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DETERMINING LYAPUNOV EXPONENTS FROM A TIME SERIES 

Alan WOLFt, Jack B. SWIFT, Harry L. SWINNEY and John A. VASTANO 
Department of Physics, University of Texas, A us tin, Texas 78712, USA 

We present the first algorithms that allow the estimation of non-negative Lyapunov exponents from an experimental time 
series. Lyapunov exponents, which provide a qualitative and quantitative characterization of dynamical behavior. are related to 
the exponentially fast divergence or convergence of nearby orbits in phase space. A system with one or more positive Lyapunov 
exponents is defined to be chaotic. ·Our method is rooted conceptually in a previously developed technique that could only be 
applied to analytically defined model systems: we monitor the long-term growth rate of small volume elements in an attractor. 
The method is tested on model systems with known Lyapunov spectra, and applied to data for the Belousov-Zhabotinskii 
reaction and Couette-Taylor ftow. 
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1. Introduction 

Convincing evidence for deterministic chaos has 
come from a variety of recent experiments [1-6] 
on dissipative nonlinear systems; therefore, the 
question of detecting and quantifying chaos has 
become an important one. Here we consider the 
spectrum of Lyapunov exponents [7 -10], which 
has proven to be the most useful dynamical di
agnostic for chaotic systems. Lyapunov exponents 
are the average exponential rates of divergence or 

tPresent address: The Cooper Union, School of Engineering, 
N.Y., NY 10003, USA. 

*The reader may wish to skip the starred sections at a first 
reading. 

convergence of nearby orbits in phase space. Since 
nearby orbits correspond to nearly identical states, 
exponential orbital divergence means that systems 
whose initial differences we may not be able to 
resolve will soon behave quite differently- predic
tive ability is rapidly lost. Any system containing 
at least one positive Lyapunov exponent is defined 
to be chaotic, with the magnitude of the exponent 
reflecting the time scale on which system dynamics 
become unpredictable [10] .• 

For systems whose equations of motion are ex
plicitly known there is a straightforward technique 
[8, 9] for computing a complete Lyapunov spec
trum. This method cannot be applied directly to 
experimental data for reasons that will be dis
cussed later. We will describe a technique which 
for the first time yields estimates of the non-nega
tive Lyapunov exponents from finite amounts of 
experimental data. 

A less general procedure [6, 11-14] for estimat
ing only the dominant Lyapunov exponent in ex
perimental systems has been used for some time. 
This technique is limited to systems where a well
defined one-dimensional (1-D) map can be re
covered. The technique is numerically unstable 
and the literature contains several examples of its 
improper application to experimental data. A dis
cussion of the 1-D map calculation may be found 
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in ref. 13. In ref. 2 we presented an unusually 
robust 1-D map exponent calculation for experi
mental data obtained from a chemical reaction. 

Experimental data inevitably contain external 
noise due to environmental fluctuations and limited 
experimental resolution. In the limit of an infinite 
amount of noise-free data our approach would 
yield Lyapunov exponents by definition. Our abil
ity to obtain good spectral estimates from experi
mental data depends on the quantity and quality 
of the data as well as on the complexity of the 
dynamical system. We have tested our method on 
model dynamical systems with known spectra and 
applied it to experimental data for chemical [2, 13) 
and hydrodynamic [3) strange attractors. 

Although the work of characterizing chaotic data 
is still in its infancy, there have been many ap
proaches to quantifying chaos, e.g., fractal power 
spectra [15], entropy [16-18, 3], and fractal dimen
sion [proposed in ref. 19, used in ref. 3-5, 20, 21]. 
We have tested many of these algorithms on both 
model and experimental data, and despite the 
claims of their proponents we have found that 
these approaches often fail to characterize chaotic 
data. In particular, parameter independence, the 
amount of data required, and the stability of re
sults with respect to external noise have rarely 
been examined thoroughly. 

The spectrum of Lyapunov exponents will be 
defined and discussed in section 2. This section 
includes table I which summarizes the model sys
tems that are used in this paper. Section 3 is a 
review of the calculation of the complete spectrum 
of exponents for systems in which the defining 
differential equations are known. Appendix A con
tains Fortran code for this calculation, which to 
our knowledge has not been published elsewhere. 
In section 4, an outline of our approach to estimat
ing the non-negative portion of the Lyapunov 
exponent spectrum is presented. In section 5 we 
describe the algorithms for estimating the two 
largest exponents. A Fortran program for de
termining the largest exponent is contained in 
appendix B. Our algorithm requires input parame
ters whose selection is discussed in section 6. Sec-

tion 7 concerns sources of error in the calculations 
and the quality and quantity of data required for 
accurate exponent estimation. Our method is ap
plied to model systems and experimental data in 
section 8, and the conclusions are given in 
section 9. 

2. The Lyapunov spectrum defined 

We now define [8, 9) the spectrum of Lyapunov 
exponents in the manner most relevant to spectral 
calculations. Given a continuous dynamical sys
tem in an n-dimensional phase space, we monitor 
the long-term evolution of an infinitesimal n-sphere 
of initial conditions; the sphere will become an 
n-ellipsoid due to the locally deforming nature of 
the flow. The ith one-dimensional Lyapunov expo
nent is then defined in terms of the length of the 
ellipsoidal principal axis P;(t): 

'\ li 1 1 P;(t) 
1\;= m- og2 -(), 

t--+oo t P; 0 
(1) 

where the X; are ordered from largest to smallestt. 
Thus the Lyapunov exponents are related to the 
expanding or contracting nature of different direc
tions in phase space. Since the orientation of the 
ellipsoid changes continuously as it evolves, the 
directions associated with a given exponent vary in 
a complicated way through the attractor. One can
not, therefore, speak of a well-defined direction 
associated with a given exponent. 

Notice that the linear extent of the ellipsoid 
grows as 2>-11, the area defined by the first two 
principal axes grows as 2<>-1 +>-2 >1, the volume de
fined by the first three principal axes grows as 
2<>-1 +>-2+>-,>t, and so on. This property yields 
another definition of the spectrum of exponents: 

tWhile the existence of this limit has been questioned [8, 9, 
22], the fact is that the orbital divergence of any data set may 
be quantified. Even if the limit does not exist for the underlying 
system, or cannot be approached due to having finite amounts 
of noisy data, Lyapunov exponent estimates could still provide 
a useful characterization of a given data set. (See section 7.1.) 
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the sum of the first j exponents is defined by the 
long term exponential growth rate of a }-volume 
element. This alternate definition will provide the 
basis of our spectral technique for experimental 
data. 

Any continuous time-dependent dynamical sys
tem without a fixed point will have at least one 
zero exponent [22], corresponding to the slowly 
changing magnitude of a principal axis tangent to 
the flow. Axes that are on the average expanding 
(contracting) correspond to positive (negative) ex
ponents. The sum of the Lyapunov exponents is 
the time-averaged divergence of the phase space 
velocity; hence any dissipative dynamical system 
will have at least one negative exponent, the sum 
of all of the exponents is negative, and the post
transient motion of trajectories will occur on a 
zero volume limit set, an attractor. 

The exponential expansion indicated by a posi
tive Lyapunov exponent is incompatible with mo
tion on a bounded attractor unless some sort of 
folding process merges widely separated trajecto
ries. Each positive exponent reflects a "direction" 
in which the system experiences the repeated 
stretching and folding that decorrelates nearby 
states on the attractor. Therefore, the long-term 
behavior of an initial condition that is specified 
with any uncertainty cannot be predicted; this is 
chaos. An attractor for a dissipative system with 
one or more positive Lyapunov exponents is said 
to be "strange" or "chaotic". 

The signs of the Lyapunov exponents provide a 
qualitative picture of a system's dynamics. One
dimensional maps are characterized by a single 
Lyapunov exponent which is positive for chaos, 
zero for a marginally stable orbit, and negative for 
a periodic orbit. In a three-dimensional continuous 
dissipative dynamical system the only possible 
spectra, and the attractors they describe, are as 
follows: ( +, 0, - ), a strange attractor; (0, 0, - ), a 
two-torus; (0, -, - ), a limit cycle; and (-, -, - ), 
a fixed point. Fig. 1 illustrates the expanding, 
"slower than exponential," and contracting char
acter of the flow for a three-dimensional system, 
the Lorenz model [23]. (All of the model systems 

that we will discuss are defined in table I.) Since 
Lyapunov exponents involve long-time averaged 
behavior, the short segments of the trajectories 
shown in the figure cannot be expected to accu
rately characterize the positive, zero, and negative 
exponents; nevertheless, the three distinct types of 
behavior are clear. In a continuous four-dimen
sional dissipative system there are three possible 
types of sttange attractors: their Lyapunov spectra 
are ( + , + , 0, - ), ( + , 0, 0, - ), and ( + , 0, - , - ). 
An example of the first type is Rossler's hyper
chaos attractor [24] (see table I). For a given 
system a change in parameters will generally 
change the Lyapunov spectrum and may also 
change both the type of spectrum and type of 
at tractor. 

The magnitudes of the Lyapunov exponents 
quantify an attractor's dynamics in information 
theoretic terms. The exponents measure the rate at 
which system processes create or destroy informa
tion [10]; thus the exponents are expressed in bits 
of information/s or bits/orbit for a continuous 
system and bits/iteration for a discrete system. 
For example, in the Lorenz attractor the positive 
exponent has a magnitude of 2.16 bitsjs (for the 
parameter values shown in table I). Hence if an 
initial point were specified with an accuracy of one 
part per million (20 bits), the future behavior 
could not be predicted after about 9 s [20 bits/(2.16 
bitsjs)], corresponding to about 20 orbits. After 
this time the small initial uncertainty will essen
tially cover the entire attractor, reflecting 20 bits of 
new information that can be gained from an ad" 
ditional measurement of the system. This new 
information arises from scales smaller than our 
initial uncertainty and results in an inability to 
specify the state of the system except to say that it 
is somewhere on the attractor. This process is 
sometimes called an information gain -reflecting 
new information from the heat bath, and some
times is called an information loss- bits shifted 
out of a phase space variable "register" when bits 
from the heat bath are shifted in. 

