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Shot-noise excursions and non-stabilizing Poisson
functionals

Raphaél Lachieze-Rey™
December 2, 2017

Abstract

This article presents an asymptotic study of shot noise processes excursions, and of
a more general class of statistics on marked spatial Poisson processes. A particularity of
shot noise excursions, with respect to many popular objects of stochastic geometry, is that
they are not stabilizing in general, but still a modification of the point process far from 0
will not modify the excursion set close to the origin by much. We shall present a complete
second order theory that is applicable to stabilizing functionals, as well as non-stabilizing
ones that satisfy this principle. This goes through a general mixing-type condition that
adapts nicely to both proving asymptotic normality and volumic variance.

Keywords Shot noise fields, random excursions, limit theorems, stabilisation

1 Introduction

Denote by ¢ the Lebesgue measure in R?. Let 1 be a homogeneous Poisson process on R?, and
{Fg(n); B C R4} a family of geometric functionals. We give a general conditions under which
{Fp(n)} has a variance proportionnal to ¢(B), and Var(Fg(n))~'/?(Fg — EFp(n)) converges
to a Gaussian variable, with a Kolmogorov distance decaying in £(B)~'/2, as (B) goes to cc.

Marked processes The model is even richer if one marks the input points by random inde-
pendent variables, called marks, drawn from an external o-finite probability space (M, M, u),
the marks space. It can be used for instance to let the shape and size of grains be random
in the boolean model, or to have a random impulse function for a shot noise process. For
A C R?, denote by A = A x M the cylinder of marked points x = (x,m) with spatial coordi-
nate z € A. Endow R? with the product o-algebra. The reader not familiar with such a setup
can consider the case where M is a singleton, and all mark-related notation can be ignored
(except in applications). By an abuse of notation, every spatial transformation applied to a
couple x = (z,m) € RY is in fact applied to the spatial element, i.c. x —y = (z —y,m) for
y € RY or for ACRYx M,C C RY, ANC = {(x,m) € A: 2 € C}. Denote for simplicity
by dx = dxp(dm) the measure element on (R%, ¢ x p). In all the paper,  denotes a Poisson
measure on R¢ with intensity measure £ x p. L

Functionals Let A be the class of locally finite sets of R? endowed with the topology induced
by the mappings ¢ — |¢ N A for compact sets A C R?, where | - | denotes the cardinality of a
set, and Ny the class of finite sets. Let 45 C A be such that P(n € 4p) = 1, A4 the class of
configurations ¢ € A such that ¢ C nU ¢’ for some n € Aj and ¢ € A}. Let F be the class of
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real measurable functionals on 4. For W C Z?, we consider a functional of the form

Fw(¢) =Y FY(¢).¢e, with RV (¢) = Fo(CNW — k), k € W, (1.1)
keWw

where Fy € F and W = Upew (k + [0,1)%). It might also happen that 7 occurs on all the space
but only contributions over W are considered: introduce the infinite input version

Fiy(Q) =Y Fe(¢),¢ € A, with Fi(¢) = Fo(¢ — k), k € Z°. (1.2)
keW

A score function is a mapping & : M x .4 — R such that

Fg:¢m > Em( ), (1.3)

x=(xz,m)e¢N[0,1)?

is well defined on ¢ € ./, which yields that Fyy () is the sum of the scores of all points falling in
W. Use £(C) instead of £(m; () if no marking is involved (i.e. M is a singleton). It is explained
later why some shot noise excursions functionals also obey representations (1.1)-(1.2). In this
paper, we identify a functional F': 4~ — R with the random variable that gives its value over
n: F = F(n), even if F will be applied to modified versions of 7 as well.

In many works [19],[13, Chapter 4], the observation windows consist in a growing family of
subsets B,,n > 1 of R%, that satisfy the Van’Hoff condition: for all r > 0,

LOBY")/U(Bn) — 0, (1.4)

as n — oo, where B®" = {x € R? : d(x, B) < r} for B C R%. We rather consider in this paper,
like for instance in [23], a family % of bounded subsets of Z? satisfying the regularity condition

02 W] _ 0, (1.5)

lim sup
wew W]

where 074 W is the set of points of W at distance 1 from W€, and consider a point process over
W. In the large window asymptotics, condition (1.5) imposes the same type of restrictions as
(1.4), and using subsets of the integer lattice eases certain estimates and is not fundamentally
different. In the case where boundary effects occur (by observing N W instead of 1), stronger
geometric conditions will be required. To this end, let B,,r > 0, be a family of subsets of R?
such that for some 0 < a— < a4, B(0,a_r) C B, C B(0,a4+r), where B(z,r) is the Euclidean
ball with center z € R? and radius r > 0. Let also B,(z) = 2+ B,,,» € R%. We set similarly as
in [19, Section 2],

By, ={W —k: ke W,BEnN (W — k) # 0}, W c 74,
By, =Uweyw Biy U{R%}.

Background The family of functionals described above is quite general and covers large
classes of statistics used in many application fields, from data analysis to ecology, see [13] for
theory, models and applications. We study the variance, and Gaussian fluctuations, of such
functionals, under the assumption that a modification of 7 far from 0 modifies slightly Fo(n)
(or £(0,m)). Most of the general results available require a stabilization property : roughly
speaking, it means that there exists a random radius R > 0, with sufficiently fast decaying tail,
such that any modification of 1 outside B(0, R) does not affect Fy(n) (or £(0,7)) at all. By
stationarity this behaviour is tranferred to any Fy,k € Z9. The recent paper [15] establishes
presumably optimal rates of convergence in a very broad setting, under exponential decay of the



stabilization radius, both on Euclidean and non-Euclidean metric spaces, with the extension to
functionals of binomial processes.

We give in this article general conditions under which functionals of the form (1.1)-(1.2)
have a volume order variance and undergo a central limit theorem, with a Kolmogorov distance
to the normal in the inverse square root of the variance. We recall that the Kolmogorov distance
between two variables U and V is defined as

d (U,N) = sup|P(U < t) = P(V < 1)]. (L6)
teR

Specified to the case where functionals are under the form (1.3) and the score function is
stabilizing, our conditions demand that the tail of the stabilization radius R decays polynomially
fast, with power strictly smaller than —2d, see Proposition 1.1.

Main result The main theoretical finding of this paper is condition (1.8), which is well
suited for second order Poincaré inequalities in the Poisson space, i.e. bounds on the speed
of convergence of a Poisson functional to the Gaussian law, and at the same time allows to
prove non-degenerate asymptotic variance under the elementary non-triviality assumption (1.9).
The application to shot-noise processes in the following section illustrates the versatility of the
method. The results can be merged into the following synthesic result, which proof is at Section
3.2. For two sequences {a,;n > 1},{b,;n > 1}, write a,, ~ by, if b, # 0 for n sufficiently large
and apb,! — 1 as n — oo. Also, in all the paper, x denotes a constant that depends on
d,a,ay,a_, and which value may change from line to line. If it is well defined, for Fy € F, let

a5 =y Cov(Fo(n), Fr(n)). (1.7)

kezd
Define, for a > 0, W, = [~a/2,a/2]? N Z4.

Theorem 1.1. Let Fy € F, # = {W,;n > 1} satisfying (1.5), let M, M> be independent
random elements of M with law p. Assume that for some Cy > 0, > 2d, for all r > 0,B €
il —ae xy,x3 € R?, ¢ C {(x1, My), (z2, M2)}

(BIF((nU¢) N B, N B) = Fo((nu Q) B)|4)1/4 < Co(1+7)77, (1.8)

and for some bounded set A C R?, sup; 4 EFy(nN A)? < oo and

lim sup Var(Fy, (n N A)) > 0. (1.9)

a—r 00
Then 0 < 0 < o0, and as n — oo, Var(Fyw, ) ~ 02|Wy|, (63|W,|)~Y/?(Fw, — EFw, ) converges
in law towards a standard Gaussian random variable N. Furthermore, for n sufficiently large,

Fyw —EFy 1 c: cd cd
d I Pn N < kW, /2 (=0 4 20 4 0 ) 1.10
A (Var(FWn)l/2 ’ ) KW o3 + op + og ( )

Let us now give the version with infinite input, which is more simple to satisfy due to the
absence of boundary effects, except for the power of the decay:

Theorem 1.2. Let Fy € F, # = {W,;n > 1} satisfying (1.5), let M;, Mo, be independent
random elements of M with law pu. Assume that for some Cp > 0, > 5d/2, for all r >
0, —a.e. x1,19 € R ¢ C {(21, My), (z2, Ms)} ,

a0\ /4 _
(BIR((UONB,) - FmuQl) " < Co(l+1)7, (1.11)



and (1.9) holds. Then 0 < g < oo (defined in (1.7)), and as n — oo, Var(Fy, ) ~ o3| W,

(03|W,|)~Y/2(F}, —EF}, ) converges in law towards a standard Gaussian random variable N.
Furthermore, for n sufficiently large

Fl, —EF] cg  C8  Cq
d Wn Wi N < Wn _1/2 _0 _0 —0 . 112
H (7\/%(1:‘,%)1/2 ) ) KWl p + P + P (1.12)

Remarks 1.1. 1. The application to score functionals (see (1.3)) goes as follows: let M;, 0 <
i < 6 be iid marks with law p, and assume that £ : M x A4 — R satisfies for all
r>0,BeBy a0, z1,...,06 € R C{(x;,M;),1 <i<6},

(1Mo, (U Q) N BB, —a0) Mo, (1) N B ) ) < Cot +7)7,
(1.13)

then the functional Fy = F defined in (1.3) satisfies (1.8). Toseeit, fix ¢, C {(z1, M), (22, Ms)},
apply Lemma 5.1 (with » = 0) to

(0, Mo),¢") = Lizgepo, ey 1€(Mo, (¢'UG) N BN B, — x0)
—&(Mo, (C'UG)N B —x0)|,¢ € A, 20 € RY.

