil types, 364 

but there were no change as drastic as the ones we observed with depth (Table SI-C1). In both 365 

cases the changes affected only the correlations between respired-C and the other parameters. 366 

For instance, in coniferous plots, respired-C was weakly to moderately positively correlated to 367 

clay content (ρ = 0.27) and pH (0.37) while those correlations were absent in deciduous plots 368 

(Table SI-C1). For the soil types, POM-C and respired-C were moderately and positively 369 

correlated in Podzols (0.42) and eutric Cambisols (0.46) but not in dystric Cambisols. 370 

Furthermore, in eutric Cambisols, respired-C was moderately and negatively correlated with 371 

T50_CO2_OX (−0.54), R-index (−0.50) and pH (−0.57; Table SI-C1). 372 

 373 

4. Discussion 374 

4.1. Relationships between respiration test and POM fractionation 375 

Unexpectedly the two classical indicators of the labile SOC fraction correlated only weakly 376 

and marginally when considering all our samples.  377 
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POM-C is considered as a labile SOC fraction (Wander, 2004; Haynes, 2005; von Lützow et 378 

al., 2007), and we thus expected it would correlate significantly and strongly with the 379 

respired-C fraction isolated by the 10-week laboratory respiration test. Indeed, in his review, 380 

Haynes (2005) mentioned several studies reporting a positive and usually strong correlation 381 

between the respired-C and the POM-C fractions, appearing to support that hypothesis. 382 

However when carefully considering these papers (Janzen et al., 1992; Hassink, 1995; 383 

Campbell et al., 1999a; Campbell et al., 1999b; Wander and Bidart, 2000) and others (Liang 384 

et al., 2003; Hassan et al., 2016; Li et al., 2016), it emerged that the presented data were not 385 

normalized by the total SOC concentration of the samples. Without normalization it could be 386 

argued that the positive correlation between the POM-C and the respired-C fractions was in 387 

fact driven by variations in total SOC concentration and not SOC biogeochemical stability. It 388 

also prevented comparisons among studies, given the important difference in SOC 389 

concentration.  390 

The hypothesis of a positive correlation between the sizes of the labile SOC pool estimated by 391 

respiration test and POM fractionation schemes has actually not been properly tested on 392 

multiple sites, using SOC normalized data as it has been done in the present study. Indeed, the 393 

few studies that have reported moderate to strong positive correlations between the sizes of 394 

the labile SOC pool estimated by respiration test and POM fractionation were conducted on 395 

similar soils under different management (e.g., Alvarez and Alvarez, 2000) or correlations 396 

were made within sites (e.g., Janzen et al., 1992). When combining results from all sites, the 397 

correlation appeared to be weaker and it can therefore be hypothesized that in our study the 398 

weak and marginally significant correlation between POM-C and respired-C was partially due 399 

to the large inter-sites variability of soil properties for our sample set (Table SI-A.1). 400 

Finally, the labile SOC pools estimated by the two classical methods were so different in size 401 

(i.e. the labile SOC pool estimated as respired-C was about an order of magnitude smaller 402 
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than the one estimated as POM-C; Table 1) that it is not surprising that the correlation did not 403 

hold specifically when introducing a lot of inter-sites variability. This constitutes another 404 

explanation to the lack of correlation between these two indicators of the size of the labile C 405 

pool. The two methods appeared to measure different SOC fractions (i.e. different sizes) 406 

(Table 2 and Fig. 2) that correspond to different SOC lability (i.e. mean residence time).  407 

 408 

4.2.  Relationships between RE6 parameters and POM-C and respired-C 409 

Our RE6 results agreed with previous observations of thermal indicators of SOC lability. For 410 

instance, Sebag et al. (2016) reported a trend of decreasing HI and increasing OIRE6 with soil 411 

depth. Trends of decreasing HI and increasing T50_CO2_OX were observed with increasing time 412 

since beginning of bare fallow experiments, which corresponded with a progressive 413 

decomposition of the labile SOC pool (Barré et al., 2016).  414 

Our correlations between the RE6 parameters and the POM-C fraction were close to those 415 

previously reported by Saenger et al. (2015). They indeed obtained a moderate positive 416 

correlation (R2 = 0.50) between the labile SOC pool stocks derived from a SOC fractionation 417 

scheme isolating POM-C, and the thermally labile SOC pool stocks derived from RE6 418 

indices. We found a similar strong positive correlation between the proportion of labile SOC 419 