The average rate at which information con
tained in transients is lost can be determined from 
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Fig. 1. The short term evolution of the separation vector between three carefully chosen pairs of nearby points is shown for the 

Lorenz attractor. a) An expanding direction (7..1 > 0); b) a "slower than exponential" direction (7.. 2 = 0); c) a contracting direction 

(7.. 3 < 0). 

the negative exponents. The asymptotic decay of a 
perturbation to the attractor is governed by the 
least negative exponent, which should therefore be 
the easiest of the negative exponents to estimatet. 

tWe have been quite successful with an algorithm for de
termining the dominant (smallest magnitude) negative expo
nent from pseudo-experimental data (a single time series ex
tracted from the solution of a model system and treated as an 
experimental observable) for systems that are nearly integer
dimensional. Unfortunately, our approach, which involves mea
suring the mean decay rate of many induced perturbations of 
the dynamical system, is unlikely to work on many experimen
tal systems. There are several fundamental problems with the 
calculation of negative exponents from experimental data, but 

For the Lorenz attractor the negative exponent is 
so large that a perturbed orbit typically becomes 
indistinguishable from the attractor, by "eye", in 
less than one mean orbital period (see fig. 1 ). 

of greatest importance is that post-transient data may not 
contain resolvable negative exponent information and per

turbed data must reflect properties of the unperturbed system, 
that is, perturbations must only change the state of the system 
(current values of the dynamical variables). The response of a 
physical system to a non-delta function perturbation is difficult 
to interpret, as an orbit separating from the attractor may 
reflect either a locally repelling region of the attractor (a 
positive contribution to the negative exponent) or the finite rise 
time of the perturbation. 
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Table I 
The model systems considered in this paper and their Lyapunov spectra and dimensions as computed from the equations of motion 

System 

Henon: [25] 

xn+1 = 1- ax; + yn 

Yn+1 = bXn 

Rossler-chaos: [26) 

X=-(Y+Z) 

Y=X+aY 
Z=b+Z(X-c) 

Lorenz: [23] 

X=a(Y-X) 

Y= X(R- Z)- Y 

Z=XY-bZ 

Rossler-hyperchaos: [24) 

X= -(Y+Z) 

Y=X+aY+ W 
Z=b+XZ 
W=cW-dZ 

Mackey-Giass: [27) 

X= aX(t+s) -bX(t) 
1 + [X( t + s )]" 

Parameter 
values 

{
a= 1.4 
b=0.3 

{

a =0.15 
b=0.20 
c= 10.0 

{

a= 16.0 
R=45.92 
b=4.0 

(

a= 0.25 
b= 3.0 
c=0.05 
d=0.5 

(

a= 0.2 
b=0.1 
c = 10.0 
s = 31.8 

Lyapunov 
spectrum 
(bitsjs)t 

,\1 = 0.603 

,\2 = -2.34 

(bits/iter.) 

,\1 = 0.13 

,\2 = 0.00 

,\3 = -14.1 

,\1 = 2.16 

,\2 = 0.00 

,\3 = -32.4 

,\1 = 0.16 

,\2 = O.Q3 

,\3 = 0.00 

,\4 = -39.0 

.\1 = 6.30E-3 

.\ 2 = 2.62E-3 

1.\ 31 < 8.0E-6 
,\ 4 = -1.39E-2 

Lyapunov 
dimension:j: 

1.26 

2.01 

2.07 

3.005 

3.64 

tA mean orbital period is well defined for Rossler chaos (6.07 seconds) and for hyperchaos (5.16 seconds) for the parameter values 
used here. For the Lorenz attractor a characteristic time (see footnote- section 3) is about 0.5 seconds. Spectra were computed for 
each system with the code in appendix A. 
:j:As defined in eq. (2). 

The Lyapunov spectrum is closely related to the 
fractional dimension of the associated strange at
tractor. There are a number [19] of different frac
tional-dimension-like quantities, including the 
fractal dimension, information dimension, and the 
correlation exponent; the difference between them 
is often small. It has been conjectured by Kaplan 
and Y orke [28, 29] that the information dimension 
dr is related to the Lyapunov spectrum by the 

equation 

d 
. t.{_l"A; 

r = 1 + I"A
1

+11 ' (2) 

where j is defined by the condition that 

(3) 

The conjectured relation between dr (a static 
property of an attracting set) and the Lyapunov 
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exponents appears to be satisfied for some model 
systems [30]. The calculation of dimension from 
this equation requires knowledge of all but the 
most negative Lyapunov exponents. 

3. Calculation of Lyapunov spectra from differential 
equations 

Our algorithms for computing a non-negative 
Lyapunov spectrum from experimental data are 
inspired by the technique developed indepen
dently by Bennetin et al. [8] and by Shimada and 
Nagashima [9] for determining a complete spec
trum from a set of differential equations. There
fore, we describe their calculation (for brevity, the 
ODE approach) in some detail. 

We recall that Lyapunov exponents are defined 
by the long-term evolution of the axes of an infini
tesimal sphere of states. This procedure could be 
implemented by defining the principal axes with 
initial conditions whose separations are as small as 
computer limitations allow and evolving these with 
the nonlinear equations of motion. One problem 
with this approach is that in a chaotic system we 
cannot guarantee the condition of small sep
arations for times on the order of hundreds of 
orbital periodst, needed for convergence of the 
spectrum. 

This problem may be avoided with the use of a 
phase space plus tangent space approach. A "fidu
cial" trajectory (the center of the sphere) is defined 
by the action of the nonlinear equations of motion 
on some initial condition. Trajectories_of points on 
the surface of the sphere are defined by the action 
of the linearized equations of motion on points 
infinitesimally separated from the fiducial trajec
tory. In particular, the principal axes are defined 
by the evolution via the linearized equations of an 
initially orthonormal vector frame anchored to the 

tShould the mean orbital period not be well-defined, a 
characteristic time can be either the mean time between inter
sections of a Poincare section or the time corresponding to a 
dominant power spectral feature. 

fiducial trajectory. By definition, principal axes 
defined by the linear system are always infinitesimal 
relative to the attractor. Even in the linear system, 
principal axis vectors diverge in magnitude, but 
this is a problem only because computers have a 
limited dynamic range for storing numbers. This 
divergence is easily circumvented. What has been 
avoided is the serious problem of principal axes 
finding the global "fold" when we really only want 
them to probe the local "stretch." 

To implement this procedure the fiducial trajec
tory is created by integrating the nonlinear equa
tions of motion for some post-transient initial 
condition. Simultaneously, the linearized equa
tions of motion are integrated for n different ini
tial conditions defining an arbitrarily oriented 
frame of n orthonormal vectors. We have already 
pointed out that each vector will diverge in magni
tude, but there is an additional singularity- in a 
chaotic system, each vector tends to fall along the 
local direction of most rapid growth. Due to the 
finite precision of computer calculations, the col
lapse toward a common direction causes the tan
gent space orientation of all axis vectors to become 
indistinguishable. These two problems can be 
overcome by the repeated use of the Gram
Schmidt reorthonormalization (GSR) procedure on 
the vector frame: 

Let the linearized equations of motion act on 
the initial frame of orthonormal vectors to give a 
set of vectors { v1, .•• , vn}. (The desire of each 
vector to align itself along the ;\1 direction, and 
the orientation-preserving properties of GSR mean 
that the initiallabeling of the vectors may be done 
arbitrarily.) Then GSR provides the following or
thonormal set { vJ., ... , v~ } : 

vl 
vJ. = llviii' 

v2 - ( v2 , vJ.) vJ. v; = , 
llv2- ( V2, vJ.)vJ.II 

(4) 
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where ( , ) signifies the inner product. The 
frequency of reorthonormalization is not critical, 
so long as neither the magnitude nor the orienta
tion divergences have exceeded computer limita
tions. As a rule of thumb, GSR is performed on 
the order of once per orbital period. 

We see that GSR never affects the direction of 
the first vector in a system, so this vector tends to 
seek out the direction in tangent space which is 
most rapidly growing (components along other 
directions are either growing less rapidly or are 
shrinking). The second vector has its component 
along the direction of the first vector removed, and 
is then normalized. Because we are changing its 
direction, vector v2 is not free to seek out the most 
rapidly growing direction. Because of the manner 
in which we are changing it, it also is not free to 
seek out the second most rapidly growing direc
tiont. Note however that the vectors vi and v2 
span the same two-dimensional subspace as the 
vectors v1 and v2 • In spite of repeated vector 
replacements, the space these vectors define continu
ally seeks out the two-dimensional subspace that is 
most rapidly growing. The area defined by these 
vectors is proportional to 2<"1 +.\z)t [8]. The length 
of vector v1 is proportional to 2"11 so that monitor
ing length and area growth allows us to determine 
both exponents. In practice, as vi and v2 are 
orthogonal, we may determine A 2 directly from 
the mean rate of growth of the projection of vector 
v2 on vector v2. In general, the subspace spanned 
by the first k vectors is unaffected by GSR so that 
the long-term evolution of the k-volume defined 
by these vectors is proportional to 2,. where p. = 
t7_ 1X;t. Projection of the evolved vectors onto the 
new orthonormal frame correctly updates the rates 
of growth of each of the first k-principal axes in 

tThis is clear when we consider that we may obtain different 
directions of vector 1'2 at some specified time if we exercise our 
freedom to choose the intermediate times at which GSR is 
performed. That is, beginning with a specified v1 and 1'2 at 
time t;, we may perform replacements at times t;+I and ti+ 2 , 

obtaining the vectors vj, v2 and then vj', v2' or we may 
propagate directly to time t;+ 2 , obtaining tl{, q'. v2' and v! 
are not parallel; therefore, the details of propagation and 
replacement determine the orientation of 1'2. 

turn, providing estimates of the k largest Lyapunov 
exponents. Thus GSR allows the integration of the 
vector frame for as long as is required for spectral 
convergence. 

Fortran code for the ODE procedure appears in 
appendix A. We illustrate the use of this procedure 
for the Rossler attractor [26]. The spectral calcula
tion requires the integration of the 3 equations of 
motion and 9 linearized equations for on the order 
of 100 orbits of model time (a few cpu minutes on 
a V AX 11/780) to obtain each exponent to within 
a few percent of its asymptotic value. In practice 
we consider the asymptotic value to be attained 
when the mandatory zero exponent(s) are a few 
orders of magnitude smaller than the smallest 
positive exponent. The convergence rate of zero 
and positive exponents is about the same, and is 
much slower than the convergence rate of negative 
exponents. Negative exponents arise from the 
nearly uniform attractiveness of the attractor which 
can often be well estimated from a few passes 
around an attractor, non-negative exponents arise 
from a once-per-orbit stretch and fold process that 
must be sampled on the order of hundreds of 
times (or more) for reasonable convergence. 