It yields

4\ 1/4
(BIR(muc)nBnB) - R@uana)l’) <|B| 3 e

x€enn[0,1]4

<kCo(1+7r)~ ¢

for some Cp > 0, hence (1.8) is satisfied. In this framework the asymptotic volumic
variance is the finite quantity

b = B+ [ (Be(Mo,n U DM nU {~a)) — BE (M),

see for instance (4.10) in [13].

2. If the functional polynomially stabilises in the sense of Proposition 1.1 below, for non-
trivial asymptotic volumic variance to hold (o > 0), one simply needs to find a bounded
set A C R? such that

lim sup Var(Fy, (n N A)) > 0.
a>0

In many cases there is £ € N such that, with Uy, ..., Uy uniform independant variables in
A, the lower bound Var(Fw, ({Uy, ..., Ur}))P(InNA| = k) suffices, see Example 1.1 for an
illustration. Recent similar result regarding the variance can be found in the literature, but
the assumptions are of different nature, either dealing with different qualitative long range
behaviour (i.e. strong stabilization in [19, 9, 15]), or different non-degeneracy statements
[17], whereas conditions (1.8) is more quantitative about the long range behaviour.

3. Similar results where the input consists of m,, iid variables uniformly distributed in W,
with m,, = |[W,|, should be within reach by applying the results of [14], following a route
similar to [15].



4. Condition (1.11) might be seen as a global condition, but it can also be derived from a
more local condition. Indeed, under appropriate continuity conditions, Fy(n'NA) — Fy(n')
can be written as the sum of local contributions D, ) F'(n' N (AUB°(0, ||z])), (z,m) €,
where D, ) is the traditional add-one cost operator, or first-order Malliavin derivative,
see Section 3.1.

Shot-noise excursions We develop here the application of the results to geometric func-
tionals of Poisson shot noise processes excursions. Let {gm,;m € M} be measurable functions
indexed by some measurable space M in a measurable way. Let p be a probability measure
on M and 7 a Poisson process with intensity measure £ x p on R?. Introduce the shot noise
processes with kernel distribution yu by, for ¢ € A4, W C Z¢

fo:O)= Y.  gmly—x),yeR (1.14)

x=(z,m)€eC

frwO= > gmly—2) (1.15)

x=(z,m)eCNW

depending on wether the grains falling outside the observation window are counted or not
(conditions under which f. is well defined are discussed in Section 4, along with a proper
choice for .A5). Fix f € {foo, fw}. Given some threshold u € R, we consider the excursion set
{f>u} ={r eR?: f(x;¢) > u} and the functionals

Cl({f 2 u}n W)
¢ =Per({f > ul W),

where for A, B C R%; Per(A; B) denotes the amount of perimeter of A contained in B in the
variational sense, see Section 4.2.

A shot noise field is the result of random impulse kernels translated at random locations
in the space. It has been introduced by Schottky in the context of electronics in 1918 [24],
and has been used since then under different names in many fields such as pharmacology,
mathematical morphology [16, Section 14.1], image analysis [12], or telecommunication networks
[3, 2]. Mean values and sample-path properties have been studied in many works devoted to
the subject, see for instance the works of Biermé and Desolneux [5, 6, 7], where mean values
for geometric properties of excursions have been derived. More generally, the activity about
asymptotic properties of random fields excursions has recently increased, with the notable
recent contribution of Estrade and Léon [10], who derived a central limit theorem for the Euler
characteristic of excursions of stationary Euclidean Gaussian fields. Bulinski, Spodarev and
Timmerman [8] give general conditions for asymptotic normality of the excursion volume for
quasi-associated random fields. Their results apply to shot-noise fields, under a condition of
uniformly bounded marginal density, which can be verified in some specific examples. We
give here the asymptotic variance and central limit theorems for volume and perimeter of
excursions under weak assumptions on the density, as illustrated in Section 4. Still, a certain
control of the distribution is necessary, and we provide in Lemma 4.2 a uniform bound on
SUP,er 550(0 I0(8)) "' P(f(0;7) € [v — &,v 4 6]) when f is of the form

£@:0) =Ygl - ail) (1.16)

where ( € A7, and z;,1 € I, are the spatial locations of its points, with g a strictly non-increasing
function (0, 00) — (0, 00) with a derivative not decaying too fast to 0. Our results allow to treat
fields with singularities, such as those observed in astrophysics or telecommunications, see [2].



Let M be the space of measurable subsets of RY. The results of Section 4 also apply to
processes that can be written under the form

F@iQ) =) Lily_geay v €RY (1.17)

i>1

where the (L;, 4;),4 > 1 are iid couples of Ry x M, endowed with a proper o-algebra and
probability measure, see Section 4.1. Such models are called dilution functions or random
token models in mathematical morphology, see for instance [16, Section 14.1], where they are
used to simulate random functions with a prescribed covariance kernel.

1.1 Applications

An important part of the paper is devoted to shot noise excursions, but the results should apply
also to most stabilizing models studied in the literature (packing functionals, Voronoi tessel-
lation, boolean models, proximity graphs), see the example of statistics on nearest neighbours
graphs below. Checking asymptotic non-degeneracy of the variance is reduced to checking its
non-triviality on finite input.

In some models, the independent marking is replaced by geostatistical marking , also called
dependent marking or external marking: let m(z;n'),x € R? be a random field measurable
with respect to an independent homogeneous Poisson process 1’ on R?. Such a refinement is
necessary to model a variety of random phenomena, such as gauge measurements for rainfalls
or tree sizes in a sparse forest, see [22] and references therein. Labelling the points of 7 and
1’ with two different colors yields that n U7’ has the law of an independently marked Poisson
process, hence our results should apply to appropriate statistics.

In the non-marked setting (M is a singleton), let a > 0 be a scaling perimeter, and consider
the random field X = (Xj)peze, where Xy = 1iann(ktio,1)4)}=0, k € 74, X is an independant
spin-model where the parameter p = P(Xy = 1) = exp(—a) can take any prescribed value.
Then all the previous results can be applied to functionals of the form

Fw (X) = Z Fo(Xw — k) or Fyy (X) = Z Fo(X — k),
kezd kezd

where Fj is some functional on the class of subsets of Z¢, with finite second moment under iid
Bernoulli input. Examples include also stabilising functionals and excursions functionals, our
findings might apply for instance to the results of [21], where more general classes of discrete
input than Bernoulli processes are also treated. Seeing Fy (or Fy,) as a functional of 7, the
variance and asymptotic normality results of Theorems 1.1-1.2 apply to Fy under conditions
of the type

E|Fw (X' N B) — Fw(X'N BN B,)|* < Co(141)"°,
where B, B, are like in (1.1), and X’ is obtained from X by forcing up to 2 spins X, Xi to
the value 1 (the bound has to be uniform over k, k' € Z%)

1.2 Stabilization and nearest neighbour statistics

Let us transpose our results in the case where the functional stabilises.

Proposition 1.1. Let # = {W,;n > 1} be a class of subsets of Z%. Let Fy be defined as
in (1.1) (resp. as in (1.1)-(1.3) with Fy = FO§ for some score function £). Assume that for
z; € RY M; independent with law p,i > 1,¢ C {(z1, My), (v2, M2)} (resp. ¢ C {(x;, M;);i =



1,...,6}),n" = nU{, there is a random variable R > 0 such that almost surely, for r > R, B €
By,

Fo(n' N B, N B) =Fy(n N B). (1.18)

(resp. £&(m,n' N B, N B —x) =((m,n’ N B —z),(z,m) € nN|0,1].) (1.19)

Then (1.8) is satisfied if for some p,q > 1 with 1/p+ 1/¢g =1, R’s tail has a polynomial decay
in r=84P=¢ for some € > 0, under the moment condition

sup E|F0(77'ﬂBﬂBT)|4q < oo
r>0,BEBY,

(resp. sup E|¢(f N BN B, —x0)|™ < 00). (1.20)
r>0,BEBY, ,x0€(0,1]¢

For the infinite input version, “NB” should be removed from (1.18) (resp. (1.19)), and the
exponent —8dp — ¢ should be replaced by —10dp — ¢, and then (1.11) would hold.

Remarks 1.2. e The variance non-degeneracy is a disjoint issue, (1.9) has to be satisfied
independently. If one is only interested in asymptotic normality, the above requirements
can be weakened, see Theorem 3.1.

e The definition of a stabilisation radius often involves stability under the addition of an
external set, here denoted by (. A nice aspect of (1.18)-(1.19) with respect to classical
results is that ¢ does not depend on 7, i.e. ( does not in general achieve the worst case
scenario given 7. On the other hand, one has to deal here with the intersection with
B € B,, which might lead to more complex configurations. See Example 1.1 for an
application to nearest neighbour statistics.

Proof. For r > 0, B € B, if (1.18) holds,

E |Fo(' N B) — Fo(f N BN B,)[* =E1gs,y [Fo(n' N B) — Fo(f N BN B,))|*

1/p ’ / 4q a
<P(R>1)"/" (E([F( 0 BByl + R nB))™) "

If Fy = F§, and (1.19) holds, for r > R

FsfnB,NB)= Y  &mun'NnB,NB-x)
(x,m)enn|o,1]¢

= Z f(mvn/ﬂB—I)

(x,m)enn|o,1]4
=F5(n' N B),

and (1.18) holds. O

Example 1.1 (Nearest neighbours statistics). Given ¢ € .4,z € R% denote by NN(z;()
the nearest neighbour of x, i.e. the closest point of ¢ \ {z} from z, with ties broken by the
lexicographic order. Define recursively for k > 1 NNy (x;¢) = NN (x; ¢\ UFZ} NN;(2;¢)), with
x = NNo(x;¢), and NNy (7;¢) = UX_ NN;(7;¢). Fix k > 1 and call neighbours of = within ¢
the set N (x; ¢) consisting of all points y € ¢ such that z € NN¢y(y, (U{z}) or y € NN¢y(z; ).
Straightforward geometric considerations yield that the cardinality of Ny (z;¢) for some x € ¢
is bounded by a deterministic number sy 4 not depending on ¢.