(1−R-index) and POM-C. The strong relationship between T50_HC_PYR and R-index could 420 

likely be explained as T50_HC_PYR for our samples were very close to the 400 °C threshold used 421 

for the calculation of the R-index. As hypothesized we were able to derive a quantitative 422 

relationship between some of our RE6 parameters and POM-C (Fig. SI-B1 b–d). The best 423 

model was obtained for T50_HC_PYR (R2 = 0.52; Fig. 3), while HI, R-index and OIRE6 were still 424 

moderately good predictors of POM-C (R² = 0.42–0.47 (Fig. SI-B1 b–d).  425 

Nevertheless no strong relationship between respired-C and the other parameters could be 426 

established. Our correlations between the RE6 parameters and respired-C were smaller than 427 



19 

those previously reported by Gregorich et al. (2015). This could be explained by the fact that 428 

their study was, by design, very restricted in terms of its soil properties variability and also 429 

only considered surface soils (0–10 cm), in which the C/N ratios were around 10.  430 

Previous studies have also demonstrated that RE6 can be used to look at changes in the size of 431 

the SOC labile pools with time. For instance, RE6 was able to describe the decrease in the 432 

labile SOC pool in long-term bare fallows (Barré et al., 2016). Besides, RE6 captured 433 

differences in the size of the labile SOC pools in various land-uses and soil types over a small 434 

landscape (Saenger et al., 2015). Our results thus contradict the conclusions from Schiedung 435 

et al. (2017) who found no relationship between the thermally labile SOC (200–400 °C) and 436 

the C in the POM fractions. The latter (free and occluded POM—obtained by sonication) 437 

were indeed more stable at lower oxidation temperatures (300–350 °C) than the mineral-438 

associated fraction. However, their analytical method was different from RE6 protocols: the 439 

thermal analysis they used was entirely realized under aerobic conditions (oxidation only), 440 

their temperature range was limited (only up to 400 °C) and they used a 50–100 °C 441 

temperature step every 15 minutes rather than a constant thermal ramping rate (standard in 442 

most thermal studies). For all these reasons, it is likely that their thermal indices differ greatly 443 

from our RE6-derived parameters. Moreover their study was based on topsoils (0–10 cm) of 444 

only three study sites. 445 

The good approximation of the POM-C fraction by RE6 we reported constitutes a very 446 

promising result. POM-C mean residence time (< 20 years in temperate conditions in the 447 

absence of an important charcoals contribution; e.g., Trumbore and Zheng, 1996; Balesdent, 448 

1996; Balesdent et al., 1998; Baisden et al., 2002; Schrumpf and Kaiser, 2015) and its size (11 449 

to 23% of total SOC in this study) are much larger than the one of the respired-C fraction, and 450 

is thus more meaningful regarding SOC stock evolutions upon changes of land management. 451 
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This suggests that RE6 could be used to determine the size of the labile SOC pool with a 452 

decadal mean residence time. 453 

 454 

4.3. Effects of depth on correlations between the three methods estimating labile SOC 455 

Labile SOC content usually decreases with depth (e.g., Lorenz and Lal, 2005; Jenkinson et al., 456 

2008). Such a trend was observed with the three methods used in the present study. Indeed, 457 

with depth, we observed a decrease in respired-C (respiration test), POM-C (POM 458 

fractionation) and HI alongside with an increase in T50_HC_PYR and R-index that all signified 459 

the expected decrease in the size the labile SOC pool. Concurrently, OIRE6 increased with 460 

depth, confirming the increase in SOC oxidative state with increasing decomposition 461 

(Hockaday et al., 2009; von Lützow and Kögel-Knabner, 2010; Hockaday et al., 2015).  462 

But more importantly, depth affected the correlations between the methods. The lack of 463 

correlation between two classical indicators of the labile SOC fraction previously mentioned 464 

appeared to originate from opposite trends in the surface and deep layers. In the 0–10 cm 465 

layer we observed a surprising negative (but weak) correlation between respired-C and POM-466 

C while the expected positive and moderate correlation between the two indicators was found 467 

only in the deep layers. The differences in the sign of the correlations between respired-C and 468 