The method we have described for finding 
Lyapunov exponents is perhaps more easily under
stood for a discrete dynamical system. Here we 
consider the Henon map [25] (see table I). The 
linearization of this map is 

(5) 

where 

J = [ - 2.8Xn 
0
1] 

n 0.3 
(6) 

and xn is the (n- l)st iterate of an arbitrary 
initial condition X1• 

An orthonormal frame of principal axis vectors 
such as ((0, 1), (1, 0)) is evolved by applying the 
product Jacobian to each vector. For either vector 
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the operation may be written in two different 
ways. For example, for the vector (0, 1) we have 

(7) 

or, by regrouping the terms, 

(8) 

In eq. (7) the latest Jacobi matrix multiplies 
each current axis vector, which is the initial vector 
multiplied by all previous Jacobi matrices. The 
magnitude of each current axis vector diverges, 
and the angular separation between the two vec
tors goes to zero. Fig. 2 shows that divergent 
behavior is visible within a few iterations .. GSR 
corresponds to the replacement of each current 
axis vector. Lyapunov exponents are computed 

Fig. 2. The action of the product Jacobian on an initially 
orthonormal vector frame is illustrated for the Henon map: (1) 
initial frame; (2) first iterate; and (3) second iterate. By the 
second iteration the divergence in vector magnitude and the 
angular collapse of the frame are quite apparent. Initial condi· 
tions were chosen so that the angular collapse of the vectors 
was uncommonly slow. 

from the growth rate of the length of the first 
vector and the growth rate of the area defined by 
both vectors. 

In eq. (8) the product Jacobian acts on each of 
the initial axis vectors. The columns of the product 
matrix converge to large multiples of the eigenvec
tor of the biggest eigenvalue, so that elements of 
the matrix diverge and the matrix becomes singu
lar. Here GSR corresponds to factoring out a large 
scalar multiplier of the matrix to prevent the mag
nitude divergence, and doing row reduction with 
pivoting to retain the linear independence of the 
columns. Lyapunov exponents are computed from 
the eigenvalues of the long-time product matrixt. 

We emphasize that Lyapunov exponents are not 
local quantities in either the spatial or temporal 
sense. Each exponent arises from the average, with 
respect to the dynamical motion, of the local de
formation of various phase space directions. Each 
is determined by the long-time evolution of a 
single volume element. Attempts to estimate expo
nents by averaging local contraction and expan
sion rates of phase space are likely to fail at the 
point where these contributions to the exponents 
are combined. In fig. 3a we show vector v~ at each 
renormalization step for the Lorenz attractor over 
the course of several hundred orbits [32]. The 
apparent multivaluedness of the most rapidly 
growing direction (in some regions of the attrac
tor) shows that this direction is not simply a 
function of position on the attractor. While this 
direction is often nearly parallel to the flow on the 
Lorenz attractor (see fig. 3b) it is usually nearly 
transverse to the flow for the Rossler attractor. We 
conclude that exponent calculation by averaging 
local divergence estimates is a dangerous proce
dure. 

tWe are aware of an attempt to estimate Lyapunov spectra 
from experimental data through direct estimation of local 
Jacobian matrices and formation of the long time product 
matrix [31]. This calculation is essentially the same as ours (we 
avoid matrix notation by diagonalizing the system at each step) 
and has the same problems of sensitivity to external noise, and 
to the amount and resolution of data required for accurate 
estimates. 
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Fig. 3. A modification to the ODE spectral code (see appendix A) allows us to plot the running direction of greatest growth (vector 
vJ.) in the Lorenz attractor. In (a), infrequent renormalizations confirm that this direction is not single-valued on the attractor. In (b), 
frequent renormalizations show us that this direction is usually nearly parallel to the flow. In the Rossler attractor, this direction is 
usually nearly orthogonal to the flow. 

4. An approach to spectral estimation for 
experimental data 

Experimental data typically consist of discrete 
measurements of a single observable. The well
known technique of phase space reconstruction 
with delay coordinates [2, 33, 34] makes it possible 
to obtain from such a time series an attractor 
whose Lyapunov spectrum is identical to that of 
the original attractor. We have designed a method, 
conceptually similar to the ODE approach, which 
can be used to estimate non-negative Lyapunov 
exponents from a reconstructed attractor. To un
derstand our method it is useful to summarize 
what we have discussed thus far about exponent 
calculation. 

Lyapunov exponents may be defined by the 
phase space evolution of a sphere of states. At-

tempts to apply this definition numerically to 
equations of motion fail since computer limita
tions do not allow the initial sphere to be con
structed sufficiently small. In the ODE approach 
one avoids this problem by working in the tangent 
space of a fiducial trajectory so as to obtain always 
infinitesimal principal axis vectors. The remaining 
divergences are easily eliminated with Gram
Schrnid t reorthonormalization. 

The ODE approach is not directly applicable to 
experimental data as the linear system is not avail
able. All is not lost provided that the linear ap
proximation holds on the smallest length scales 
defined by our data. Our approach involves 
working in a reconstructed attractor, examining 
orbital divergence on length scales that are always 
as small as possible, using an approximate GSR 
procedure in the reconstructed phase space as 
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necessary. To simplify the ensuing discussion we 
will assume that the systems under consideration 
possess at least one positive exponent. 

To estimate A1 we in effect monitor the long-term 
evolution of a single pair of nearby orbits. Our 
reconstructed attractor, though defined by a single 
trajectory, can provide points that may be consid
ered to lie on different trajectories. We choose 
points whose temporal separation in the original 
time series is at least one mean orbital period, 
because a pair of points with a much smaller 
temporal separation is characterized by a zero 
Lyapunov exponent. Two data points may be con
sidered to define the early state of the first prin
cipal axis so long as their spatial separation is 
small. When their separation becomes large we 
would like to perform GSR on the vector they 
define (simply normalization for this single vector), 
which would involve replacing the non-fiducial 
data point with a point closer to the fiducial point, 
in the same direction as the original vector. With 
finite amounts of data, we cannot hope to find a 
replacement point which falls exactly along a 
specified line segment in the reconstructed phase 
space, but we can look for a point that comes 
close. In effect, through a simple replacement pro
cedure that attempts to preserve orientation and 
minimize the size of replacement vectors, we have 
monitored the long-term behavior of a single prin
cipal axis vector. Each replacement vector may be 
evolved until a problem arises, and so on. This 
leads us to an estimate of A1. (See fig. 4a.) 

The use of a finite amount of experimental data 
does not allow us to probe the desired infinitesimal 
length scales of an attractor. These scales are also 
inaccessible due to the presence of noise on finite 
length scales and sometimes because the chaos
producing structure of the attractor is of negligible 
spatial extent. A discussion of these points is de
ferred until section 7.1. 

An estimate of the sum of the two largest expo
nents A1 + Az is similarly obtained. In the ODE 
procedure this involves the long-term evolution of 
a fiducial trajectory and a pair of tangent space 
vectors. In our procedure a triple of points is 

evolved in the reconstructed attractor. Before the 
area element defined by the triple becomes com
parable to the extent of the attractor we mimic 
GSR by keeping the fiducial point, replacing the 
remainder of the triple with points that define a 
smaller area element and that best preserve the 
element's phase space orientation. Renormaliza
tions are necessary solely because vectors grow too 
large, not because vectors will collapse to indis
tinguishable directions in phase space (this is un
likely with the limited amounts of data usually 
available in experiments). The exponential growth 
rate of area elements provides an estimate of A1 

+A 2• (See fig. 4b.) 
Our approach can be extended to as many non

negative exponents as we care to estimate: k + 1 
points in the reconstructed attractor define a k
volume element whose long-term evolution is pos
sible through a data replacement procedure that 
attempts to preserve phase space orientation and 
probe only the small scale structure of the aurae
tor. The growth rate of a k-volume element pro
vides an estimate of the sum of the first k 
Lyapunov exponents. 

In principle we might attempt the estimation of 
negative exponents by going to higher-dimensional 
volume elements, but information about contract
ing phase space directions is often impossible to 
resolve. In a system where fractal structure can be 
resolved, there is the difficulty that the volume 
elements involving negative exponent directions 
collapse exponentially fast, and are therefore 
numerically unstable for experimental data (see 
section 7.1). 

5. Spectral algorithm implementation 

We have implemented several versions of our 
algorithms including simple "fixed evolution time" 
programs for ll.1 and A1 + A2 , "variable evolution 
time" programs for A1 + A2 , and "interactive" 
programs that are used on a graphics machinet. 

tThe interactive program avoids the profusion of input 
parameters required for our increasingly sophisticated expo-
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In appendix B we include Fortran code and 
documentation for the A1 fixed evolution time 
program. This program is not sophisticated, but it 
is concise, easily understood, and useful for learn
ing about our technique. We do not include the 
fixed evolution time code for A1 + A2 (though it is 
briefly discussed at the end of appendix B) or our 
other programs, but we will supply them to inter
ested parties. We can also provide a highly effi
cient data base management algorithm that can be 
used in any of our programs to eliminate the 
expensive process of exhaustive search for nearest 
neighbors. We now discuss the fixed evolution 
time program for A1 and the variable evolution 
time program for A1 + A 2 in some detail. 

5.1. Fixed evolution time program for A1 

Given the time series x(t), an m-dimensional 
phase portrait is reconstructed with delay coordi
nates [2, 33, 34], i.e., a point on the attractor is 
given by {x(t), x(t + T), ... , x(t +[m- l]T)} 
where T is the almost arbitrarily chosen 
delay time. We locate the nearest neighbor (in 
the Euclidean sense) to the initial point 
{x(t0 ), ... ,x(t0 +[m-l]T)} and denote the dis
tance between these two points L(t0 ). At a later 
time t 1, the initial length will have evolved to 
length L'(t1). The length element is propagated 
through the attractor for a time short enough so 
that only small scale attractor structure is likely to 
be examined. If the evolution time is too large we 

nent programs. This program allows the operator to observe: 
the attractor, a length or area element evolving over a range of 
times, the best replacement points available over a range of 
times, and so forth. Each of these is seen in a two or three
dimensional projection (depending on the graphical output 
device) with terminal output providing supplementary informa
tion about vector magnitudes and angles in the dimension of 
the attractor reconstruction. Using this information the oper
ator chooses appropriate evolution times and replacement 
points. The program is currently written for a Vector General 
3405 but may easily be modified for use on other graphics 
machines. A 16mm movie summarizing our algorithm and 
showing the operation of the program on the Lorenz attractor 
has been made by one of the ~tabors (A.W.). 

may see L' shrink as the two trajectories which 
define it pass through a folding region of the 
attractor. This would lead to an underestimation 
of A1. We now look for a new data point that 
satisfies two criteria reasonably well: its sep
aration, L(t1), from the evolved fiducial point is 
small, and the angular separation between the 
evolved and replacement elements is small (see fig. 
4a). If an adequate replacement point cannot be 
found, we retain the points that were being used. 
This procedure is repeated until the fiducial trajec
tory has traversed the entire data file, at which 
point we estimate 

(9) 

where M is the total number of replacement steps. 
In the fixed evolution time program the time step 
.:1 = tk+l- tk (EVOLV in the Fortran program) 
between replacements is held constant. In the limit 
of an infinite amount of noise-free data our proce
dure always provides replacement vectors of infini
tesimal magnitude with no orientation error, and 
A1 is obtained by definition. In sections 6 and 7 we 
discuss the severity of errors of orientation and 
finite vector size for finite amounts of noisy experi
mental data. 