Let then ¢ be a real functional on .4}, and define the score function, for ¢ € 4%,

§(C) = (N (0;¢)).

The simplest example would be for & = 1 the functional ¢((y) = %ZyECo llyll, so that

Fw(¢) =) & —x)

zEeC

gives the total length of the nearest-neighbour graph of . Notice that no marking is involved
in this setup. Such statistics are used in many applied fields, in nonparametric estimation pro-
cedures [4], or more recently in estimation of high-dimensional data sets [18]. Many asymptotic
results have been established since the central limit theorem of Bickel and Breiman [4], see for
instance [19, 17, 15, 9].

Theorem 1.3. For n > 1, let

Gn = Z O(Np(x;n N Woisa)).

xenﬂWnl/d
Assume that there is C,c > 0,u < d/4 such that for all z1,..., 2., , € R,

o({z1, .. Try, ) < C’exp(cmZaXH:z:iH“) (1.21)
and for some bounded A ¢ R4
/ o({x1,... ok} — Tpq1)dey .. drggy # 0. (1.22)
Ak+1

Then (Gn;n > 1) satisfies (1.8): Var(G,) ~ nog, with oy > 0 explicited in Remark 1.1,
and n~2(G,, — EG,,) converges in law to (0, 00), with bounds on the Kolmogorov distance
proportionnal to n~1/2.

For power length functionals, up to the exact shape of the observation window, this theorem
generalizes some results appearing in [19, 17, 9, 15]. The latter work does not give a variance
lower bound, but its results are valid in a non-Eulidean framework. For a well chosen ¢, our
results also apply to the Levina-Bickel statistic [18], used to estimate intrinsic dimension of
high dimensional data sets (see [14] for details in the binomial setting).

Proof. Call hypercube a set of the form x + [—a,a]? for some z € R% a > 0. For this proof
we choose B, = [—r,r]%r > 0 (hence a_ = 1,a; = Vd). Let ap € (0,1/4) and Q; =
x; + [—ag,a0]?,i = 1,...,q be hypercubes contained in B; \ Bl/2\/3 such that the following
holds: for all hypercube B that touches B ova and Bf and y € BN B(0,1), there is ¢ such

that Q; C (BN B(y, ||yl))). Let Q) = x; + [—ao/2,a0/2]¢ and
R =min{r > 2Vd(1+1/ao) : [nNrQ}| > k for every i =1,...,q}.

Let us show that R’ := v/d(R + 1) is a stabilization radius in the sense of (1.19). It is implied
by the following claim:

Claim 1.1. Let r > R’ ,B € B},,z € By. All elements of Ny (0,7’ N B — ) are in B(0,VdR).



Proof. Let y € ' N (B — ) be such that 0 € NNg¢i(y,(n’ N B — ) U {0}). Assume that
y ¢ B(0,R), hence y € (B —x) N B(0,R)". Since BNB; # 0, (B—x)NB:_ - # 0, and
(B—x)N B # 0. 0 € Byields (B—x)NB; # 0 for t > 1, hence for t = R/2Vd. Tt
follows that there is ¢ such that B(y, |ly||) N (B — x) contains RQ);. Since 7 has (at least) k
points in RQ} and RQ, — x C RQ; (using Rag/2 > V/d), n — = has k points in RQ;, hence
(" N B —2)N B(y, |ly||) contains at least k points, and they are all closer from y than 0, which
contradicts 0 € NN¢(y, (' N B —2) U{0}). This proves y € B(0, R).

For every i, RQ; contains k points of n that are in Bg, hence in B(0, R’), hence NN (0,7'N
B — I) C Bpg. |

In particular N (0,n' N B —x) = Nx(0,7 " BN B, —z) for r > R'.
We have for r > 0,

P(R>7) <Y P(InNrQi| <k —1) < xrlk-Dde= A"

i=1

(for some A\, N > 0), which has subpolynomial decay, and a similar bound holds for R’. For
the moment condition, note that for r > 0 “neighbours” of 0 in N B, N B — x are at most at
distance R’, hence, in virtue of (1.21), uniformly in r, B, for ¢ > 0,

E|¢(n' N B, N B — 2)[*"¢ <CEexp(cR’)* e

and this quantity is finite if ¢ is chosen such that (4 + ¢)u < d, and (1.19)-(1.20) hold, hence
(1.8) holds.

For the non-triviality of the variance, let a > 0 be such that A C [—a/2,a/2]¢. Let X;,i > 1,
be iid variables uniformly distributed in A. Without loss of generality, assume that n N A =
{X1,...,XnN,} where N, is Poisson distributed with parameter ¢(A). If [n N A| = k + 1, we
have Np(X;,nNA) =nNA\{X;} ={X;;1<j<k+1,j#1i}. Then

k+1
Fw,(nnA) :Z e({ X7 # i} — Xi)

E[FWaHnﬁA' = k+ 1] :(k+ 1)ESD({X17 .. 7X/€} _Xk+1) # 0

using Assumption (1.22). Hence P(Fy, (nNA) # 0) > P(Fw, (nNA) # 0|[nNA| = k+1)P(|nN
Al = k+1) > 0. Since we also have P(Fy, (nNA) =0) >P(nnA=0)>0, Fiy, (A) is not
trivial, and (1.9) is satisfied (noticing that the latter estimates do not depend on a).

O

2 Moment asymptotics

In this section, we give asymptotic results for second and fourth moments of a geometric func-
tional under general conditions of non-triviality and polynomial decay. The fourth order mo-
ment is useful for establishing Berry-Esseen bounds in the next section. The greek letter « still
denotes a constant depending on d, ¢, o, a_, a4 which value may change from line to line.

Theorem 2.1. Let o > d, W C Z¢, Cy > 0. Let Fy € F.

Assume (i) that for k € W, GV = FW, (resp. (i) for k € Z¢, G} = F}) and let Gy =
>wew G = Fw(resp. Gw = Fyy,) as defined in (1.1) (resp. (1.2)), and for all r > 0,B €
Bjy U{R%},

(E \Fo(n N B, N B) — Fy(n N B)|2)1/2 < Co(1+71)7", (2.1)



(resp. for all r > 0,

1/2
(BIRmNB) - RmF) <Gt +r)™) (22)

then for k,j € W (resp. Z%),

Cov(G}, GIY) < RCE(L+ Ik — )™ (2.3)
o8 = Z Cov(Fp, Fi) < o0,
kezd

and og > 0 if (1.9) holds. If W is bounded and non-empty,

’|W| War(Gw) — O'O‘ KO2(|0gaW |/ |W )=/, (2.4)
If furthermore o > 2d

E (Gw — EGw)"! < kCo(E(Fy — EFy)Y)* /4w 2. (2.5)

The proof is deferred to Section 5.1.

3 Asymptotic normality

We give bounds to the normal in terms of Kolmogorov distance, defined in (1.6), or Wasserstein
distance, defined between two random variables U,V as

dy (U,V) = Sup [E[R(U) = h(V)]I,

where Lip; is the set of 1-Lipschitz functions h : R — R.

3.1 Malliavin derivatives

It has been shown in different frameworks [17, 10, 15, 14] that Gaussian fluctuations of real
functionals can be controlled by some second order difference operators defined on the random
input. In the Poisson setting, this operator is incarnated by the Malliavin derivatives. We define
it here as it is a central tool in the theory backing our results: for any functional F' € F,{ € .4/,
and x € R?, define the first order Malliavin derivative DxF' € F by

Dy F(¢) = F(CU{x}) — F(Q),
and for x,y € RY, e N, F € Fy, the second order Malliavin derivative is
D3 yF(¢) =Dy «F(¢) = Dx(DyF(Q))
=F(CUu{x,y}) - F(CU{x}) - F(CU{y}) + F(C).

One can use this object to quantify the spatial depency of the functional F': a point y € R4
has a weak influence on a point x € R? for the functional F if its presence hardly affects the
contribution of x, i.e. Dy F(n) = DyxF(nU{y}), or in other words D} ,F(n) = Dy(DxF(n)) ~ 0
The proof of the following theorem is based on the result of Last, Peccati and Schulte [17], that
somehow asserts that the functional Fyy exhibits Gaussian behavior as W — RY, as soon as

Dy y Fyw is small when x,y are far away, uniformly in W. The speed of decay actually yields a
bound on the speed of convergence of Fyy towards the normal.
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Theorem 3.1. Let W C Z% bounded. Let Gw € {Fw, Fj;} as defined in (1.1)-(1.2), with
Fo € F, and let M, M’ ~ p independent. Assume that for some Cyp > 0, either (i) Gw = Fw
and for some a > 2d, for k € W,a.a.x € W — k,a.a.y € R o € {n,nU {(y, M")}},

B 1/4
[E|D(I7M)F0(n’ A — k))ﬂ < Co(l+ |Jz))~, z € RY, (3.1)
or (i) Gw = F}}, and for some «a > 5d/2, for a.a. z,y € RY, 0’ € {n,nU {(y, M")}},

1/4

[E|DanFom)*]" < Co(1+ 7)),z € R% (3.2)

Then, 02 := Var(Gw) < oo, and if o # 0, with Gy = o~ (Gw — EGw),

- 2 Cy 1024 WT\"
< —_— — .
dy (G, N) <r (02 W+ o) (1+ (S ) ) (3.3)

where a = 0 in case (i), and a = 2(a/d — 2) in case (i’). Let v := supy, (Gw — EGw )*|W |72,
then

) D5 W[\
dy (Gw,N) <k (CSU_Q\/|W|+CSJ_3|W|+vl/4C’S’U_4|W|3/2) <1+ <| |ZW| |> > (3.4)

Recall that (2.1) (or (2.2) in case (i’)) is a sufficient condition for v < cc.

The proof is at Section 5.2

3.2 Proof of Theorems 1.1 and 1.2

We prove Theorem 1.1 (resp. Theorem 1.2) using the previous results.