POM-C in the two considered layers (0–10 cm and 40–80 cm) may be related to pedological 469 

factors that can limit SOC mineralization in surface horizons. Indeed, the high C/N ratio 470 

found in the surface layer (Table SI-A1) is far from the expected C/N of the microorganisms 471 

and this lack of N may limit SOC respiration. Similarly, surface layers are on average more 472 

acidic (Table SI-A1) than deep layers which can also reduce SOC respiration. We could 473 

hypothesize that respired-C and POM-C correlate only when environmental conditions do not 474 

limit SOC mineralization explaining the absence of correlation in the acidic N-poor 0–10 cm 475 

layer. The significant correlations observed between respired-C and the C/N ratio, pH and the 476 
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clay content in the surface layer (Table 2) supports that hypothesis. This opposite behavior in 477 

the two layers also affected T50_HC_PYR, which was not significantly correlated to respired-C in 478 

the surface layer while the two parameters were moderately and negatively correlated in the 479 

40–80 cm layer (Table 2). These observations matched those from Peltre et al. (2013) who 480 

reported conflicting relationships between the parameter DSC-T50 (temperature at which half 481 

of the energy is released in differential scanning calorimetry) and mean soil respiration rates 482 

in two sets of high and low SOC content. Their DSC-T50 values were indeed negatively 483 

correlated with the respiration values for the low-C soils, whereas there was only a marginal 484 

positive correlation between the two parameters for the high-C soils. Their two groups were 485 

characterized by soil properties similar to our 0–10 and 40–80 cm layers: their low-C set 486 

consisted of samples with a higher pH and lower mean C/N ratio than those of the high-C. 487 

Similarly to our 0–10 cm samples, soils in their high-C set had a greater C concentration than 488 

those in the low-C set for similar clay contents (Table SI-A1). This would also explain why 489 

our results differ from those of Gregorich et al. (2015). In the deep layer, in which the C/N 490 

ratios are closer to those reported by Gregorich et al. (2015), we observed the same positive 491 

correlation they reported albeit less strong. 492 

Vegetation and soil types did not seem to have affected the correlations between the three 493 

methods we tested as much as depth did. However, these environmental factors are likely 494 

drivers of the size labile SOC pool as they have been shown to significantly influence RE6 495 

parameters (e.g., Disnar et al., 2003; Sebag et al., 2006). 496 

 497 

4.4. Towards high-throughput information on SOC biogeochemical stability using RE6 498 

analysis 499 

Respiration tests and POM fractionation schemes are both time consuming, thus limiting the 500 

number of samples and/or replicates that are analyzed. With the RE6 set-up used in this study, 501 
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about 20 samples per day can be analyzed, and it requires only limited operator interventions 502 

(soil weighing and routine supervision of the RE6 analyzer).  503 

The lack of normalization in many studies using respiration tests and POM fractionation is an 504 

important issue and it should be recommended for further studies to include normalized data 505 

(% of TOC) when presenting their results. Moreover, despite the fact that POM-C and 506 

respired-C are considered as standard estimates of the labile SOC pool, the temperature and/or 507 

duration of incubations often varied from one study to the other. Similarly for the POM-C 508 

fraction, the density of the solution used for the flotation may drastically differ among studies. 509 

This makes data comparison almost impossible. In that regard, while the harmonization of 510 

RE6 programs would probably be much easier to implement than respiration tests or POM 511 

fractionation protocols as the number of users is still limited, protocol standardization is an 512 

important and pressing goal to achieve and this rather quickly as the method starts to gain 513 

interest. 514 

RE6 analysis is thus a rapid technique that captures differences in the labile SOC pool as well 515 

as other classical techniques. While the understanding of the underlying processes linking 516 

SOC thermal stability observed with RE6 and the laboratory or in-situ biogeochemical 517 

stability of SOC is not fully uncovered and further studies are needed, RE6 analysis appears 518 

like a very promising method to provide quick and inexpensive information on the labile SOC 519 

pool. Hence, it could constitute a standard method to complement C stock measurements in 520 

soil monitoring programs. 521 

 522 
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Figure captions 692 

Fig. 1. (a) Location of the 53 study sites front the French national network for the long term 693 

monitoring of forest ecosystems (RENECOFOR); (b) Number of samples by depths and 694 

analyses realized. Plot locations are also available via the Interactive Map Viewer. 695 

 696 

Fig. 2. Biplot of a principal components analysis (PCA) showing the loadings of the 6 697 

parameters estimating the labile SOC (red arrows) and the 99 soil samples for the two layers 698 

(0–10 cm, n = 53; 40–80 cm, n = 46) along the first two principal component axes (PC1 and 699 