5.2. Variable evolution time program for A1 + A2 

The algorithm for estimating A1 + A 2 is similar 
in spirit to the preceeding algorithm, but is more 
complicated in implementation. A trio of data 
points is chosen, consisting of the initial fiducial 
point and its two nearest neighbors. The area 
A(t0 ) defined by these points is monitored un
til a replacement step is both desirable and possi
ble- the evolution time is variable. This mandates 
the use of several additional input parameters: a 
minimum number of evolution steps between re
placements (JUMPMN), the number of steps to 
evolve backwards (HOPBAK) when a replacement 
site proves inadequate, and a maximum length or 
area before replacement is attempted. 
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(a) 

Fig. 4. A schematic representation of the evolution and replacement procedure used to estimate Lyapunov exponents from 
experimental data. a) The largest Lyapunov exponent is computed from the growth of length elements. When the length of the vector 
between two points becomes large, a new point is chosen near the reference trajectory, minimizing both the replacement length L and 
the orientation change {}, b) A similar procedure is followed to calculate the sum of the two largest Lyapunov exponents from the 
growth of area elements. When an area element becomes too large or too skewed, two new points are chosen near the reference 
trajectory, minimizing the replacement area A and the change in phase space orientation between the original and replacement area 
elements. 

Evolution continues until a "problem" arises. In 
our implementation the problem list includes: a 
principal axis vector grows too large or too rapidly, 
the area grows too rapidly, and the skewness of 
the area element exceeds a threshold value. 
Whenever any of these criteria are met, the triple 
is evolved backwards HOPBAK steps and a re
placement is attempted. If replacement fails, we 
will pull the triple back another HOPBAK steps, 
and try again. This process is repeated, if neces
sary, until the triple is getting uncomfortably close 
to the previous replacement site. At this point we 
take the best available replacement point, and 
jump forward at least JUMPMN steps to start the 
next evolution. At the first replacement time, t 1, 

the two points not on the fiducial trajectory are 

replaced with two new points to obtain a smaller 
area A(t1) whose orientation in phase space is 
most nearly the same as that of the evolved area 
A'(t1). Determining the set of replacement points 
that best preserves area orientation presents no 
fundamental difficulties. 

Propagation and replacement steps are repeated 
(see fig. 4b) until the fiducial trajectory has 
traversed the entire data file at which point we 
estimate 

1 M A'(tk) 
X1 +X 2 = L log 2 ( ) , (10) 

1M- 1o k-1 A tk-1 

where t k is the time of the k th replacement step. 
It is often possible to verify our results for X1 

through the use of the X1 + X2 calculation. For 
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attractors that are very nearly two dimensional 
there is no need to worry about preserving orienta
tion when we replace triples of points. These ele
ments may rotate and deform within the plane of 
the attractor, but replacement triples always lie 
within this same plane. Since A2 for these attrac
tors is zero, area evolution provides a direct esti
mate for A1. With experimental data that appear 
to define an approximately two-dimensional at
tractor, an independent calculation of dr from its 
definition (feasible for attractors of dimension less 
than three [35]) may justify this approach to esti
mating A1• 

6. Implementation details 

6.1. Selection of embedding dimension and delay 
time 

In principle, when using delay coordinates to 
reconstruct an attractor, an embedding [34] of the 
original attractor is obtained for any sufficiently 
large m and almost any choice of time delay -r, but 
in practice accurate exponent estimation requires 
some care in choosing these two parameters. We 
should obtain an embedding if m is chosen to be 
greater than twice the dimension of the underlying 
attractor [34]. However, we find that attractors 
reconstructed using smaller values of m often 
yield reliable Lyapunov exponents. For example, 
in reconstructing the Lorenz attractor from its 
x-coordinate time series an embedding dimension 
of 3 is adequate for accurate exponent estimation, 
well below the sufficient dimension of 7 given by 
ref. [34]t. When attractor reconstruction is per
formed in a space whose dimension is too low, 
"catastrophes" that interleave distinct parts of the 
attractor are likely to result. For example, points 

tWe have found that it is often possible to ignore several 
components of evolving vectors in computing their average 
exponential rate of growth: keeping two or more components 
of the vector often suffices for this purpose. As our discussion 
of "catastrophes" will soon make clear, the search for replace
ment points most often requires that all of the delay coordi
nates be used. 

on separate lobes of the Lorenz attractor may be 
coincident in a two-dimensional reconstruction of 
the attractor. When this occurs, replacement ele
ments may contain points whose separation in the 
original attractor is very large; such elements are 
liable to grow at a dramatic rate in our recon
structed attractor in the short term, providing an 
enormous contribution to the estimated exponent. 
As these elements tend to blow up almost im
mediately, they are also quite troublesome to re
place:t:. 

If m is chosen too large we can expect, among 
other problems, that noise in the data will tend to 
decrease the density of points defining the attrac
tor, making it harder to find replacement points. 
Noise is an infinite dimensional process that, un
like the deterministic component of the data, fills 
each available phase space dimension in a re
constructed attractor (see section 7.2). Increasing 
m past what is minimally required has the effect of 
unnecessarily increasing the level of contamination 
of the data. 

Another problem is seen in a three-dimensional 
reconstruction of the Henon attractor. The recon
structed attractor looks much like the original 
attractor sitting on a two-dimensional sheet, with 
this sheet showing a simple twist in three-space. 
We expect that this behavior is typical; when m is 
increased, surface curvature increases*. Increasing 
m therefore makes it increasingly difficult to satisfy 
orientation constraints at replacement time, as the 
attractor is not sufficiently flat on the smallest 
length scales filled out by the fixed quantity of 
data. It is advisable to check the stationarity of 

:j:lf two points lie at opposite ends of an attractor, it is 
possible that their separation vector lies entirely outside of the 
attractor so that no orientation preserving replacement can be 
found. If this goes undetected, the current pair of points is 
likely to be retained for an orbital period or longer, until these 
points are accidentally thrown close together. 

*A simple study for the Henon system showed that for 
reconstructions of increasing dimension the mean distance be
tween the points defining the attractor rapidly converged to an 
attractor independent value. The fold put in each new phase 
space direction by the reconstruction process tended to make 
the concept of "nearby point in phase space" meaningless for 
this finite data set. 
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Fig. 5. The strange attractor in the Belousov-Zhabotinskii reaction is reconstructed by the use of delay coordinates from the bromide 
ion concentration time series [2]. The delays shown are a) f2; b)~; and c)~ of a mean orbital period. Notice how the folding region of 
the attractor evolves from a featureless "pencil" to a large scale twist. 

results with m to ensure robust exponent esti
mates. 

Choice of delay time is also governed by the 
necessity of avoiding catastrophes. In our data [2] 
for the Belousov-Zhabotinskii chemical reaction 
(see fig. 5) we see a dramatic difference in the 
reconstructed attractors for the choices T = 1/12, 
T = 1/2 and T = 3/4 of the mean orbital period. 
In the first case we obtain a "pencil-like" region 
which obscures the folding region of the attractor. 
This structure opens up and grows larger relative 
to the total extent of the attractor for the larger 
values of T, which is clearly desirable for our 
algorithms. We choose T neither so small that the 
attractor stretches out along the line x = y = z = 
... , nor so large that m T is much larger than the 
orbital period. A check of the stationarity of expo
nent estimates with T is again recommended. 

6.2. Evolution times between replacements 

Decisions about propagation times and replace
ment steps in these calculations depend on ad
ditional input parameters, or in the case of the 
interactive program, on the operator's judgement. 
(The stationarity of A1 values over ranges of all 
algorithm parameters is illustrated for the Rossler 

attractor in figs. 6a-6d.) Accurate exponent calcu
lation therefore requires the consideration of the 
following interrelated points: the desirability of 
maximizing evolution times, the tradeoff between 
minimizing replacement vector size and minimiz
ing the concomitant orientation error, and the 
manner in which orientation errors can be ex
pected to accumulate. We now discuss these points 
in turn. 

Maximizing the propagation time of volume ele
ments is highly desirable as it both reduces the 
frequency with which orientation errors are made 
and reduces the cost of the calculation consider
ably (element propagation involves much less 
computation than element replacement). In our 
variable evolution time program this is not much 
of a problem, as replacements are performed only 
when deemed necessary (though the program has 
been made conservative in such judgments). In the 
interactive algorithm this is even less of a problem, 
as an experienced operator can often process a 
large file with a very small number of replace
ments. The problem is severe, however, in our 
fixed evolution time program, which is otherwise 
desirable for its extreme simplicity. In this pro
gram replacements are attempted at fixed time 
steps, independent of the behavior of the volume 
element. 
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Fig. 6. Stationarity of X1 for Rossler attractor data (8192 points spanning 135 orbits) for the fixed evolution time program is shown 
for the input parameters: a) Tau (delay time); b) evolution time between replacement steps; c) maximum length of replacement vector 
length allowed; and d) minimum length of replacement vector allowed. The correct value of the positive exponent is 0.13 bits/sand is 
shown by the horizontal line in these figures. 

Our numerical results on noise-free model sys
tems have produced the expected results: too fre
quent replacements cause a dramatic loss of phase 
space orientation, and too infrequent replacements 
allow volume elements to grow overly large and 
exhibit folding. For the Rossler, Lorenz, and the 
Belousov-Zhabotinskii attractors, each of which 
has a once-per-orbit chaos generating mechanism, 
we find that varying the evolution time in the 
range 1 to 11 orbits almost always provides stable 
exponent estimates. In systems where the mecha
nism for chaos is unknown, one must check for 
exponent stability over a wide range of evolution 

times. For such systems it is perhaps wise to 
employ only the variable evolution time program 
or the interactive program. 

There are other criteria that may affect replace
ment times for variable evolution time programs 
such as avoiding regions of high phase space veloc
ity, where the density of replacement points is 
likely to be small. Such features are easily in
tegrated into our programs. 