Let n > 1 be such that W = W, is bounded and non-empty, Gw = Fw (resp. Gw = F};,),
0?2 = Var(Gw). Assumption (1.8) (resp. (1.11)) clearly implies (2.1) (resp. (2.2)), and therefore
(2.4) holds:

W[ 0% — 03| < RC3(10gaW|/IW])! 1.

Let y € RYk € W,z € W —k,x = (&, M), € {n,nU {(y, M')}} as in (3.1) (resp. (3.2)),
' =n'U{x},B=W —k (resp. B=R%),r = |z|/ay. Note that z € B\ B, hence

DyxFo(n' N B) =Fo((n' N B) U{x}) — Fo(n' N B)

=Fo((n' U{x})NB) — Fo(n' N B)

=Fo((n' U{x}) N B) — Fo((n' U{x}) N BN B,) + Fo((n' U{x}) N BN B,) — Fo(n' N B)
=Fy(n" N B) — Fy(n" N BN B,) + Fo(n N BN B,) — Fyo(n' N B).

Applying (1.8) (resp. (1.11)) twice with z1 = z, z2 = y yields
(E|DyFo(n/ 0 B)M)* < Co(1 + 1),

hence (3.1) (resp. (3.2)) holds, and (3.3) holds. Since furthermore (1.9) holds, Theorem 2.1
yields o > 0, and for n sufficiently large, 0=2 < 2|W| !0y 2, hence, with Gy = (Gw —

EGw)(VarGy )~ /2, for n sufficiently large, using also (1.5),

. L (C3C3
dy (Gw, N) < |W| /2 (—g + —2) :
9% %0
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Finally, since (1.8) (resp. (1.11)) holds with a > 2d, we have furthermore (2.5):

v =limsupE (G, — EGw,)" /|[Wa|?> < kCo(E(Fy — EFy)*)3/*.
n>=1
Applying (1.8) with r = 0, B = R? gives E(F, — EFp)* < kC§. The bound on Kolmogorov
distance (1.10) (resp. (1.12)) follows easily.
It remains to prove that GY, := (o2|W|)~/2(Gw — EGyw) follows a central limit theorem.
We achieve it by proving that its Wasserstein distance to the normal goes to 0. The triangular
inequality yields

dy (Giy, N) <E|Gly — G| + dy (G, N)

1 1

<
ao |W| \/V&I‘(GW)

which indeed goes to 0 by (2.4).

E|Gw — EGw/|+ dy (Gw,N)

4 Application to shot-noise processes

Fix f € {foo(:Q), fw(:;¢)}, as defined in (1.14). For the processes foo and fu to be well
defined on Poisson input, assume that for some 7 > 0,

/ / |G (@) |dzpu(dm) < oo, (4.1)
M JB(0,7)°

and let 45 be the class of locally finite ¢ such that 3, . ccnpo,r)e |9m(2)] < co. The fact
that n € Aj a.s. follows from the Mecke formula.

We use the general framework of random measurable sets. A random measurable set is a
random variable taking values in the space M of measurable subsets of R?, endowed with the
the Borel o-algebra B(M) induced by the local convergence in measure, see Section 2 in [11].
Regarding the more familiar setup of random closed sets, in virtue of Proposition 2 in [11], a
random measurable set which realisations are a.s. closed can be assimilated to a random closed
set.

4.1 Volume of excursions

Foru e R,W C Z% ( € 4, define

F (€)= ({f = u}nW).

A central limit theorem for the volume of a certain family of shot noise excursions has been de-
rived in [8], under the assumption that f(0; () has a uniformly bounded density and E|gns(z)]
decreases sufficiently fast as ||z|| — oo, using the associativity properties of non-negative shot-
noise fields. In some specific cases, the bounded density can be checked manually with compu-
tations involving the Fourier transform. In this section, we refine this result in several ways:

e A general model of random kernel is treated, it can in particular take negative values,
allowing for compensation mechanisms (see [16]).

e The precise variance asymptotics are derived.

e Weaker conditions are required for the results to hold, in particular no bounded density
is assumed.

12



e The likely optimal rate of convergence in Kolmogorov distance towards the normal is
given.

e Boundary effects under finite input are considered, in the sense that only points falling in
a bounded window (growing to infinity) contribute to the field. The case of ininite input
is also treated.

The application to shot noise excursions is a nice illustration of the versatility of the general
method derived in this article. We give examples of fields with no marginal density to which
the results apply, such as sums of indicator functions, or of kernels with a singularity in O.
Controlling the density of shot-noise fields is in general crucial for deriving results on fixed-level
excursions. One of the hopes of this paper is, conditionally to such a work on marginal densities,
to seek for applications to more complicated geometric indexes, such as Euler characteristic, or
number of connected components.
The decay assumption in 0 is of the following form: for some 3, ¢ > 0, for||x| > 1,

E|gar|(z) < cll=] 7, (4.2)

further assumptions are made on [ later. We also assume that one of the three following
assumptions is satisfied.

Assumption 4.1. There is a € (0,1] and ¢ > 0,79 > 0, such that for § > 0,

sup  P(f(0,7") € (v—=0,0+0) [n" #0) <cd",x € B,

vERS,r>10
where n” =n N B(0,7), and P(f(0,n) > 0) > 0.

(the condition 1" # () is necessary as P(f(0,17") = 0) > P(n” = 0) > 0.) Lemma (4.2)
below gives a bound in §In(J) on the density of some shot-noise fields. The generality of the
model can be used for instance to have the shape or the orientation of the random kernel to
be random, see for instance the anisotropic models of procedural noise used in [12] for texture
synthesis.

Assumption 4.2 (weighted indicator functions ). f is of the form (1.17), where Ly has finite
variance and P(L; = 0) # 1, E{(A;) > 0.

Such fields are used in image analysis [6, 7], or in mathematical morphology [16], sometimes
with L1 = const. a.s, and their marginals might not have a density.

Assumption 4.3. Let f be of the form (1.16) with g satisfying the following conditions: there
is € > 0 and ¢ > 0 such that for » > 0,

2\ 2(d—1)
/o %dp < cexp(erd=*). (4.3)
Nothing prevents g from having a singularity in 0: Theorem 4.1 below applies in any di-
mension to g(p) = Cp *1{,<1y + 91(p)1{p>1}.p > 0, where A > 0 and g1(p) is for instance of
the form exp(—ap?) or p=#, with a,A\ > 0,8 > 11d,y < d. Such fields don’t necessarily have
a finite first-order moment, and are used for instance in [2] to approximate stable fields, or for
modelling telecommunication networks. Here is the result for infinite input shot-noise fields.

Theorem 4.1. Let u > 0,G%, = (({x € W : f(z,n) > u}),W C Z? . Assume that (4.2) is
satisfied for some 3 > 0, and either Assumption 4.1 and 8 > d(10/a+1), or Assumption 4.2 and
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4.3 with § > 11d, hold. Then F{, satisfies (1.11),(1.9),(2.2),(3.2), and hence as |07 W|/|W| —
0, Var(GY,) ~ o2|W/|, (GY, — EGY,)(00+/|W]|)~! satisfies a central limit theorem, with

o = / PO > 0 f(@) > w) = PF0,7) > w)*] da > 0. (4.4)

Also, the convergence rate (3.4) in Kolmogorov distance holds for G, .

To give results in the case where boundary effects are considered, we need an additional
hypothesis on the geometry of the underlying family of windows # = {W,;n > 1}. For
6 > 0, let Cyp be the family of cones C C R? with apex 0 and aperture 6, i.e. such that
HIL(C NS = 0. Let Cp,, = {CNB(0,r) : C € Cq} for r > 0. Say that # has aperture
0 > 0 if for all W € # with diameter r > 0, W has aperture 0 : for € W, there is a subset
C € Cy, /2 such that (z + C) C W. The factor 1/2 is arbitrary here and could be replaced by
any strictly positive number (proofs would have to be adapted). Let us give an adapted version
of Assumption 4.1.

Assumption 4.4. Let M be a random variable with law u. Thereisa € (0,1],¢ > 0,7 > rg > 0,
such that for § > 0,

sup  P(f(0,nNC)efv—0,v+0]|nnC #0) <cd z € B,
’UER,CECQ,T

and P(f(0,n) > 0) > 0.

Theorem 4.2. Let u > 0,G¥ = ({z € W : fz,n N W) = u}),W C Z% Assume
that # has aperture ¢ and satisfies (1.5), that (4.2) holds for some 8 > 0, and that ei-
ther Assumption 4.4 and S > d(8/a + 1), or Asumption 4.2 or 4.3 with § > 9d, hold.
Then Fy, satisfies (1.8),(1.9),(2.1),(3.1), and hence as [9zaW|/|W]| — 0, Var(Gy,) ~ ad|W],

(G, — EGY,)(00/|W|)~! satisfies a central limit theorem, with oy € (0,00) defined in (4.4).
Also, the convergence rate (3.4) in Kolmogorov distance holds for G, .

Proof of Theorems 4.1 and 4.2. We put Fy(¢) = F&(¢N[0,1)9),¢ € . In all the examples
proposed, we have E|gr(z)|| < C||lz||~? for ||z|| > 1, for some 8 > d, hence (4.1) holds for
7 =1, and the left hand member of (1.11) is uniformly bounded for r < 2v/d. From now on
we take r > 2v/d. Let us start by proving (1.9). We need the following lemma. Recall that
n” =nnB(0,p),p = 0.

Lemma 4.1. Assume that v > 0 and
p({m € M g;.1((0,00)) > 0}) > 0. (4.5)
Then for some p > 0, for a > 2,
E(({f(51°) > u} N Wa)) > 0.
Proof. Let € > 0, p > 0 sufficiently large so that
u({m s (g7 (e.00) N B0, p— 1)) > 0}) > 0,

using the fact that (0,00) and R? are open. Let t € B(0,1), M;,i > 1, iid random variables
with law p, X;,¢ > 1, independant uniformly distributed on B(0, p), and U; = gp, (t — X;). Let
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n > u/e. We have P(U; =€) > 0, hence
P(f(t;n") = u) ZP(f(t;n") > ne)

=ZP(U1 +--+ Uk =2 ne)P(In°| = k)
k=0

o0

>3 P(U) 2 &)"P(f| = k) > 0.
k=n

Fubini’s theorem yields
EC({t € W, : f(t,n?) > u}) > BU{t € B0, 1) : f(t,n") > u}) > 0.
O

It is easy to prove in all cases that (4.5) holds. Since P(Fyy, (n°) = 0) = P({({t € W, :
ft,n")}) =0) = Pn? =0) >0, Fw,(n”) is not trivial for 5 > 2, and Fy satisfies (1.9) with
A= B(0,p).