PC2). The 95% ellipses for both soil layers were added for information; the circle in the 700 

center corresponds to the circle of correlations. 701 

 702 

Fig. 3. The proportion of OC in the POM fraction (POM-C) as a function of T50_HC_PYR (the 703 

temperature at which 50% of the HC pyrolysis effluents have evolved) for all samples (n = 704 

99; surface = 0–10 cm and deep = 40–80 cm). 705 
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Table 1. Mean (and minimum; maximum; standard deviation) of the RE6 (HI, OIRE6, T50_HC_PYR, T50_CO2_OX, R-index, I-index), respiration test 

(10-week mineralizable C, respired-C) and POM fractionation (POM-C) parameters, as well as the bulk SOC content for each soil layer (0–10 

and 40–80 cm) of the 53 RENECOFOR plots.  

 
n 

HI (mg HC 

/ g TOC) 

OIRE6 (mg 

O2 / g 

TOC) 

T50_HC_PYR 

(°C) 

T50_CO2_OX 

(°C) 

R-index 

(% SOC) 
I-index 

Respired-C 

(mg CO2-C / 

g SOC) 

POM-C (% 

SOC) 

SOC (%) 

(bulk soil) 

  0–10 cm 53 276 

(161; 

443; 

77) 

225 

(161; 

288; 

37) 

421 

(400; 

439; 

9) 

399 

(382; 

422; 

9) 

59 

(50; 

68; 

4) 

0.17 

(0.00; 

0.32; 

0.07) 

17.0 

(4.4; 

33.7; 

7.2) 

22.6 

(12.1; 

43.0; 

7.3) 

5.1 

(1.2; 

15.1; 

2.7) 

40–80 cm 46 133 

(75; 

202; 

34) 

439 

(236; 

875; 

138) 

448 

(421; 

480; 

10) 

431 

(390; 

470; 

18) 

69 

(59; 

79; 

5) 

0.11 

(−0.18; 

0.39; 

0.14) 

13.4 

(3.6; 

32.2; 

6.9) 

11.0 

(2.5; 

33.6; 

6.1) 

0.9 

(0.2; 

3.9; 

0.8) 

 

Table 1



Table 2. Spearman correlation coefficients between 10-week mineralizable SOC (respired-C), the proportion of OC in the POM fraction (POM-

C), the RE6 parameters and the C/N ratio, pH and clay content of the bulk soil, for both the 0–10 cm (n = 53) and 40–80 cm (n = 46) layers and 

each layer individually. Significance is indicated as follows: ***: p < 0.001; **: p < 0.01; *: p < 0.05. The very high correlations are marked in 

bold. 

All (n = 99) respired-C POM-C T50_HC_PYR T50_CO2_OX HI OIRE6 I-index R-index C/N pH 

POM-C   0.20          

T50_HC_PYR −0.26** −0.73***         

T50_CO2_OX −0.16 −0.56*** 0.76***        

HI   0.06 0.67*** −0.78*** −0.66***       

OIRE6 −0.02 −0.76*** 0.78*** 0.63*** −0.92***      

I-index   0.32** 0.35*** −0.48***  −0.17     0.10    0.06     

R-index −0.31** −0.69*** 0.93*** 0.64*** −0.64*** 0.67*** −0.74***    

C/N −0.13 0.63*** −0.55*** −0.52*** 0.67*** −0.78***    0.16 −0.50***   

pH   0.23* −0.55*** 0.49*** 0.44*** −0.57*** 0.66***  −0.27** 0.49*** −0.64***  

clay content   0.20 −0.19      0.04   −0.06     −0.17      0.31**  −0.22**     0.13 −0.49*** 0.43*** 

0–10 cm respired-C POM-C T50_HC_PYR T50_CO2_OX HI OIRE6 I-index R-index C/N pH 

POM-C −0.29*          

T50_HC_PYR   0.12 −0.44***         

T50_CO2_OX   0.13 −0.19   0.45***        

HI −0.43**   0.32* −0.30*   0.07       

OIRE6   0.52*** −0.41**   0.40** −0.06 −0.91***      

I-index   0.11   0.37** −0.87*** −0.43**   0.04 −0.17     

R-index   0.07 −0.44**   0.99***   0.44*** −0.24 −0.35* −0.92***    

C/N −0.51***   0.56*** −0.55*** −0.19   0.67*** −0.80***   0.37** −0.52***   

pH   0.62*** −0.35**   0.46***   0.36** −0.61***   0.70*** −0.25    0.42** −0.70***  

clay content   0.43** −0.29*   0.44** −0.03 −0.71***   0.75*** −0.31*    0.43** −0.70*** 0.60*** 