In the Lorenz attractor, the separatrix between 
the two lobes of the attractor is not a good place 
to find a replacement element. An element chosen 
here is likely to contain points that will almost 
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immediately fly to opposite lobes, providing an 
enormous contribution to an exponent estimate. 
This effect is certainly related to the chaotic nature 
of the attractor, but is not directly related to the 
values of the Lyapunov exponents. This has the 
same effect as the catastrophes that can arise from 
too low a value of embedding dimension as dis
cussed in section 6.1. While we are not aware of 
any foolproof approach to detecting troublesome 
regions of attractors it may be possible for an 
exponent program to avoid catastrophic replace
ments. For example, we may monitor the future 

behavior of potential replacement points and re
ject those whose separation from the fiducial 
trajectory is atypical of their neighbors. 

6.3. Shorter lengths versus orientation errors 

With a given set of potential replacement points 
some compromise will be necessary between the 
goals of minimizing the length of replacement 
vectors and minimizing changes in phase space 
orientation. On the one hand, short vectors may in 
general be propagated further in time, resulting in 
less frequent orientation errors. On the other hand, 
we may wish to minimize orientation errors di
rectly. We must also consider that short vectors 
are likely to contain relatively large amounts of 
noise. 

In the fixed evolution time program the search 
for replacements involves looking at successively 
larger length scales for a minimal orientation 
change. In the variable evolution time program, 
points satisfying minimum length and orientation 
standards are assigned scores based on a linear 
weighting (with heuristically chosen weighting fac
tors) of their lengths and orientation changes. We 
have also performed numerical studies by search
ing successively larger angular displacements while 
attempting to satisfy a minimum length criterion. 
Fortunately, we find that these different ap
proaches perform about equally well. Attempts to 
solve the tradeoff problem analytically have sug
gested "optimal" choices of initial vector magni
tude, but due to the system dependent nature of 

these calculations, we cannot be confident that our 
results are of general validity. 

The problem of considering the magnitude of 
evolved or replacement vectors is complicated by 
the fact that at a given point in an attractor, the 
orientation of a vector can determine whether or 
not it is too large. If we consider a system with an 
underlying 1-D map such as the Rossler attractor, 
it is the magnitude of the vector's component 
transverse to the attractor that is relevant. In this 
case our algorithm is closely related to obtaining 
the Lyapunov exponent of the map through a 
determination of its local slope profile [13]. The 
transverse vector component plays the role of the 
chord whose image under the map provides a 
slope estimate. This chord should obviously be no 
longer than the smallest resolvable structure in the 
1-D map, a highly system-dependent quantity. 
Since the underlying maps of commonly studied 
model and physical systems have not had much 
detailed structure on small length scales (consider 
the logistic equation, cusp maps, and the Be
lousov-Zhabotinskii map [2]) we have somewhat 
arbitrarily decided to consider 5-10% of the trans
verse attractor extent as the maximum acceptable 
magnitude of a vector's transverse component. 

6.4. The accumulation of orientation errors 

The problem of the accumulation of orientation 
errors is reasonably well understood. Consider for 
simplicity a very nearly two-dimensional system 
with a ( + , 0, -) spectrum, such as the Lorenz 
attractor. Post-transient data traverse the subspace 
characterized by the positive and zero exponents. 
Length propagation with replacement on the at
tractor is clearly susceptible to orientation error 
that will mix contributions from the positive and 
zero exponents in some complex, system depen
dent manner. Now consider the nth replacement 
step (see fig. 4a) with an orientation change within 
the plane of the attractor of -&n. Further, let the 
angle the replacement vector makes with respect to 
the vector v;. be :&n. We make the crucial assump
tion that vectors are propagated for a time t that 
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is long enough that growth along directions vi and 
v2 are reasonably well characterized by the expo
nents A1 and A2 respectively. Then for the new 
replacement vector 

(11) 

and at the next replacement 

L'(t,+l) = L( vi(cos~,)2>--11• + v2(sin ~ .. )2>-- 21• ), 

{12) 

where t r is the time between successive replace
ment steps (t,+ 1 - t,). The contribution to eq. (9) 
from this evolution is then 

(13) 

and the angle the next replacement vector L{t,+ 1) 

makes with vi is 

~n+l = arctan (b ·tan~ .. )+ {},+l• {14) 

where 

{15) 

If we assume all angles are small compared to 
unity and set ~0 = 1'}0 , eq. (14) implies that 