Let us now prove that (1.8) holds, or (1.11) for Theorem 4.2. Let x1,z2 € R, My, M,
independent marks with law y, 7 > 0, ¢ C {(z1, M), (x2, M2)},n’ = nU(. Let B = R? in the
cas of infinite input (Theorem 4.1), and let B € B, otherwise (Theorem 4.2). If Assumption
4.2 is satisfied, we have

1/4

1/4
4
(E |Fo(nf N B, N B) — Fy(n N B)| ) < </[ . E|1{f(t.nnB,0B)>u) — L{f(tmnB)u) ] dt)
0,1

< sup P (3(z,m) En\Br:xeAm—t)l/4

te(0,1]4
1/4
< sup E Z 1{z€Amft}
t€[0.1]¢ (z,m)en\B,
1/4

< sup/ k(14+t) Pt 1at
telo,1]d Jr

<k(1 4 7) A+

hence (1.8) holds for oo = (8 — d)/4 > 2d, whence indeed all conclusions of Theorem 1.1 hold.
Let us come back to the general case on the form of f. Jensen’s inequality yields

4
|Fo(n’ N B) — Fy(n' N B, N B)|" = U{ (Listmnmyzuy — Lp@wns,ne)) dt]

0,1)¢
< / 1L rmnByzuy — Lf(tynB,nB)suy | d,
[0,1]4

and for ¢ € [0,1]%, 7 > 2V/d,

|f(t,; N B) = f(t,n' N B, N B)| = > gm(t — )
x=(xz,m)e(n’'NB)\ B,

<67‘,t = Z |gm(t - LL’)|,
x=(z,m)en’\B(t,a_ (r—/d))
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and §,, is independent from 7 N B(t,a_r/2) and its law does not depend on ¢ € [0,1]%. Since
B = Z for some Z C Z% and 0 € B,t € B. Also, B contains a point of B¢, hence it has
diameter at least a_r. Since W has aperture 6, there is a solid cone C;y € Cg,_,/2 such
that, with D; = (Cy +t), D; C B. In the infinite input case, the latter trivially holds with
B=R%0 =041 :=H" (S 1), D, = B(t,a_r/2). We have

4
E|Fy(n N B)—Fo(f "B, NB)| < sup P(f(t,n N B) € [u—0pt,u+ p4))
te(0,1]4
< S[UP]dP (ft,nN D)+ f(t,nN (B\ Di) UQ) € [u— pp,u+ 6rs))
telo,1
< sup P(f(t,nN D) €v—"0r1,04 6r4]))
veR,te[0,1]4

< sup P(f(0,nNC) € [v—10br0,v+0r0]))
UER,CECQ’aiT/Q

= sup EP(f(0,nNC) € [v—=0p0,v+ dro]) |0r0)] - (4.6)
vER,CECh o r/2

If Assumption 4.4 holds (or Assumption 4.1 in the infinite input case), assume without loss
of generality r > 2rg/a_. The previous expression is bounded by

sup  P(nNC=0)+cE(5 ) < sup  exp(—£(C)) + c(E[d,0])*
CGCQ’aiT/2 i CECQ,air/g

<exp(—rOrd) + ke / p P ldp | < Cp—aB=d)
a_(r—d)

hence in the finite input case (1.8) holds with @ = a(8 — d)/4 > 2d, and in the infinite input
case (1.11) holds with & = a(8 — d)/4 > 5d/2.

Let us now assume that instead Assumption 4.3 holds. At this point we need to study the
density of the shot-noise field.

Lemma 4.2. Assume that f is of the form (1.16). Let 6 > 0, R > 1. Then for v € R,C € Cy,g,

p~2 A p2d=D)dp
-4 (p)

R
P(f(0,nNC) e v—6v+4]) < f<a(5/ ( + (1 + kOR?) exp(—KHR?).
0
Before proving this result, let us conclude the proof. Let R < a_r/2. For C € Cy,,, with
C"= £C € Cy,r, f(0,nNC) is the independent sum of f(0,7NC")+ f(0,nN (C"\ C)), hence
the right hand member of (4.6) is bounded by, using Lemma 4.2 and hypothesis (4.3),

sup  E[P(f(0,nNC) € [v—0r0,v+ dr0]) dr0] <KEO, o exp(n@RdiE) +(1+ AHRd) exp(—n@Rd).
veER,CECh, R

With R = [|In(r)| 772 A (a_r/2)] V 1, exp(kOR?¢) << (1 +71)7 << exp(kfR%) for v > 0 as
r — 00, and we have for any 7,7 > 0

4
E|Fo(' 1 B) - Fo(n' 0 B, N B)|

<

(147) / g(p)p™ tdp+ (1 + R)(1+ 1)
a_(r—d)
<C'(1+47)" =D,

for some 9d < 3’ < B (resp. 11d < 8/ < j3), hence (1.8) (resp. (1.11)) holds with v = (8’ —d)/4.
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Proof of Lemma 4.2. Let A\ = =%, ng = [nNC| be the number of germs (Poisson variable with

parameter /(C) = R?/)\), and 1et gr(z) = 9(||17H)1{mec*}, so that f(0,nNC) = El ® 9r(Xy)
where the X; are uniform iid in C. Call ug the distribution of the gr(X;). We have for every
g(R) < a < b, since g is one-to-one,

A A g ' (a) i
nr(la,b)) = Rd/l{a<g(”x”)<b}d:’[:—ﬁ/ o 0p* “dp

)
gd — _
~ a9 @ =g ),

whence jip has density ¢r(a) = Lazg(ry) 225 ( Sty ) - Then, noting ¢" the density ¢r
convoluted with itself n times on the real line,
P(f(O,nﬂC)6[v—6,v+5])<ZP(nR:n (ZQR v—5v+5]>

(1+Rd//\)exp( RYN) 4> P(nr = n)llep" |20

n=2
<k(1+ R?/X) exp(—R/A) + 2sup |95 06 (4.7)
n=2
Due to convolution properties, for n > 2, an induction yields
12" oo <NPR™ Hlosllerlls = 05" oo < I9R" 2lloo < -

<022 < / F(a)da = Epr(gr(X1))

57 | erlatlel)ds

A [ g ) oaada
SR Jo g/ (g g(2l) raR?

2
:<Ud1) /R 1 P20 g,
kaRY) Jo g'(p)
_ <Ud1)2 L/l pQ(dl)dp+/R p72dp
Kd R Jo g'(p) v 9'(p) )7

which concludes the claim after reporting in (4.7). O

O

Remarks 4.1. In the case u < 0, the results above still holds except for Assumption 1.9. One
needs to prove that {f(-,7”) > u} # R? with positive probability. Assume that the —g,, satisfy
(4.5) (instead of the g,, satisfying it). Then by Lemma 4.1

PU{—f>—-u})>0)>0

which yields the same result as for u > 0.
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4.2 Perimeter

We use in this section the variational definition of perimeter, following Ambrosio, Fusco and
Pallara [1]. Define the perimeter of a measurable set A C R? within U C R? as the total
variation of its indicator function

Per(A;U) = sup / 14(z)dive(x)de,

peCt(URY: o] <1 Jre

where C! (U, R?) is the set of continuously differentiable functions with compact support in U.
Note that for regular sets, such as C' manifolds, or convex sets with non-empty interior, this
notion meets the classical notion of (d — 1)-dimensional Haudorff surface measure [1, Exercise
3.10], even though the term perimeter is traditionally used for 2-dimensional objects. It is a
possibly infinite quantity, that might also have counterintuitive features for pathological sets
([1, Example 3.53]). The main difference with the traditional perimeter is that the variational
one does not “see” the points of the boundary which neighborhoods don’t charge the volume
of the set, such as line segments for instance.

For any measurable function f : R? — R and level v € R, the perimeter of the excursion
Per({f > u};U) within U is a well-defined quantity. To be able to compute it efficiently, we
must make additional assumptions on f’s regularity. Following [6], we assume that f belongs
to the space BV (U) of functions with bounded variations, i.e. such that f € L'(U) and its
variation above U is finite:

V(f,U):= / f@)divp(x)dr < co.
peCH U R <1

The original (equivalent) definition states that f € L*(U) is in BV (U) if and only if the following
holds ([1, Proposition 3.6]): there exists signed Radon measures D;f on U,1 < i < d, called
directional derivatives of f, such that for all p € C°(R%),

/f )divep(x Z% )D; f(dz).

Then there is a finite Radon measure ||Df|| on U, called total variation measure, and a S?~1-
valued function v¢(x),z € U, such that Df = >, D;f = ||Df||vs. According to the Radon-
Nikodym theorem, the total variation can be decomposed as

|Df|| = Vfe+ DI fHI" 4 Def (4.8)

where V f is defined as the density of the continuous part of || D f|| with respect to ¢, D¢f + D’ f
is the singular part of || D f|| with respect to Lebesgue measure, decomposed in the Cantor part
Def, and the jump part D7 f, that we precise below, following [1, Section 3.7].

For z € U,denote by H, the affine hyperplane containing = with outer normal vector v (x).

For r > 0, denote by BT (x,7) and B~ (z,r) the two components of B(z,r) \ H,, with Vj (x)
pointing towards BT (x, 7). Say that x is a reqular point if there are two values f*(z) > f~(z)
such that

r—0

. —d + _ f =
et [t sl =t [ e @l =0 49)

It turns out that the set of non-regular points has H% '-measure 0, and the set J ¢ of points
where f*(x) > f~(z), called jump points, has Lebesgue measure 0. Then, the jump measure
of f is represented by

D7 f(dz) = 1ipesyy (fF(2) = f7(2)) R (dx),
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where He~1 stands for the (d — 1)-dimensional Hausdorff measure.