Table 2



 40–80 cm respired−C POM−C T50_HC_PYR T50_CO2_OX HI OIRE6 I−index R-index C/N pH 

POM−C   0.47***          

T50_HC_PYR −0.41** −0.35*         

T50_CO2_OX −0.01 −0.01   0.26        

HI −0.03   0.06 −0.24 −0.24       

OIRE6   0.13 −0.42**   0.10   0.22 −0.47***      

I−index   0.41**   0.13 −0.19   0.43** −0.49***   0.40**     

R-index −0.52*** −0.28   0.64*** −0.19   0.20 −0.20 −0.85***    

C/N −0.17   0.30*   0.10 −0.18   0.25 −0.65***   0.30*   0.23   

pH   0.03 −0.34* −0.03 −0.18   0.11   0.25 −0.07   0.06 −0.27  

clay content −0.08 −0.42** −0.01   0.11 −0.07   0.62*** −0.15   0.17 −0.59*** 0.35* 
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Supporting Information  

 

Table SI-A.1. Mean (+ standard deviation) particle-size distribution, pH and C/N ratio of the 

studied samples. 

 

Table SI-B1. Percentage of variance explained and loadings of the first three principal 

components (PC) after Box-Cox transformation to correct for skewness for the PCA of all (0–

10 cm and 40–80 cm) samples (n = 99). Values in bold indicate the variables with loading 

greater than the mean of the absolute loading in each PC.  

 

Table SI-C1. Spearman correlation coefficients between 10-week mineralizable SOC 

(respired-C), the proportion of OC in the POM fraction (POM-C), the RE6 parameters and the 

C/N ratio of the bulk soil, for the three soil types and the two vegetation types. Significance is 

indicated as follows: ***: p < 0.001; **: p < 0.01; *: p < 0.05. The very high (> 0.9) 

correlations are marked in bold. 

 

Fig. SI-A1. Description of the Rock-Eval 6 thermal analysis (adapted from Saenger et al., 

2013) and calculation of four RE6-derived parameters (Hydrogen index; Oxygen index; 

T50_HC_PYR, the temperature at which 50% of the HC resulting from the SOM pyrolysis had 



evolved; T50_CO2_OX, the temperature at which 50% of the residual SOM was oxidized to CO2 

during the oxidation phase). 

 

Fig. SI-B1. The proportion of OC in the POM fraction (POM-C) as a function of (a) respired-

C (the proportion of total SOC mineralizable during a 10-week laboratory incubation); (b) 

OIRE6 (the oxygen index); (c) HI (the hydrogen index); (d) R-index (the proportion of 

thermally stable SOC pool) for all samples (n = 99; surface = 0–10 cm and deep = 40–80 cm). 







depth (cm) n

  0–10 53 22.5 (13.6) 35.5 (18.0) 42.0 (28.8) 4.9 (1.0) 16.9 (4.5)

40–80 46 21.0 (15.4) 32.8 (16.2) 46.2 (26.7) 5.9 (1.5) 11.8 (3.8)

Table SI-A.1. Mean (+ standard deviation) particle-size distribution, pH and C/N ratio of the 

studied samples in each layer of the 53 plots.

clay (%) silt (%) sand (%) pHwater C/N bulk soil



PC PC1 PC2 PC3

% variance explained 53.2 20.1 13.1

respired-C −0.22 0.55 0.77

POM-C −0.47 0.06 0.00

T50_HC_PYR 0.53 −0.02 0.11

T50_CO2_OX 0.45 0.36 −0.18

HI −0.46 −0.29 −0.15

I-index −0.20 0.69 −0.58

Table SI-B1. Percentage of variance explained and loadings of the first three principal 

components (PC) after Box-Cox transformation to correct for skewness for the PCA of 

all samples (n = 99). Values in bold indicate the variables with loading greater than the 

mean of the absolute loading in each PC.