" 
~~~ = L {},_mbm~ (16) 

m-0 

If the orientation changes have zero mean and are 
uncorrelated from replacement to replacement then 
an average over the changes gives 

{17) 

where {}M is an angular change on replacement on 
the order of the ANGLMX parameter in the fixed 
evolution time program of appendix B. From eqs. 
(9), (13), and (17) we find the fractional error in A1 

to be 

(18) 

where N1 is the total number of replacement steps. 
If there is no degeneracy, i.e., b2 « 1, eqs. (17) 
and (18) show that orientation errors do not accu
mulate, i.e, there is no N 1 dependence, and our 
fractional error in A1 is 

..1Al -,'}~ 
~ = 2{1n2)A1tr · 

{19) 

For the Lorenz attractor, b2 has a value of about 
0.33 for an evolution time of one orbit, so an 
orientation error of about 19 degrees results in a 
10% error in A1. If we can manage to evolve the 
vector for two orbits, the permissible initial orien
tation error is about 27 degrees, and so on. We see 
that a given orientation error at replacement time 
shrinks to a value negligible compared to the next 
orientation error, provided that propagation times 
are long enough. Orientation errors do not accu
mulate because there is no memory of previous 
errors. 

This calculation may be generalized to an at
tractor with an arbitrary Lyap~nov spectrum and 
a similar result is obtained. The ease of estimating 
the ith exponent depends on how small the quan
tity 2<>--;+1->..,)t, is. Problems arise when successive 
exponents are very close or identical. Hyperchaos, 
with a spectrum of [0.16, 0.03, 0.00, ""' - 40] bits/s 
and an orbital period of about 5.16 s, has an easily 
determinable first exponent, but distinguishing A 2 

from A 3 is more difficult. 

7. Data requirements and noise 

7.1. Probing small length scales 

As we have already pointed out, the infinitesi
mal length scales on which the definition of 
Lyapunov exponents rely are inaccessible in ex-
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Fig. 7. Experimental data for two different Belousov-Zhabotinskii systems shows chaos on large and small length scales respectively. 
In the Texas attractor [2] a), the separation between a single pair of points is shown for one orbital period. In the French attractor 
[36]; b), the separation between a pair of points is shown for two periods. Estimation of Lyapunov exponents is quite difficult for the 
latter system. 

perimental data. There are three somewhat related 
reasons why this is so: (1) a finite amount of 
attractor data can only define finite length scales; 
(2) the stretching and folding that is the chaotic 
element of a flow may occur on a scale small 

compared to the extent of the attractor; and (3) 
noise defines a length scale below which sep
arations are meaningless. We discuss each of these 
problems in turn and then consider whether expo
nent estimation is possible in spite of them. 
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The finiteness of a data set means that the fixed 
evolution time program undoubtedly allows prin
cipal axis vectors to grow far too large on occasion 
and also to completely lose the proper phase space 
orientation, yet we almost invariably obtain accu
rate exponent estimates for noise-free model sys
tems defined by small data sets. This is because on 
the time scale of several orbital periods, orbital 
divergences may be moderately well characterized 
by Lyapunov exponents in sufficiently chaotic sys
tems. Averaging many such segments together in 
our algorithms is therefore likely to mask infre
quent large errors. 

The problem of "chaos on a small length scale" 
is a system dependent one. Consider a system such 
as the Rossler attractor in which chaos generation 
occurs on a relatively large length scale. Here it is 
quite easy to distinguish between true exponential 
divergence of nearby orbits and a temporary diver
gence due to local changes in the attractor's shape. 
If, however, the Rossler attractor were "crossed" 
with a periodic motion of sufficiently large ampli
tude, we would lose the ability to detect the mech
anism for chaos as it would manifest itself only on 
length scales that we must regard as suspiciously 
small. For such a system it is difficult to conceive 
of any means of recovering exponents from experi
mental data. 

We have observed this problem to some degree 
for the Couette-Taylor system, which makes a 
transition from motion on a 2-torus to chaos. In 
such a system chaos can arise from small stretches 
and folds on the torus. When we use the interac
tive program to monitor the evolution of lengths in 
the Couette-Taylor attractors, we seem to observe 
this effect; that is, the separation vectors do not 
exhibit dramatic growth but instead oscillate in 
magnitude. Such an oscillation could indicate a 
stretching and folding so that we might wish to 
attempt a replacement, or it could simply indicate 
a variation of the attractor's shape, which should 
be ignored. In figs. 7a and 7b we show experimen
tal data for attractors of the large scale [2] and 
small scale [36] varieties, both arising from the 
Belousov-Zhabotinskii system. Exponent estima-

tion in the latter case is quite difficult. The pres
ence of external noise on length scales as small as 
the chaos generation mechanism will of course 
further complicate exponent calculations. 

Even though infinitesimal length scales are not 
accessible, Lyapunov exponent estimation may still 
be quite feasible for many experimental systems. 
The same problem arises in calculations of the 
fractal dimension of strange attractors. Fractal 
structure does not exist in nature, where it is 
truncated on atomic scales, nor does it exist in any 
computer representation of a dynamical system, 
where finite precision truncates scaling. In these 
calculations we hope that as the smallest accessible 
length scales are approached, scaling converges to 
the zero length scale limit. Similarly, provided that 
chaos production is nearly the same on infinitesi
mal and the smallest accessible length scales, our 
calculations on the small scales may provide accu
rate results. A successful calculation requires that 
one has enough data to approach the appropriate 
length scales, ignores anything on the length scale 
of the noise, and has an attractor with a macro
scopic stretching/folding mechanism. 

7.2. Noise 

The effects of noise in our algorithms fall into 
two categories which we have named the "statisti
cal" and the "catastrophic". The former category 
deals with such problems as point-to-point jitter 
that cause us to estimate volumes inaccurately; 
this was the motivation for avoiding highly skewed 
replacement elements. Catastrophes can arise even 
in the absence of noise either from too low an 
embedding dimension (section 6.1), or from too 
little data compounded with high attractor com
plexity (section 6.2). In the presence of noise, 
catastrophes occur because noise drives a faraway 
data point into the replacement "arena." Noise in 
physical systems can be broken into two cate
gories: measurement noise, i.e., simple lack of 
resolution, and dynamical noise, i.e., fluctuations 
in the state of the system or its parameters which 
enter into the dynamics. In the former case it is 
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clear that the system possesses well defined expo
nents that are potentially recoverable. Strictly 
speaking, in the latter case Lyapunov exponents 
are not well defined, but some work [37] has 
suggested that a system may be characterized by 
numbers that are the Lyapunov exponents for the 
noise-free system averaged over the range of 
noise-induced states. 

Our first study of the effects of noise on our 
algorithms involved adding dynamical noise to the 
Henon attractor, that is, a small uniformly distrib
uted random number was added to each coordi
nate as the map was being iterated. These data 
were then processed with the fixed evolution time 
program. For noise of sufficiently large amplitude, 
A1 could not be accurately determined. Specifi
cally, the average initial separation between re
placement points grew with the noise level (noise 
causing diffusion of the 1.26-dimensional attractor 
into the two-dimensional phase space) and the 
large final separations were not much affected by 
the noise. The result was an underestimate of the 
positive exponent. A nearly identical result was 
obtained for the addition of measurement noise 
(addition of a random term to each element of the 
time series, after the entire series has been gener
ated) to the Henon attractor. 

It is ironic that measurement noise is not a 
problem unless large amounts of data are available 
to define the attractor. Noise is only detectable 
when the point density is high enough to provide 
replacements near the noise length scale. This sug
gests a simple approach to the noise problem, 
simply avoiding principal axis vectors whose mag
nitude is smaller than some threshold value we 
select. If this value is chosen to be somewhat larger 
than the noise level, the fractional error in de
termining initial vector magnitudes may be re
duced to an acceptable level. A voiding noisy length 
scales is not a trivial matter, as noise may not be 
of constant amplitude throughout an attractor and 
the noise length scale may be difficult to de
termine. Again, this approach can only work if 
scales larger than the noise contain accurate infor
mation about orbital divergence rates in the zero 

length scale limit. In fig. 6d we confirm that a 
straightforward small distance cutoff works in the 
case of the Rossler attractor by showing stationar
ity of the estimated exponent over a broad range 
of cutoff values. 

7.3. Low pass filtering 

Another approach to reducing the effects of 
noise, closely related to the use of a small distance 
cutoff, involves low pass filtering of the data be
fore beginning exponent estimation. Rather severe 
filtering may be possible for systems with a once
per-orbit chaos producing mechanism- the filter 
cutoff approaching (orbital period) -l. Filtering can 
be expected to distort shapes, eliminate small scale 
structure, and scramble phase, but we do not 
expect the divergent nature of the attractor to be 
lost. 

A demonstration of the use of filtering for the 
Belousov-Zhabotinskii attractor is shown in fig. 8. 
Filtering dramatically altered the shape of the 
reconstructed attractor, but the estimated values of 
A1 differed by at most a few percent for reasonable 
cutoff frequencies. A similar calculation for the 
Rossler attractor indicated that the low-frequency 
cutoff could be moved all the way down to the 
attractor's sole large spectral feature before the 
exponent estimate showed any noticeable effect. 
Results for the Lorenz attractor, with its much 
more complicated spectral profile, are not quite as 
impressive. An analytical proof of the low pass 
filtering invariance of Lyapunov exponents (with 
conditions on the cutoff frequency relative to the 
orbital period and the replacement frequency) has 
proved elusive. Of course, low pass filtering fails to 
help with exponent estimation if there is substan
tial contamination of the data at frequencies lower 
than the filter cutoff. In a simple study of multi
periodic data with added white noise [3] the esti
mated exponent returned (very nearly) to zero for 
a sufficient amount of filtering. It thus appears 
that in some cases external noise can be dis
tinguished from chaos by this procedure. 
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Fig. 8. a) Unfiltered experimental data for the Belousov-Zhabotinskii reaction [2]; b) the same data, low-pass filtered with a filter 
cutoff of 0.046 Hz, compared to the mean orbital frequency of 0.009 Hz. Our estimate of ,\1 for these data was only 5% lower than the 
estimate from the unfiltered data. Replacement frequencies in the region of stationarity for these results were approximately 0.005 Hz. 
c) the data are over-filtered at 0.023 Hz. ,\1 differs by only 20% from the exponent estimate for unfiltered data. 

7 .4. Data requirements 

We now address the important questions of the 
quality and quantity of experimental data required 
for accurate exponent calculation. The former 
question is more easily disposed of- resolution 
requirements are so highly system dependent that 
we cannot make any general statements about 
them. In one study with the fixed evolution time 
program, the largest exponent was repeatedly com
puted for Rossler and Lorenz attractor data, the 
resolution of which was decreased one bit at a 
time from 16 bits. In each case the estimates 
were reasonably good for data with as few as 5 
bits resolution. In fig. 9 we show the results of 
bit chopping for these systems as well as for 