In the classical case where f is continuously differentiable on U, Df = Vf{, vs(x) =
[Vf(2)|"'Vf(z) (and takes an irrelevant arbitrary value if Vf(z) = 0), and V(f;U) =
Jo IVf(x)||de. If f = 14y for some C' compact manifold A, vs(x) is the outer normal to
Aforx € 0A, Vf=0,D°f =0,and D/ f = 1{3A}Hd_1.

Denote by SBV(U) the functions f € BV (U) such that D¢f = 0. Assume here that for
m € M, g, € SBV(R?), and that

/ [/ (U9 ()] + 1V gon (6) | dpum) it + / 05() — g O dt) | < 0.
M R4

gm

It follows by [6, Theorem2] that for ( € A, f = f(:;¢) € SBV(U), and for every bounded U,
its gradient density defined by (4.8) is a vector-valued shot-noise field, defined a.s. and f-a.e.
by

Vit = > Vgm(t—w),
(z,m)eC

its jump set J; is the union of the translates of the kernel jump sets: J; = Uz myec(z + Jy,,.),
and the jumps of f are

Frus)—F w0 = > Yyewrs, ) (0h—2)—gnly—2)).y € Jp.
(w,m)€C

Let h be a test function, i.e. a function h : R — R of class C! with compact support. Let H be

a primitive function of h. Biermé and Desolneux [6, Theorem 1] give for a test function h, and
W C 74, for ( € N,

By (Q) = /Rh(U)Per({f > u Wdu = Fg(Q) + Fg"™™ (€),
where

R0 = [ @OV s Olds,
Fn@ = [ 05) = B 3 ) ),

JrNW

Their expectations under 1 have been computed in [6, Section 3] :

EFy™" () = (W)E [h(f(0))[|V £ (0]

‘ B 9 (W)
EFS () = 0(W) /M /J / Eh(s + f(0))dsH* " (dy)p(dm).

gm ()
Let us now give their second order behaviour. It is difficult to give sharp necessary conditions
with a general function h for non-degeneracy of the variance, but (1.9) is satisfied if for instance
the mean EFVhV’PeT is not zero for some W C Z%, or in virtue of Lemma 4.1, if h has support in
R, and (4.5) holds, because a set with positive volume has positive perimeter.

Theorem 4.3. Let # = {W,;n > 1} satisfying (1.5). Assume that for some a > 5d/2,

(Blgar(@)|)/* < Cs(1+ [|la)) 47, (4.10)
(E[Vgr (@) < Ca(1+ [|z]) ", (4.11)
4 1/4
E / (1V g3 (t) = ga (DA (d1) < Cy(1 A+ fJzf) 4= (4.12)
JQMﬂ(w'HOxl]d)
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and (1.9) holds (see above). Then the conclusions of Theorems 1.1,1.2,2.1,3.1 hold for Fy"".

Example 4.1. e Let f be a function of the form (1.17). Then the left hand term of (4.11)
is 0 and (4.10) holds if P(x € A1) < C(1 + ||lz||)7#. Then (4.12) holds if

(EPer(A; N (x + [0, 1)) " < Ca(1 + [l2f) =4, 2 € RY.
Under these two conditions, the conclusions of Theorem 4.3 hold.

e Assume M = R is endowed with a probability measure p with finite 4-th moment. Let f
be a function of the form

fl@, Q)= > mg(z—y)

(y,m)€C

with g € SBV(R). Conditions (4.10) (resp. (4.11)) holds if g(r) < C(1 +7)~4"% r > 0
(resp. |¢'(r)] < C(1+7)~%2,r > 0). Then (4.12) holds if .J, is finitely countable and for
some C' > 0, for every r > 0

S Vgt — g ()dt < C(1+r) e

zeJgNlr,r+1]

Proof. First, (4.10)-(4.11) imply that the ‘shot noise process and its gradient measure are a.s.
well defined. The functionals iy F{t7“"" are under the form (1.1)-(1.2), with Fy defined
respectively by, for ( € A,

O = [ o)

[0,1)

Flawmp () :/ (H(fT(t:0) = H(F~ (6 O)H (1),
Jt50N[0,1)

where H is a primitive function of h.
Let x; = (zi,m;) € R4, i=1,...,6. Let r > 0,B € BY,,{ C {x1,%2}, ” =nU(. Then

|[F0 6 0 B, 1 B) = B 0 B)| < / W el £t 0 B) = f(tof 0B OBV (8 m)|de

s

# VS B0 B) =90 0 B

< > /01 R oIV £ &' O B)llgm(z = 8)] + [ Alloc IV gm (z — t)|[]] dt (4.13)
(z,m)En\By

Define for {y € A, x = (x,m) € R,

U(x,Co) = / NIV £ (2 (G0 U Q) N B)lllgm (2 = )] + [1llocl | Vgm (2 — )] dt

s

For ¢’ C {x;,3 <1 < 6}, Jensen’s inequality yields for x = (z,m) € R?

Ey(x,nu ()t / E [lgm(z = )I'E|[VF(t, (f U¢) N B)|* + E|Vgm(z —t)]*] dt
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An easy application of Lemma 5.1 with ¢/ (x,m) = ||Vgm (z —1t)||, 7 = 0 yields that EV f(¢, (5’ U
(") N B)* < ¢ < 00 where ¢ does not depend on t € R, B € Ur>0B,, or the x;. Therefore,
Assumptions (4.10) and (4.11) yield for x = (z,m) € R¢

E(x,nU ) < O+ [laf) =4O,
and Lemma 5.1 with (4.13) yields that (1.8) is satisfied by Fp"“"™.

Let us now prove that it is satisfied by the jump functional F| jump - Gince it has to hold
only for f-a.e. x1,29, and the J,,, J,, have finite H9~! measure, we assume that g, (- = 71)

and Jg,, . (- — x2) have a H9 ! —negligible intersection. They also a.s. have a H?~!-negligible
intersection with each J,, (-—x), (x,m) € n. Call f1(x) = f(x,7'NB), fo(x) = f(x,n'NB,.NB),

}Fgump(nf N B) — F{“"(i/ N BN B,)

= > / H(fF () = H(fy (1) = (H(f5(8) = H(f2)()] 17 (dt)

d
(z,m)en’'NB,NB n[o,1]

J7n

F) - - -1
+ Z /ngm[o e [H(f1 (1)) I{(f1 (t))} H (dt)

(z,m)en’'NB\ B,

<[ B - R O - )R
J4,N[0,1)4

. / 1Bl g7 & — ) — g — £)| 1O (d)
(@myen\B,. 101140 Ty,
< X |2 g om e+ [ ket - gl - 0 )
(e B, J5,0[0,1]¢ (0,140 J,,.
=1 ((z,m),n) =2 (x,m)

We have Eiby (2, Mo)* < C(1 + ||z||)~*@+9) by (4.12), and Jensen’s inequality yields for ¢’ C
{x3,...,%6}, f3(x) = f(z,(nU UC) N BN B), after expanding the 4-th power of the integral
as a quadruple integral,

4
Ey1((z, Mo),nU ()" =EE </J g, (2 — L‘)lﬂd_l(dt)> n,¢,¢

fgﬂ[071]d

n,¢. ¢

4
<E / (Bgary (z — 1))/ 434 (di)
J,N[0,1]4

<O+ fJal)= BN (T, 0 [0, 1]

by Assumption (4.10). Then (4.12) yields EH(Js, N [0,1]9)* < oo with an application of
Lemma 5.1, whence Lemma 5.1 again yields that F*/*" also satisfies (1.8). Hence Fy :=
Fpeeont 4 Fh Per satisfies (1.8), which yields the conclusion. O

5 Proofs

Recall that x denotes a constant which depends on d, «, a—_,a; and which value might change
from line to line. The following lemma is useful several times in the paper.
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Lemma 5.1. Let a > d, M;,0 < i< 4 1ndependent marks with law p. Let r > 0,4 : Riéx AN —
R, a kernel such that for (-a.e. xleR 0<i<4,and ¢ C {(z;, M;),1=1,...,4}
1/4 o
(Bv (@0, Mo),n U Q)*)'* < Co(1 + [l 2~
Then
o\ 174

D d(xm) < Cor(1+71)"%

xen\B,

Proof. Let . = n\ B,. Let x; = (x;, M;). Let P4 be the family of ordered tuples of natural
integers which sum is 4. The multi-variate Mecke formula yields

E| > ¢(xn)

XEN,

SAE ) p(xasm).b(xan)

{x1,- X4} C0pe

<4l 3 qE Y dlxam)™ (g m)™

P=(ma,..., mq)EPy (x1,.. ,xq)E(m)q
<K / EH#)(xl,nU{xl,...,xq})mldxl...dxq
P=(my,.. ,mq)€P4 Bpa 1
<K / HEi/} x;, U {x1, ..., x, )™ 4dx, ... dx,
By

P=(ma,.. ,mq)€P4 =

<« Y Hn/ C (1 + [la])) ™ D

P= (777,1, ,mq)6P4l 1

<k > cgnn/ (14 ¢)~mulatd)pd=1gy

P=(mi,...,mq)€EP4

<KGCj Z (14 )~ HotdFad < pod(1 4 )2,
P=(mi,...,mq)€EP4

5.1 proof of Theorem 2.1

We prove (2.3) under Assumption (2.1) (i.e. in case (i)). Remark first that (2.1) trivially holds
also for B € B§y, \ Bly, s < r. Also, if (2.1) is satisfied, with B = R? (2.2) is also satisfied.
Assume without loss of generality Fy(f)) = 0, then (2.1) with r = 0 yields

ms = sup E|F) (n)[?
keW

= sup E|Fy((nN W) —k)— Fo(((nn W) — k)N BO)|2 < fng < 00.
keWw

The following inequality is useful several times in the proof: given some square-integrable
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random variables Y;, Z;,i = 1,2, and a o-algebra Z,