respired-C POM-C T50_HC_PYR T50_CO2_OX HI I-index OIRE6 R-index C/N pH

POM-C  0.15 

T50_HC_PYR −0.36* −0.68***

T50_CO2_OX −0.18 −0.67***  0.77***

HI  0.17  0.62*** −0.81*** −0.65***

I-index  0.47** −0.01 −0.20  0.05 −0.17 

OIRE6 −0.15 −0.73***  0.82***  0.73*** −0.89***  0.15 

R-index −0.50** −0.52**  0.90***  0.61*** −0.62*** −0.58***  0.63***

C/N  0.11  0.68*** −0.67*** −0.66***  0.58***  0.14 −0.75*** −0.64***

pH  0.14 −0.60***  0.58***  0.51** −0.61***  0.08  0.60***  0.42* −0.38* 

clay content −0.30 −0.16  0.15 −0.02 −0.03 −0.45**  0.23  0.32 −0.27 −0.02 

POM-C  0.46* 

T50_HC_PYR −0.45* −0.68***

T50_CO2_OX −0.54** −0.53**  0.77***

HI  0.31  0.72*** −0.52** −0.48** 

I-index  0.39*  0.37* −0.58*** −0.36  0.21 

OIRE6 −0.42* −0.88***  0.68***  0.55** −0.83*** −0.39* 

R-index −0.50** −0.68***  0.94***  0.72*** −0.55** −0.78***  0.70***

C/N  0.41*  0.84*** −0.60*** −0.49**  0.71***  0.17 −0.82*** −0.54** 

pH −0.57*** −0.56**  0.69***  0.71*** −0.54** −0.20  0.62***  0.62*** −0.56** 

clay content −0.03 −0.13 −0.08 −0.08 −0.03 −0.14 −0.05  0.01  0.01 −0.25 

POM-C  0.42* 

T50_HC_PYR −0.35* −0.86***

T50_CO2_OX −0.24 −0.52**  0.69***

HI  0.18  0.71*** −0.75*** −0.57***

I-index  0.31  0.55*** −0.69*** −0.30  0.27 

OIRE6 −0.15 −0.71***  0.75***  0.48** −0.96*** −0.26 

R-index −0.32 −0.83***  0.97***  0.62*** −0.68*** −0.81***  0.68***

C/N  0.08  0.54** −0.55*** −0.44*  0.74***  0.13 −0.70*** −0.46** 

pH −0.29 −0.69***  0.83***  0.72*** −0.71*** −0.48**  0.72***  0.79*** −0.55***

clay content −0.01 −0.10 −0.06 −0.29 −0.15  0.05  0.23 −0.06 −0.39*  0.02 

Table SI-C1. Spearman correlation coefficients between 10-week mineralizable SOC (respired-C), the proportion of OC in the POM fraction (POM-C), 

the RE6 parameters and the C/N ratio of the bulk soil, for the three soil types and the two vegetation types. Significance is indicated as follows: ***: p  < 

0.001; **: p  < 0.01; *: p  < 0.05. The very high (> 0.9) correlations are marked in bold.

SOIL TYPE

eu
tr

ic
 C

am
b

is
ol

dy
st

ri
c 

C
am

bi
so

l
en

ti
c 

P
od

zo
l



respired-C POM-C T50_HC_PYR T50_CO2_OX HI I-index OIRE6 R-index C/N pH

POM-C  0.20 

T50_HC_PYR −0.25 −0.67***

T50_CO2_OX −0.24 −0.52***  0.72***

HI  0.05  0.70*** −0.82*** −0.67***

I-index  0.29*  0.38** −0.52*** −0.16  0.21 

OIRE6  0.00 −0.75***  0.76***  0.58*** −0.92*** −0.27 

R-index −0.25 −0.68***  0.95***  0.63*** −0.75*** −0.74***  0.74***

C/N −0.13  0.60*** −0.46*** −0.33*  0.73***  0.19 −0.80*** −0.47***

pH  0.37** −0.54***  0.42**  0.37** −0.64*** −0.18  0.70***  0.45*** −0.66***

clay content  0.27* −0.20 −0.11 −0.32* −0.15 −0.09  0.33* −0.01 −0.51***  0.50***

POM-C  0.21 

T50_HC_PYR −0.29 −0.80***

T50_CO2_OX −0.07 −0.56***  0.70***

HI  0.10  0.69*** −0.83*** −0.73***

I-index  0.40**  0.17 −0.24  0.15 −0.04 

OIRE6 −0.05 −0.77***  0.84***  0.69*** −0.92***  0.03 

R-index −0.44** −0.73***  0.92***  0.52*** −0.66*** −0.57***  0.67***

C/N −0.16  0.67*** −0.66*** −0.66***  0.81*** −0.20 −0.86*** −0.46** 

pH  0.07 −0.55***  0.52***  0.42** −0.53*** −0.19  0.60***  0.52*** −0.61***

clay content  0.09 −0.12  0.16  0.15 −0.26 −0.25  0.27  0.24 −0.34*  0.35* 
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