Belousov-Zhabotinskii data. As a conservative rule 
of thumb we suggest a minimum of 8 meaningful 
bits of precision be used for exponent calculations. 
We strongly suggest that the resolution of experi
mental data be artificially lowered as we did for 
the model systems. If a plot of X1 versus resolution 
does not show an initial plateau for at least one or 
two bits, the initial data are suspect for the pur
pose of exponent calculations. 

The amount of data required to calculate 
Lyapunov exponents depends on three distinct 

factors: the number of points necessary to provide 
an adequate number of replacement points, the 
number of orbits of data necessary to probe 
stretching (but not folding) within the attractor, 
and the number of data points per orbit that allow 
for proper attractor reconstruction with delay co
ordinates. 

We first estimate how many points are required 
to "fill out" the structure of an attractor to pro
vide replacement points. A simple minded esti
mate of this factor depends on the following 
factors: the fractal dimension of the attractor, the 
number of non-negative exponents in the system, 
the number of exponents we are attempting to 
compute (the dimension of each volume element), 
and the geometric requirements for acceptable re
placement points. A more accurate calculation of 
this number will depend on such detailed informa
tion as the attractor's fractal structure and its 
probability density, which are not typically avail
able for experimental data and the effective noise 
level in the system (which depends on both the 
actual level of contamination and the dimension of 
the reconstructed attractor). We assume that our 
data are uniformly distributed over a d-dimen
sional attractor of extent L and ignore noise
induced diffusion of the data. Thus, the density of 
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Fig. 9. The results of bit chopping (simulated measurement 
noise) for the a) Lorenz; b) Rossler; and c) Belousov
Zhabotinskii systems. For each system at least 5 bits of preci
sion in the data are required for accurate exponent estimates. 

points, p, is 

(20) 

The mean number of replacement points located 
in a region of length e (SCALMX) and angular 
size {} (ANGLMX) is given by 

(21) 

where Vd, the volume of a d-dimensional search 
cone, is proportional to ed{}d-I, with d the (nearest 
integer) dimension of the attractor. Nr may be set 
to 1 for A1 estimation. Combining these expres-

sions and solving for N, we obtain 

1 [ L] d N(A )ex:- - . 
1 -{}d-1 E 

(22) 

A nearly identical calculation for the number of 
points required for area replacement results in 

(23) 

and in general, 

(24) 

We have ignored several prefactors that might 
modify these estimates by at most an order of 
magnitude. Also, the variance of the density of 
points is so high that the data requirement should 
probably be substantially increased to ensure that 
replacements are almost always available when 
needed, not just on the average. Perhaps surpris
ingly, the number of points required for estimating 
A1 + A2 is not significantly larger than N(A1) (our 
estimate actually predicts it to be smaller). While 
we must double the number of points in the attrac
tor to have a good chance of finding a pair of 
replacement points rather than a single one, the 
search volume for area replacement is actually 
larger (a larger solid angle of a potential replace
ment sphere is acceptable) than the search volume 
for length replacement. For area evolution there 
are pairs of points that define highly skewed re
placement elements, but these are sufficiently un
likely that we can ignore their effect on N(A 1 + A2 ). 

For calculation of exponents past A2 , the required 
point density does not change significantly. In our 
numerical work, in a best case scenario Lje:::::; 5, 
and the maximum value of {} is about 0.6 radians. 
In a worst case calculation Lje is about 10, and {} 
is about 0.3 radians. From these values eq. (24) 
predicts to first order that between :::::; 10d and 
:::::; 30d points are necessary to fill out a d-dimen
sional attractor, independent of how many non
negative exponents we are calculating. 
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Fig. 10. The temporal convergence of .\1 is shown as a function of the number of data points defining the Rossler attractor. The 
sampling rate is held constant; the longer time series contain more orbits. Note that lengthening the time series not only allows more 
time for convergence but also provides more replacement candidates at each replacement step. (Here the embedding dimension was 3, 
the embedding delay (T) was a sixth of an orbit, and the evolution time-step was three-quarters of an orbit.) 

The next factor we consider is the number of 
orbits of data required. The analysis is simplest if 
chaos arises through a once per orbit stretching 
and folding mechanism, which may be represented 
by a discrete mapping in one or more dimensions 
(as, for example, in the Lorenz, Rossler, hyper
chaos, and Belousov-Zhabotinskii attractors). Ex
ponent convergence requires that volume elements 
be operated on many times by the mapping until 
the element has sampled the slope profile of the 
map, suitably weighted by the map's probability 
density. The Lorenz and Rossler attractors have 
simple underlying 1-D maps; on the order of 10 to 
100 map points are required for adequate slope 
profiles [13]. For these attractors, we expect be
tween 10 and 100 orbits worth of data will be 
required for estimating A1 or for confirming that 
A2 = 0. No additional orbits are required for area 
propagation in a system defined by a 1-D map. If 
the system had an underlying 2-D map as hyper
chaos does, we might expect, depending on the 
complexity of the map, that roughly the square of 
this number of orbits would be required. This 
would provide the same sampling resolution for 
the slope profile of the map (see ref. 13) in each 
dimension. In general, for a system defined by an 

n-D map, the number of orbits of data required to 
estimate any non-negative exponent is given by a 
constant, C, raised to a power which is the number 
of positive exponents. The number of positive 
exponents is approximately the dimension of the 
attractor minus one, thus the required number of 
orbits is about cd-l_ c is a system dependent 
quantity depending on the amount of structure in 
the map, perhaps in the range 10 to 100. 

The last and simplest point we consider is the 
required number of points per orbit, P. There is 
no benefit to choosing P any larger than is ab
solutely necessary. We might try to choose P so 
small that in an evolution of a single step, the 
average replacement vector would grow to as large 
a separation as we care to allow. In the Lorenz 
attractor, for example, we might decide to allow 
the average replacement vector to grow by a factor 
of 32 in a single time step, so that we would have 
one data point per 6 orbits. The problem is that 
with data this sparse we are unlikely to obtain a 
good reconstruction of our attractor. Often, the 
relationship mT = 1 is used in reconstructions, 
where m is the embedding dimension and ,. is the 
delay in units of orbital periods. We assume that 
reconstruction is performed in an approximately 
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d-dimensional space, and the delay corresponds to 
a single sample time, so that T = 1/P. We then 
obtain a requirement of about d points per orbitt. 

When the number of points per orbit is multi
plied by the number of orbits, we obtain a re
quired number of points ranging from d x 10d-l 
to d x 10od-I, which we can compare to the point 
density requirement of between 10d and 30d 

points. Since all three requirements must be met, 
the larger of these two quantities determines the 
amount of data required. In each of these two 
ranges of values the complexity of the underlying 
map (if any) determines which end of the range is 
appropriate. Therefore we may conclude that for 
up to about a 10-dimensional system the required 
number of data points ranges from 10d to 30d. We 
compute this range for several systems: Henon 
attractor ( d = 1.26), 30-100 points; Rossler aurae
tor (d= 2.01), 100-1000 points; hyperchaos (d= 
3.005), 1000-30000 points; delay differential equa
tion (d= 3.64), 4000-200000 points. We see that 
the amount of data required to estimate non
negative exponents rises exponentially fast with 
the dimension of the attractor, the identical prob
lem with calculations of fractal dimension by all 
algorithms of the distance scaling variety [35]. Fig. 
10 shows the convergence of our A1 estimate as the 
number of points used is increased for the Rossler 
attractor. It is important to note that while it may 
take 32 000 points to define an attractor, it is 
generally not necessary to evolve completely 
through the data before the exponent estimate 
converges. For example, see fig. 10. 

8. Results 

We now present our results for the various 
model and experimental systems on which our 

tWe note that d points per orbit is a very small number 
compared to the sampling rate required for A1 estimation with 
an underlying 1-D map. Construction of a map requires that 
orbital intersections with the Poincare section be determined 
with high accuracy, often necessitating 100 or more points per 
orbit. Our technique thus allows a factor of about 10 times 
more orbits for a given size data file. 

algorithms have been tested. We emphasize that 
no explicit use was made of the differential equa
tions defining the model systems, except to pro
duce a dynamical observable (the x-coordinate 
time series) which was then treated as experimen
tal data. For the equations that define each system 
see table I. The quoted uncertainty values for each 
system were calculated either from the known 
values of the exponents or from the variation of 
our results with changes in parameters. 

Himon attractor 
For the Henon map, we obtained the positive 

exponent to within 5% with only 128 points defin
ing the attractor. 

Ross/er attractor 
For the Rossler attractor, we found the first 

exponent with a 5% error using 1024 points. The 
second exponent was measured as less than 6% of 
the first with 2048 points defining the attractor. 
Six points per mean orbital period were used to 
define the attractor. 

Lorenz attractor 
The Lorenz system was the most difficult test of 

the fixed evolution time program because its ill
defined orbital period made it difficult to avoid 
catastrophic replacements near the separatrix. In 
using the interactive program the operators simply 
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Fig. 11. Stationarity of A1 with evolution time is shown for 
Belousov-Zhabotinsk.ii data [2) (compare to fig. 6b). 
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avoided that region at replacement time. The inter
active runs determined the positive exponent to 
within 3%, and measured the second exponent as 
less than 5% of the first, using 8192 points. The 
fixed evolution time code measured the first expo
nent to within 5% and found the second exponent 
to be less than 10% of the first, using 8192 points 
in both cases. 

Hyperchaos 
For this system we obtained the largest expo

nent to within 10% using 8192 points and the sum 
of the two positive exponents to within 15% using 
16384 points. 

Delay differential equation 
Using 65536 points, we computed the largest of 

the two positive exponents to within 10% and 
found the sum of the first two exponents to within 
20%. 

Belousov-Zhabotinskii reaction 
In fig. 11 we show the result of our algorithm 

used on a time series of 65536 points spanning 
400 orbital periods. The system was in a chaotic 
regime near a period-three window. The exponent 
calculated by the algorithm is stable over a range 
of parameter values. We also calculated the expo-
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Fig. 12. The largest Lyapunov exponent for experimental 
Couette-Taylor data is shown as a function of Reynolds num
ber. The shape of this curve (but not its absolute magnitude, 
see reference [3)) was independently verified by the calculation 
of. the metric entropy h,.- which is equal to ,\1 if there is a 
single positive exponent [38]. 

nent using 1-D map analysis [2] as a comparison. 
Our algorithm gives a result in the plateau region 
of 0.0054 ± 0.0005 bitsjs, while the 1-D map 
estimation yields a result of 0.0049 ± 0.0010 bits/s. 
Thus the estimates are in agreement. 

Couette- Taylor 
For the Couette-Taylor experiment we com

puted the largest Lyapunov exponent as a func
tion of Reynolds number from data sets (at each 
Reynolds number) consisting of 32768 points 
spanning about 200 mean orbital periods. Our 