E |COV(YY17 3/2|Z) — COV(Zl, ZQ|Z)|
<E (, [2E(Y2|Z2)\/2E((Zy — Y2)2| Z) + /2E(Z2|2)\/2E((Z; — Y1)2|Z)>
< (\/EYE B(Z: ~Va + \/EZ3\/B(Z; = Ym) | (5.1)

Recall that B.(k) = k+ B, for k € W,r > 0. Let k,j € W,r = ||k — j||/Bax), 7', 0"
independent copies of 77, and

me = (nN B.(k)) U (77/ N Br(k)c)v
nj = U (" nB.(5)°),

which are processes distributed as 7, independent since B,.(k) N B,-(j) = 0. Since n N B,.(k) =
k. N Br(k), (2.1) yields

—~
D)
S
<
—
<
~—
~—

Y () = B (qe) =F" () = BY (0.0 By (k) + F (e 0 By (k) — FY ()

B|EY ()~ B )|* <2(B|Foltn — k)0 (W — k) = Fo((n — by N (W — k) 0 B,)[

- - 2
FB|Ey(n )0 OV ~ k)1 By~ Byl — ) 0 (7 — )[)
<KOZ(1 +7)72,
a similar bounds holds for F J-W. Then, (5.1) yields

Cov(EY (), F¥ () — Cov(EY (ne). F, nJ] i JEEY (B EY (n) — B ()]

=0

+ nJE(FkW <m>>2¢E Y () — FY ()
<ky/may/CE(1 4 7)~2 C2(1 4+ ||k —4|)~ (5.2)

Hence (2.3) is proved in case (i). If G} = Fj;, and (2.2) is assumed instead of (2.1) (case (i’)),
replacing W by Z? in the computation yields the same bound for Cov(F}, F;). The finiteness
of o¢ follows from « > d. R

Let us now assume |[W| < oo and show (2.4). Let k € W,r = d(k,W¢)/ay, so that
B, N (W — k) = B,. We have if (2.1) holds

B = Fo=Fo((n=k) N (W = k) = Fo((n— k) N (W = k)N B,) + Fo((n — k) N B,) = Fo(n — k)
E[FY — F> <kC2(141r)72% < kC2(1 + d(k, W*)) 2

We hence have by (5.1), for k,j € W, recalling also (5.2),

|Cov(FY, F}") — Cov(Fy, Fj)| <cC3(1 + min(d(k, W°), d(j, W¢))) ™
<KOZ(1 + max(||k — 7, min(d(k, W®),d(j, W)~ (5.3)

Denote by [] the integer part of z € R. Let dw € N*, ={ke W :[d(k,W°)] =m} form e
N, Wya = {k € W : [d(k, W)] < dw} = UW W, Wmt = W \ Wyq. We have, using (2.3) and
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(5.3),

Var(Fw) —og|W||=| Y Cov(RY,FV)— Y Cov(Fy, F))
keW jeW kEW,j€7d
< > Cov(Fy, Fy)+2 > |Cov(FY, FV) — Cov(Fy, Fy)|
keW,j¢W k,jeW:d(k,We)<d(j,W¢)

<Y S | S ARl +2 Y KCE( -+ max((lk - il m)

m=0keW,, |jeWe JEW
<ECEY S D 13 > k=g +2 > (1+m)e
m=0keW,, jEB(k,m)e JEB(k,m)

<KC} Z Z (3k(1+ m)~ T + 26m?(1 +m) ™)
m=0 keW,,

<KCE (|Wha| + dyy T [ Wine)
hence

<KC3 <d§l,v |8|Z;VIT/| + dWO‘+d> .

2
— 05

‘ VaI‘(Fw)
Wi

Equation (2.4) follows by taking dw = [(|[W|/|8z4W|)=]. The same computation where F}V is
replaced by Fj (hence with no second term on the second line), treats the case (i’), without
requiring (2.1).

Let us now prove that (1.9) implies o9 > 0. Since (2.1) implies (2.2), assume without
loss of generality that we are in case (i’) and (2.2) holds, hence (2.4) holds. We recall and
set here some notation and results required for the proofs. Recall that for a > 0, W, =
[—a/2,a/2]" N Z¢, and let W,(k) = k+ Wa, k € Z4.  For b > a,( € A, let furthermore
C=¢nW\W,) and ¢® = ¢¢ and {, = ¢(NW,. Let p > 1 be such that A C Wp.
Introduce § = 2p,v = B+ (8 + p)Vday /2a_,6 = 77, where 7 > 1 will be set later. Let
v = $limsup,., Var(Fw, (n N A)) > 0, using (1.9). Increase p until Var(Fyy, (n N A)) > v.

Put Ae.; = RY\ (UledeW(la)), and define 7y = NN Aegr. Remark that 1., C n7. Let
W czd Call W2, ={l€Z?: Ws(6) c W}, W2, ={l € ZI\ W2, : Ws(I6) "W £ 0}, W° =
W2, UWS, WP =W NWs(15). We decompose, for ¢ € A,

Fw(O) =Y FY ()

lezd

F‘E[l/) — @ @ FO),
whereas [ ¢ we implies F' (M) = 0. Denote by Peyt, Vare,:, Coveyr the conditional probability,

where Fv(ll,) = Ekewla Fy.. Let FZ(? = FO_ and remark that if [ € W2

wnt?
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variance and covariance with respect to 7.,:. We have

Var(FW (n)) >EVar. (FW (77))

#
=" EVar(Fy) + Y ECoveu(Fy", FY)
lews l,mew?e

+
> Y EVar(FO) - Y EVara(FY) - Y E‘Covewt(F‘E;”),Fv(ll,)) .
lew; lewy, m,lEW?

int

(5.4)

First, E(F‘S[l,))2 < kmod?? for | € Z2. Let us prove that up to increasing p, EVare,:(F(®) > 0.
Let Q = 1{,\ a—g}. Since nesy € 0(n,), we have EVarey (F(©) > EVar(F©|Q,n,) > P(Q =
DEVar(FO|Q = 1,7,) because Q is independent of 7,. Recall that B,.(z) = x + B, for
x € RY r > 0. Define

61 = Z (Fr(n) = Fe(n N By—py/a,. (K)))

keWpg
So= Y (Fr(n) = Fe(n N Bagi.aya. (k)))-
kGWJ\WB
We have
FOMm=>" Fm+ Y. Fuln)
keWps keWs\Wpg
= > BN B-pyja, (k) + Y. Fe(nN By, ay/a, (k) + 61 + 2.
keWs keWs\Wg

For k € Z¢, By, 4)/a. (k) C B(k,d(k, A)) C A¢, whence Var(Fy,(nN Bk, 4)/a. (k)| =1,1,) =
0. Also, conditionally to Q = 1, for k € Wj, since (y — B)a_/ay = (B + p)Vd/2, A C
B(k,(p+ B)Vd/2) C B(—p)a. (k) € W,. Hence n N B(,_p)q. (k) =1 N A, and (5.1) yields,
with V' := supycza EFj(n N A)2,

E|Var(F® ()| = 1,7,)—Var(Fy, (n 1 A))
=E |Var(Fy, (n N A) 4 61 + 62| = 1,1,) — Var(Fw, (n N A)|Q = 1,7,

gn\/E(FWB (0N A) + 61 + 02)2 + EFw, (n N A)2\/E(0; + 0)2
<r\[E@B2V + 62 + 03\/E (0, + 02)%.

Assumption (2.2) yields E6? < k824 (1 4y — 8)72* < k(1 + p)>@=*) and

E < Y \/E(Fk — Fi(n N Bagk,A)/ay (k)))Q\/E(Fj = Fj(n N Bagj,a)/a,(3)))?
k,jEWg\Wg
2

5
< Z nmd71¢AC§(1 _'_m_p)an
m=f

2
oo

kG ([ S m—p) | < RCI(B - 92 < RCR(L+ )2,
m=4
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Finally, for some C' > 0 not depending on p or W,
EVare,(FO) > P(Q=1)(v — C(1 + p)* ).

Now let | #m € Z k € WP, 5 € W2, r = ||l —ml|(§ —7)/a+. Let /,n” independent copies
of n, and define

e =\ Br(k)) U (' N By.(k)°)
n; =\ Br(3)) U (0" N B;(r)°).

Since B,(k) N By(j) C Aewt, M and 7, are independent conditionally to 7e,:, and we have by
(5.1), with a computation similar to (5.2),

|COVewt(Fkaj) - COVewt(Fk(nk)aFj(nj)) | < “Cg(l +r)

=0

It follows that

‘covezt(Féy,Fé;’”)‘g 3 [Coven(Fi, Fy)| < #C384(1+ 1)
keWp jews,

and, for some C’ not depending on W,

> |Coven( P FD)| < CEO* S (Ipll (6 = 7)) < €05 = )7 < C(rp)
meZaN\{l} p=1

Reporting back in (5.4) yields
Var(Fiw) = [Wi|((v = C(1+ p) " )P(Q = 1) = C'(7p)**) — [Wyy|C” (5.5)

where C,C’,C"” don’t depend on p,7,W, and P(Q = 1) depends on p but not 7. Let therefore
p be such that Var(Fy,(n N A)) > v and v — C(1 4 p)*~* > 0, and then 7 such that (v —
C(1+ p)2d=2NP(Q = 1) — C'(1p)*** > 0. To conclude, let a sequence {W,;n > 1} be
such that lim,, |0z4W,|/|W,| = 0. Since [0zW|/|W| = |[WZ,|/(5%W?]), then we also have
(W) /| (W)2,,| — 0. Applying to (5.5) yields liminf,, |W, |~ Var(Fy, ) > 0, whence (2.4)
implies o9 > 0.

It remains to prove (2.5). Assume that (2.2) holds with o > 2d. The proof when instead
(2.1) holds is exactly the same with FV' instead of Fj, and it is omitted. For k € Z%, let

Fk = Fk(’I]) — EFk(’I]). We have
E(Fyw — EFy)* = Z EF,F;F, .
i,5,k,leW

Let I = {i,j,k,1} C W. Assume that i is I-isolated, i.e. 6 := [d(i,I \ {i})] = max,,er[d(m, I\
{m})]. Let n,,, m € I, be independent copies of 7, and

Hp, :B5/2a+ (m)

Ny =100 Hp) U (1, N HY),

note that 7/, is distributed as 1, and that for m € I'\ {i}, H; N\ H,, = (), hence 7, is independant

from {n},n;,n;}. Introduce F, = F,(n;,) — EF,,, F = F;F,Fy, F' = F/F|F/, independent of
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F!. We have

ERF - EF[F| <B||(F - F)F; PRl + |F/(F; - F))BFi|

0
+ |F{Fj(Fy — Fy)Fy| + |FFjF(F — F))| (5.6)
<4 (BE)YA(E|E, — F), )Y (5.7)
mel
<KCo(BES)?*(1 4+ 6)~2 (5.8)

by (2.2) (or (2.1) for the proof with the F}''). Notice that one point among {j, k, [} is between
distance § and & + 1 from 4, call it a, and there are at most k6%~! possible values for a, given
1. If there are two points remaining in {j, k,{} \ a, they are at mutual distance at most 36. We
have

E(FW - EFW)4 <4 Z 1{1 isolated}HOO(EF§)3/4(1 + [d(lv {]a kv l})])ia
i,5,k,lEW

<kCo(EFy)*/* Z(l +46)7 Z 14 isolated and [d(i,{j,k.1})]=5}
=1 i lEW

<kCo(EFy)*/* Z W*(1 4 6)“k6*(36)"
=1
<KCo(BEEL) 4w |?

where kK < 0o because a > 2d.

5.2 Proof of Theorem 3.1

W is fixed. For simplicity, in all the proof we use the notation G = Gy, G = Gw. If (3.2) is
satisfied, put G = Fj, and A = R?. If instead (3.1) is satisfied, put Gy, = F,XV and A = W.
Assume without loss of generality that Fj is centered. Theorem 1.2 from [17] gives general Berry-
Esseen bounds on the Poisson functional G in terms of integrals involving first and second-order
derivatives: provided [, E(DxG)%dx < oo (proved below), dy (G, N) < 35_, v, dx (G, N) <
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1/2 1/2
Xm dXQdX31

f e ]y .
-
b [/z B (D% C) (D2x0) dxldxzdx?)] v

732/7E|Dxé|3dx
[ (G~ EQ) }/4 /z [E(Dxé)ﬂmdx
1/2
<[ [ pios }
l/ ( ] [£(0206)] om0k, i -

Using either (

/_E<DXG>2d - / B(Dy.. M>G>2dx
A
‘/Ak k GW

<[ 3 ale- ke e - K

k,k'eW

< / cg|W|2dx+/ C3IW (1 + ||2|| — diam(W))?*dz
B(0,2diam(W)) B(0,2diam(W))¢

(o]

<C? (R|W|2diam(W)d + |W|2/

k(147 — diam(W))~2r¢ tdr | < oo
2diam (W)

using a > d > 1. Let o,y € A,x = (2, M),y = (y, M’). Call * =nU{x},n¥ =nU{y}. We
have

| Dy Gn)| < Y min (|DxGr(n)| + | DxGr (17|, | Dy Gro(n)| + | Dy Gr(n])
keWw

4
E|D; ,G(n)|* <E

QZmin( sup |DxGr(n')|, sup |Dka(77/)|>

keW n'e{n.n¥} n'e{nn*}

4
<2! Z EHmin( sup |DxGy,(n)|, sup |Dkai(77/)|>

Eisonka€W  i=1 n' €{nn¥} 0 €{n.n*}
4

1/4
<2! Z(Emin( sup  |DyxGr(n)|*, sup |Dka(n’)|4>>

kew n’ €{n,n¥} n e{n.n*}

Let k € W. Note that, with B =W — k, for &,y € W,/ € N,
DB () =F (nf U{x}) = B (1) = Fo((n U {x}) N W — k) = Fo(f "W — k)
=Fo(((n' — k)N B)U{x—k}) — Fo((n' — k) N B) = Dx—iFo((n' — k) N B).
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Since n — k @ 7, applying either (3.2) or (3.1) with y — k instead of y yields

4
E|D ,G(n)|* <xCj <Z min((1 + [lz — k[)=, (1 + [ly - kll)”‘)) :
keWw

Consider case (i’) (the following is valid but irrelevant in case (i)). Summing in a radial manner
around z yields that the previous sum is bounded by ng(Z;O:[d(IVW)] ma=(1 +m)~*)* <

KCE(14d(x, W))*?=2) "and the same holds for . We can also work on the first order derivative
with a similar technique:

4
E|D.G|* < xC} (Z (1+ e - kn)“) < KCA(L + d(a, W)=,
keWw

Noting I, , = {k € W : ||k —z| > ||k — v},

4 4
E[Dxy G)|* <wCg || D Atle—kD™ ] + | D A+ly—k)~
kel y kE€ly »
- 1
<kCy (I [l =K + > I+ lly =k~
| E€Z\B(z,ly—=|/2) kEZA\B(y,llz—yll/2)
<Cr(1+ [lo = yll/2)*),
whence finally
E| Dy y G(n)|* <wC3(1 + max(||z — y|, d(z, W), d(y, W)))*@=). (5.10)

Let us start with a few geometric estimates, useful in the case (i’).

Lemma 5.2. Let W C Z%, bounded and non-empty, dw = (|[W|/|0z« W)YV W' = {k € Z¢ :

W' <k|W| (5.11)
/~ (1 4+ d(z, W))*dz <ka|W|dYy, a < —d (5.12)
(W)e
I(z) := / (1 + max(d(z, W), |z — y|)* *dy <w(1 + d(z, W))??~* 2 € R% (5.13)
Rd

Proof. Since each point of W\ W is in a ball with radius dy centered in 97«W, (5.11) is proved
via

W/ | < |W| + [07aW |rdy, < &|W|.

Let ¢(x) = d(z, W),z € R h(t) = 1g>awy(141)%,t > 0. The Federer co-area formula yields

[ hwanive@lds = [ bepetw (o)
Rd

Ry

We have ||V (z)|| = 1 for a.a. € W¢. According to [20, Lemma 4.1], for almost all ¢ > 0,
HT T ({t)) < TR T ({1),
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and the latter is bounded by xt?=1|9,.W|. Since a +d < 0

/~ h(1p(z))dz < Ii/ (1 4+ )%YW dt < ka|Oga W |dGd, = koW |dS,
(W)e

dw

which yields (5.12). The left hand member of (5.13) is equal to

1) =BG da W) mastale W+ [ eyl

oo

<K(1+d(x, W)= 4 / (1 + ) kri=tdr,
d(x,W)

from which the result follows. |
Writing X1~ = (Il,Ml),XQ = (IQ,MQ),Xg = (Ig,Mg), with Ml,MQ,Mg iid distributed as
w,denote by E the expectation with respect to (Mi, M2, Ms), and E, the expectation with

respect to 7, such that E = EE,,. We have, bounding ED2 . by xCg and using Cauchy-Scwharz
inequality several times,

1/2
4! :40_2 |:/ |:\/E Dle) (szG \/E X1 xaG) (D>2cz xaG)Q}:| d:Eld:Ede3:|

1/2
o2 [ / VEIB, [(Dx,G)* (DGRl E [E, [(D2, ,,G)? (D§2X3G)2Hd:c1dx2d:c3}
A'ﬁ

X1,X3 X2,X3

-2 2 4\1/4 2 4\ 1/4 12
A3

Similar techniques to integrate out the marks yield the same bound
1/4 1/4 1/2
Y2 <KCoo 2 [/ (E(Dz, x,G)") / (E(Dx, % G)") / d$1d$2d$3}
A3
<KCEo ™2 / I(x3)?dxs
A

using (5.10). In the case (i), A = W and o > 2d. We have

2
max(y1,72) < f<aC2 _2\/€(W) (/ (14 fjzz — :v|)d—0‘d:v> f<aC2 2w
Rd

In the case (i'),A = R a > 5d/2. Using successively (5.13),(5.11) and (5.12) yield, with
2(2d — o) < 2(—d/2) < —d,

max (71, 72) <ﬁ030‘2\/f<VV'>+ / (1 d(x, W))2(2d-0) gy
(W7)e

<R30\ KIW |+ Ragaa—og WIS < RCo™2/TI(1 + d324)),

which gives the power a in (3.3)-(3.4). Let us keep assuming we are in case (i’). Since A = R?,
a > 2d and (5.12) yield

3 §0_3/ (Cgli(l + d(x, W))4(d_o‘))
]Rd

SKC3o W (1 4 d31=).

3/4 -
de < C3ro3(t(W') + /~ (14 d(z, W))* =) dz
(wrye
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In case (i), the same bound holds after removing d?,[(,d_a). Reporting back gives (3.3).

Introduce G = G — EG. Using (5.11) and (5.12),

— 3/4

<qo @) [ 078 (el + (o W) )
2 Rd

ko~ IWICH (V) + / i

(Wrye

(1 + d(z, W)= dg)

<o RIW 20 A1 + di )

E((G-EG)Y)

where v 1= supyy| o —TwE Let us conclude the proof: (5.12) yields

V5

Y6

1/2 A(d—a)\ /2
< [/ o~ Cak(1 + d(x, W))4(d_"‘)dx} <o 2CEk\/ W] (1 +dpy )
]Rd

<[/ o4 (6CHR(1L + dlwr, W) (14 [l — )20
(R%)?2
1/2
+3CHR(L+ d(zy, W)X (1 + oy — o)) ) dardas|
1/2
<o [ atar w2 ([ @ e -yl ay ) al
Rd Rd

o\ 1/2
<a-2cgm/|W|(1+d§§d >) .

In case (i), A = W, all the same inequalities still hold after removing terms of the form dyy.
Reporting back gives (3.4).
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