results are given in fig. 12. Earlier studies of power 
spectra and phase portraits had indicated that the 
onset of chaos occurred at Rj Rc""' 12, where Rc 
marks the transition to Taylor vortex flow. This 
onset of chaos is confirmed and quantified by the 
calculation of X1• 

9. Conclusions 

The algorithms we have presented can detect 
and quantify chaos in experimental data by accu
rately estimating the first few non-negative 
Lyapunov exponents. Moreover, our numerical 
studies have shown that deterministic chaos can be 
distinguished in some cases from external noise (as 
in the Belousov-Zhabotinskii attractor) and topo
logical complexity (as in the Lorenz attractor). 
However, this requires a reasonable quantity of 
accurate data, and the attractor must not be of 
very high dimension. 

As with other diagnostics used in chaotic dy
namical systems, the calculation of Lyapunov ex
ponents is still in its infancy, but we believe that 
the approach to exponent estimation that we have 
described here is workable. We encourage experi
mentation with our algorithms. 
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PROGRAM ODE 
c 

Appendix A 

Lyapunov spectrum program for systems of dif
ferential equations 

This program computes the complete Lyapunov 
spectrum of a nonlinear system whose equations of 
motion and their linearizations are supplied by the 
user in the routine FCN. The program is set up 
here for the three variable Lorenz system but is 
easily modified for any other system of equations. 

C N = If OF NONLINEAR EQTNS. , NN = TOTAL 11 OF EQTNS. 
c 

c 

c 

PARAMETER N=3 
PARAMETER NN=12 
EXTERNAL FCN 

DIMENSION Y(NN),ZNORM(N),GSC(N),CUM(N),C(24),W(NN,9) 

C INITIAL CONDITIONS FOR NONLINEAR SYSTEM 
c 

c 

Y(l) 10.0 
Y(2) 1.0 
Y(3) 0.0 

C INITIAL CONDITIONS FOR LINEAR SYSTEM (ORTHONORMAL FRAME) 
c 

c 

DO 10 I = N+1,NN 
Y(I) = 0.0 

10 CONTINUE 
DO 20 I = 1,N 

Y((N+1)*I) 1.0 
CUM(I) = 0.0 

20 CONTINUE 

C INTEGRATION TOLERANCE, If OF INTEGRATION STEPS, 
C TIME PER STEP, AND I/0 RATE 
c 

c 

TYPE*, 'TOL,NSTEP,STPSZE,IO?' 
ACCEPT*,TOL,NSTEP,STPSZE,IO 

C INITIALIZATION FOR INTEGRATOR 
c 

NEQ = NN 
X = 0.0 
IND = 1 
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c 
DO 100 I = 1,NSTEP 

XEND = STPSZE*FLOAT(I) 
c 
C CALL ANY ODE INTEGRATOR - THIS IS AN L~SL ROUTINE 
c 

CALL DVERK (NEQ,FCN,X,Y,XEND,TOL,IND,C,NEQ,W,IER) 
c 
C CONSTRUCT A NEW ORTHONORMAL BASIS BY GRAM-SCHMIDT METHOD 
c 
C NORMALIZE FIRST VECTOR 
c 

c 

ZNORM(l) = 0.0 
DO 30 J = 1,N 

ZNORM(1) = ZNORM(1)+Y(N*J+1)**2 
30 CONTINUE 

ZNORM(1) = SQRT(ZNORM(1)) 
DO 40 J = 1,N 

Y(N*J+1) = Y(N*J+1)/ZNORM(1) 
40 CONTINUE 

C GENERATE THE NEW ORTHONORMAL SET OF VECTORS. 
c 

DO 80 J = 2,N 
c 
c GENERATE J-1 GSR COEFFICIENTS. 
c 

DO 50 K = 1,(J-1) 
GSC(K) = 0.0 
DO 50 L = 1,N 

GSC(K) = GSC(K)+Y(N*L+J)*Y(N*L+K) 
50 CONTINUE 

c 
c CONSTRUCT A NEW VECTOR. 
c 

DO 60 K = 1,N 
DO 60 L = 1,(J-1) 

Y(N*K+J) = Y(N*K+J)-GSC(L)*Y(N*K+L) 
60 CONTINUE 

c 
c CALCULATE THE VECTOR'S NORM 
c 

ZNORM(J) = 0.0 
DO 70 K = 1,N 

ZNORM(J) = ZNORM(J)+Y(N*K+J)**2 
70 CONTINUE 

ZNORM(J) = SQRT(ZNORM(J)) 
c 
c NORMALIZE THE NEW VECTOR. 
c 

DO 80 K = 1,N 
Y(N*K+J) = Y(N*K+J)/ZNORM(J) 

80 CONTINUE 
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c 
C UPDATE RUNNING VECTOR MAGNITUDES 
c 

DO 90 K = 1,N 
CUM(K) = CUM(K)+ALOG(ZNORM(K))/ALOG(2.) 

90 CONTINUE 
c 
C NORMALIZE EXPONENT AND PRINT EVERY IO ITERATIONS 
c 

c 

c 

c 

c 

IF (MOD(I,IO).EQ.O) TYPE*,X,(CUM(K)/X,K = 1,N) 

100 CONTINUE 

CALL EXIT 
END 

SUBROUTINE FCN (N,X,Y,YPRIME) 

C USER DEFINED ROUTINE CALLED BY IMSL INTEGRATOR. 
c 

DIMENSION Y(12),YPRIME(12) 
c 
C LORENZ EQUATIONS OF MOTION 
c 

c 

YPRIME(1) = 16.*(Y(2)-Y(l)) 
YPRIME(2) = -Y(1)*Y(3)+45.92*Y(1)-Y(2) 
YPRIME(3) = Y(1)*Y(2)-4.*Y(3) 

C 3 COPIES OF LINEARIZED EQUATIONS OF MOTION. 
c 

c 

DO 10 I = 0,2 
YPRIME(4+I) = 16.*(Y(7+I)-Y(4+I)) 
YPRIME(7+I) = (45.92-Y(3))*Y(4+I)-Y(7+I)-Y(1)*Y(10+I) 
YPRIME(lO+I) = Y(2) *Y(4+I )+Y(l) *Y( 7+I )-4. *Y(lO+I) 

10 CONTINUE 

RETURN 
END 

See section 3 and refs. 8, 9 for a discussion of the 
ODE algorithm. 

ters are required: length scales that we consider to 
be too large (SCALMX) and too small (SCALMN) 
and a constant propagation time (EVOL V) be
tween replacement attempts. SCALMX is our 
estimate of the length scale on which the local 
structure of the attractor is no longer being probed; 
SCALMN is the length scale on which noise is 
expected to appear. We also supply a maximum 
angular error to be accepted at replacement time 
(ANGLMX), but we do not consider this a free 
parameter as its selection is not likely to have 
much effect on exponent estimates. It is usually 
fixed at 0.2 or 0.3 radians. 

Appendix B 

Fixed evolution time program for X1 

A time series (of length NPT) is read from a 
data file, along with the parameters necessary to 
reconstruct the attractor, namely, the dimension of 
the phase space reconstruction (DIM), the recon
struction time delay (TAU), and the time between 
the data samples (DT), required only for normal
ization of the exponent. Three other input parame-
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The calculation is initiated by carrying out an 
exhaustive search of the data file to locate the 
nearest neighbor to the first point (the fiducial 
point), omitting points closer than SCALMNt. 
The main program loop, which carries out re
peated cycles of propagating and replacing the 
first principal axis vector is now entered. The 
current pair of points is propagated EVOLV steps 
through the attractor and its final separation is 
computed. The log of the ratio of final to initial 
separation of this pair updates a running average 
rate of orbital divergence. A replacement step is 
then attempted. The distance of each delay coordi
nate point to the evolved fiducial point is then 
determined. Points closer than SCALMX but fur
ther away than SCALMN are examined to see if 
the change in angular orientation is less than 
ANGLMX radians. If more than one candidate 
point is found, the point defining the smallest 
angular change is used for replacement. If no 
points· satisfy these criteria, we loosen the larger 
distance criterion to accept replacement points as 
far as twice SCALMX away. If necessary the large 
distance criterion is relaxed several more times, at 
which point we tighten this constraint and relax 
the angular acceptance criterion. Continued failure 
will eventually result in our keeping the pair of 
points we had started out with, as this pair results 
in no change whatsoever in phase space orienta
tion. We now go back to the top of the main loop 
where the new points are propagated. This process 
is repeated until the fiducial trajectory reaches the 
end of the data file, by which time we hope to see 
stationary behavior of A1. See section 6 for a 
discussion of how to choose the input parameters. 

The fixed evolution time code for A1 + A 2 esti
mation is too long to present here (350 lines of 
Fortran) but we discuss its structure briefly. This 
program begins by reading in a dynamical ob
servable and many of the same input parameters 
as the code for A1 estimation. A number of param
eters are also required to evaluate the quality of 

tSuch an exhaustive search is very inefficient for large arrays; 
then more efficient algorithms should be employed. See, for 
example, ref. 39. . 

replacement triples: the maximum allowed triple 
"skewness", the maximum angular deviation of 
each replacement vector from the plane defined by 
the last triple, and weighting factors for the rela
tive importance of skewness, size of replacement 
vectors, and angular errors in choosing replace
ment vectors. 

The structure of this program is very similar to 
the program for A1: locate the two nearest neigh
hors of the first delay coordinate point, determine 
the initial area defined by this triple, enter the 
main program loop for repeated evolution and 
replacement. Triples are evolved EVOLV 
steps through the attractor and replacement is 
performed. Triple replacement is a more com
plicated process than· pair replacement, which in
volved minimizing a single angular separation and 
a length. Our approach to triple replacement is a 
two step process; first we find a small set of points 
which, together with the fiducial trajectory, define 
small separation vectors and lie close to the re
quired two-dimensional subspace. We then de
termine which of all of the possible pairs of these 
points will make the best replacement triple. In the 
first step, the qualifications of up to 20 potential 
replacement points are saved. Separation and 
orientation requirements of replacement points are 
varied so that a moderate number of candidates is 
almost always obtained. In the second step every 
possible pair of these points is assigned a score 
based on how close the replacement triple is to the 
old two-dimensional subspace and how numeri
cally stable the orientation of the triple is believed 
to be. (It is possible that the individual replace
ment vectors lie very close to the old two-dimen
sional subspace but that the replacement area 

element is nearly orthogonal to the same subspace!) 
The relative importance of replacement lengths, 
skewness, orientation changes, etcetera, are 
weighted by the user chosen factors. The highest 
scoring pair of points is used in the replacement 
triple. The calculations in this program involve dot 
products and the Gram-Schrnidt process and so 
are independent of the dimension of the recon
structed attractor- no complicated geometry is re
quired in the coding. 

29



PROGRAM FET1 
INTEGER DIM,TAU,EVOLV 
DIMENSION X(16384),PT1(12),PT2(12) 

c 
C **DEFINE DELAY COORDINATES WITH A STATEMENT FUNCTION** 
C **Z(I,J)=JTH COMPONENT OF ITH RECONSTRUCTED ATTRACTOR POINT** 
c 

c 

c 

c 

Z(I,J) = X(I+(J-1)*TAU) 

OPEN (UNIT=1,FILE='INPUT.' ,TYPE='OLD') 

TYPE*, 'NPT,DIM,TAU,DT,SCALMX,SCALMN,EVOLV ?' 
ACCEPT*,NPT,DIM,TAU,DT,SCALMX,SCALMN,EVOLV 

C **IND POINTS TO FIDUCIAL TRAJECTORY** 
C **IND2 POINTS TO SECOND TRAJECTORY** 
C **SUM HOLDS RUNNING EXPONENT ESTIMATE SANS 1/TIME** 
C **ITS IS TOTAL NUMBER OF PROPAGATION STEPS** 
c 

c 

IND = 1 
SUM = 0.0 
ITS = 0 

C **READ IN TIME SERIES** 
c 

c 

DO 10 I = 1,NPT 
READ (1, *) X( I) 

10 CONTINUE 

C **CALCULATE USEFUL SIZE OF DATAFILE 
c 

NPT = NPT - DIM*TAU - EVOLV 
c 
C **FIND NEAREST NEIGHBOR TO FIRST DATA POINT** 
c 

DI = 1.E38 
c 
C **DONT TAKE POINT TOO CLOSE TO FIDUCIAL POINT** 
c 

DO 30 I = 11,NPT 
c 
C **COMPUTE SEPARATION BETWEEN FIDUCIAL POINT AND CANDIDATE** 
c 

D = 0.0 
DO 20 J = 1,DIM 

D = D+(Z(IND,J)-Z(I,J))**2 
20 CONTINUE 

D = SQRT(D) 
c 
C **STORE THE BEST POINT SO FAR BUT NO CLOSER THAN NOISE SCALE** 
c 

IF (D.GT.DI.OR.D.LT.SCALMN) GO TO 30 
DI = D 
IND2 = I 

30 CONTINUE 
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c 
C **GET COORDINATES OF EVOLVED POINTS** 
c 

c 

40 DO 50 J = 1,DIM 
PT1(J) = Z(IND+EVOLV,J) 
PT2(J) = Z(IND2+EVOLV,J) 

50 CONTINUE 

C **COMPUTE FINAL SEPARATION BETWEEN PAIR, UPDATE EXPO~NT** 
c 

c 

DF = 0.0 
DO 60 J = 1,DIM 

OF = DF+(PT1(J)-PT2(J))**2 
60 CONTINUE 

DF = SQRT(DF) 
ITS = ITS+1 
SUM= SUM+ALOG(DF/DI)/(FLOAT(EVOLV)*DT*ALOG(2.)) 
ZLYAP = SUM/FLOAT(ITS) 
TYPE*,ZLYAP,EVOLV*ITS,DI,DF 

C **LOOK FOR REPLACEMENT POINT** 
C **ZMULT IS MULTIPLIER OF SCALMX WHEN GO TO LONGER DISTANCES** 
c 

c 

INDOLD = IND2 
ZMULT = 1.0 
ANGIMX = 0.3 

70 THMIN = 3.14 

C **SEARCH OVER ALL POINTS** 
c 

DO 100 I = 1,NPT 
c 
C **DONT TAKE POINTS TOO CLOSE IN TIME TO FIDUCIAL POINT** 
c 

c 

Ill= IABS(I-(IND+EVOLV)) 
IF (III.LT.10) GO TO 100 

C **COMPUTE DISTANCE BETWEEN FIDUCIAL POINT AND CANDIDATE** 
c 

DNEW = 0.0 
DO 80 J = 1,DIM 

DNEW = DNEW+(PT1(J)-Z(I,J))**2 
80 CONTINUE 

DNEW = SQRT(DNEW) 
c 
C **LOOK FURTHER AWAY THAN NOISE SCALE, CLOSER THAN ZMULT*SCAIMX** 
c 

IF (DNEW.GT.ZMULT*SCALMX.OR.DNEW.LT.SCALMN) GO TO 100 
c 
C **FIND ANGULAR CHANGE OLD TO NEW VECTOR** 
c 

DOT = 0.0 
DO 90 J = 1,DIM 

DOT • DOT+(PT1(J)-Z(I,J))*(PT1(J)-PT2(J)) 
90 CONTINUE 
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c 

CTH = ABS(DOT/(DNEW*DF)) 
IF (CTH.GT.l.O) CTH = 1.0 
TH = ACOS(CTH) 

C **SAVE POINT WITH SMALLEST ANGULAR CHANGE SO F'AR** 
c 

c 

IF (TH.GT.THMIN) GO TO lOO 
THMIN = TH 
DII = DNEW 
IND2 = I 

lOO CONTINUE 
IF (THMIN.LT.ANGLMX) GO TO 110 

C **CANT FIND A REPLACEMENT - LOOK AT LONGER DISTANCES** 
c 

ZMULT = ZMULT+ 1. 
IF (ZMULT.LE.S.) GO TO 70 

c 
C **NO REPLACEMENT AT S*SCALE, DOUBLE SEARCH ANGLE, RESET DISTANCE** 
c 

c 

ZMULT = 1.0 
ANGLMX = 2.*ANGLMX 
IF (ANGLMX.LT.3.14) GO TO 70 
IND2 = INDOLD + EVOLV 
DII = DF 

110 CONTINUE 
IND = IND+EVOLV 

C **LEAVE PROGRAM WHEN FIDUCIAL TRAJECTORY HITS END OF FILE** 
c 

IF (IND.GE.NPT) GO TO 120 
DI = DII 
GO TO 40 

120 CALL EXIT 
END 
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